Self-Regeneration of Stereocenters (SRS)-Applications, Limitations, and Abandonment of a Synthetic Principle

Total Page:16

File Type:pdf, Size:1020Kb

Self-Regeneration of Stereocenters (SRS)-Applications, Limitations, and Abandonment of a Synthetic Principle In the same manner that the Nasobem, Stiimpke’s mythical creature, teaches his child the peculiar way of life of the species Nasobema lyricum, the work of Seebach et al. on the self-regeneration of stereocenters has been governed by a fanciful idea. On the way, many tricks have been learned and much knowledge gained. Finally, they have come back down to earth and find themselves once again in the unimaginative world of enantiomer separation for the synthesis of enantiomerically pure compounds. REVIEWS Self-Regeneration of Stereocenters (SRS)-Applications, Limitations, and Abandonment of a Synthetic Principle Dieter Seebach,* Andrea R. Sting, and Matthias Hoffmann Dedicated to our much-admired teacher and mentor, Professor Dr. Vladimir Prelog, on the occasion of his 90th birthday In order to replace a substituent at a atoms of cyclic or linear systems, and discuss the most useful findings gained single stereogenic center of a chiral mol- stereogenic planes of x-complexes can from investigations into both the self-re- ecule without racemization, a temporary also be used as the temporary chirality generation of stereocenters and the use center of chirality is first generated element in other approaches to the real- of chiral acetals in the synthesis of enan- diastereoselectively, the original tetrag- ization of the SRS principle. Enan- tiomerically pure compounds (EPC onal center is then trigonalized by re- tiomerically pure derivatives of, for ex- synthesis) : the formation and character- moval of a substituent, a new ligand is ample, glycine, hydroxy- and sulfanyl- istics of complexes obtained from introduced, again diastereoselectively, acetic acid, 3-aminopropanoic acid, and Li-enolates and other Li compounds and finally, the temporary center is re- 3-oxocarboxylic acids can be prepared with secondary amines; the application moved. By means of these four steps (the by resolution of racemic mixtures via of a-alkoxy and a-amino-Li-alkoxides “Self-Regeneration of Stereocenters”, diastereoisomeric salts or by chromato- as in situ bases and sources of aldehydes SRS), 2- and 3-amino-, hydroxy-, and graphy on a chiral column. Hence, the in C-C bond forming reactions with sulfanylcarboxylic acids have been suc- extensive reactivity of compounds de- unstable enolates or nitronates; the sig- cessfully alkylated with formation of veloped to test the SRS principle and, nificance of A’.’ effects on the stereo- tertiary carbon centers and without the above all, the outstanding stereoselec- chemical course of nucleophilic, radical, use of a chiral auxiliary. Use of this tivities of the reactions can be put to and electrophilic reactions of N-acylated methodology has allowed the potential good use even when no suitable chiral heterocycles and homo- or heterocyclic of these inexpensive chiral building precursor is availabl-ven though this carboxylic ester enolates; and the effects blocks to be expanded considerably. amounts to an abandonment of the of the amide protecting group on the This article aims to demonstrate (using, principle! The readily available 2-tert- reactivity of neighboring centers and in part, examples from natural product butyl-l,3-imidazolidin-3-one,-0xazolid- on the stereoselectivity of the reac- syntheses) that chiral heterocyclic ac- in-5-one, -dioxin-3-one, and -hydropy- tions at those centers. At the end of etals with enamine, enol ether, enolate, rimidinone (all of which contain a single this article we have included an ap- dienolate, enoate, radical, and acyli- stereogenic center at the acetal C atom) pendix containing tables, which are in- minium functionalities and also those can thus be used in the preparation of a tended to summarize all the examples that are potential reactants for Michael vast range of 2-amino- and 3-hydroxy- known in as complete a fashion as pos- additions and pericyclic processes (for carboxylic acids, and no chiral auxiliary sible. example, electron-rich and electron- has to be removed or regenerated during poor dienophiles and dienes) are now these procedures. (One example is the Keywords: asymmetric syntheses - chiral easily accessible, more often than not, in synthesis of 4-fluoro-MeBmt, a deriva- synthetic building blocks - enolates * both enantiomeric forms. Stereogenic tive of the C, amino acid found in cy- lithium compounds nitrogen atoms of aziridines, boron closporin.) In the final chapter we will 1. Introduction and Definition of the Problem [*] Prof. Dr. D. Seebach, Dr. A. R. Sting, DipLChem. M. Hoffmann Was nicht sein kann, Laboratorium fur Organische Chemie das nicht sein darJI[**’ der Eidgenossischen Technischen Hochschule ETH-Zentrum, Universitatstrasse 16, CH-8092 Zurich (Switzerland) It is a fundamental part of every basic lecture course in organ- Fax.: Int. code +(1)632-1144 e-mail: [email protected] ic chemistry that a reaction at a trigonal center bearing three [**I “Surely the impossible is just not possible.” different substituents in an achiral molecule results, if neither Anoou, rhrm Inf Fd Fnd 19%. 35. 2708-2748 173 VCH Verlacscesellschaft mbH 0-69451 Wemherm. 1996 0570-083319613523-2709$15 OOt,2510 2709 REVIEWS D. Seebach et al. the other reactants nor the surroundings are chiral, in the for- carbanion chemistry, there is also a cation, more often than not mation of a racemic product containing one center of chirality. a metal ion, which can be sufficiently strongly boundr5]to allow The consequence of this is that a substitution that proceeds in the formation of configurationally stable organometallic deriva- either a homolytic or heterolytic manner at a solitary stereo- tives[6-81 such as those shown in Scheme 1 f, a whole new genic center of a molecule yields enantiomeric products in a 1 : 1 branch of stereoselective synthesis developed.[’~l4] ratio and hence, a racemic mixture is formed (Scheme 1 a). If the Even in enolate chemistry there are exceptions to the rules trigonal center in the intermediate is cationic or part of a n-sys- formulated above (see the examples in Scheme 2). Although the tem, it will have a trigonal-planar geometry and if it is radical or sole center of chirality in the starting material is removed, enan- anionic in nature, it may have a trigonal-pyramidal geometry tiomerically pure or enantiomerically enriched products may but will be capable of rapid inversion, particularly in noncyclic result. This can be attributed to the formation of aggregates of systems. achiral enolates with chiral components in the reaction mixture There are, of course, exceptions that can be of practical signif- (Scheme 2 a)[”] or also to sufficiently conformationally stable icance. These include the SJ substitution of OH by C1 using enolate intermediates which possess axes of chirality (Scheme thionyl chloride (Scheme 1 b),[ll which proceeds with retention 2b-e).[16-201The cation also plays a decisive role in the reac- of configuration, and the cationic cyclization of linalol p-ni- tions of enolates. Owing to the successful creation of a variety trobenzoate to terpineol (Scheme 1 c) .[’I Stereoselective reac- of alternatives, today practically any type of imaginable reactiv- tions proceeding via carbanionic intermediates are also known. ity or selectivity of these nucleophiles, which are of central im- For example, the D/H exchange with retention of configuration portance in organic synthesis, can be achieved. possibilities shown in Scheme 1 d,[jl which is really of rather academic inter- include the participation of aggregates (“supramolecular” struc- est, and the decarboxylation, with retention, of an intermediate tures) of Li-, Na-, K- and Mg-en~lates[’~-’~~and their com- used in the preparation of the anaesthetic Desfl~ran[~I plexes with salts,[26,271 amides,[28]and amines,[21-24’ ’’3 301 the (Scheme 1 e). Once it had been appreciated that within so-called reduction of the coordination sphere of the participating meta from 1986 to 1989 at A. R.Sting D. Seebach M. Hoffmann the “Ingenieurschule Beider Basel” (IBB) in Muttenz (Canton Basel-Land) , where he earned the title Dipl.-Chem. HTL. Subsequently, he moved to the ETH in Zurich to continue his chemistry studies (Diploma 1992). In the spring of1993 he began working in the group of Prof. D. Seebach and completed his Ph.D. thesis on the synthesis of4$‘uoro-MeBmt in the spring of1996. He is now working in the Division of Crop Protection of Ciba-Geigy in Basel. Dieter Seebach was born in Karlsruhe (Germany) in 1937. He studied chemistry at the University of Karlsruhe and completed his Ph.D. thesis on small rings andperoxides under the supervision of’Prof. R. Criegee in 1964. After a two-year stay at Harvard University as postdoctoral co-worker (with Prof. E. J. Corey) and lecturer, he returned to Karlsruhe and, in 1969, completed his “habilitation” on the topic of S- and Se-stabilized carbanion and carbene derivatives. In 1971 he moved to the University of Giessen as afullprofessor and then in 1977 to the Eidgenossische Technische Hochschule (SwissFederal Institute of Technology) in Zurich. He has been a visiting professor at the Universities of Wisconsin- Madison, Strasbourg, Munich (TU), and Kaiserslautern and also at Caltech (Pasadena) and the Max Planck Institute in Miilheirn. A main emphasis of his research is the development of new synthetic methods; in the last decade the subject discussed here and the Ti-TADDOLates have been major interests. His work also involves mechanistic studies and determination of structures. More recent research topics include chiral dendrimers, the short-chain oligomers of 3-hydroxybutanoic acid, the bioploymer PHB. and backbone-modified peptides. Matthias Hoffmann was born in Zurich (SwGtzerland) in 1969. He completed his Diploma studies in chemistry at the ETH in Zurich in 1993 with research conducted in the group of Prof. D. Seebach. Later that year, he began working on his Ph.D. thesis in the same area. His research,focuses on the development ofmethodsfor the preparation ofenantiomerically pure, non-proteino- genic amino acids.
Recommended publications
  • Enantiotopicity, Diastereotopicity
    Stereochemistry and stereocontrolled synthesis (OC 8) A lecture from Prof. Paul Knochel, Ludwig-Maximilians-Universität München WS 2015-16 1 Wichtig! • Prüfung Stereochemistry 02. Februar 2016 8:00 – 10:00 Willstätter-HS • Nachholklausur Stereochemistry 5. April 2016 9:00 – 11:00 Willstätter-HS 2 Problem set part I 3 Problem set part II 4 Problem set part III 5 Recommended Literature • E. Juaristi, Stereochemistry and Conformational Analysis, Wiley, 1991. • E. Eliel, Stereochemistry of Organic Compounds, Wiley, 1994. • A. Koskinen, Asymmetric Synthesis of Natural Products, Wiley, 1993. • R. Noyori, Asymmetric Catalysis, Wiley, 1994. • F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, 5th Edition, Springer, 2007. • A. N. Collins, G. N. Sheldrake, J. Crosby, Chirality in Industrie, Vol. I and II, Wiley, 1995 and 1997. • G.Q. Lin, Y.-M. Li, A.S.C. Chan, Asymmetric Synthesis, 2001, ISBN 0-471-40027-0. • P. Deslongchamps, Stereoelectronic Effects in Organic Chemistry, Pergamon, 1983. • M. Nogradi, Stereoselective Synthesis, VCH, 1995. • E. Winterfeldt, Stereoselective Synthese, Vieweg, 1988. • R. Mahrwald (Ed.), Modern Aldol Reactions, Vol. I and II, Wiley, 2004. • C. Wolf, Dynamic Stereochemistry of Chiral Compounds, RSC Publishing, 2008. • A. Berkessel, H. Gröger, Asymmetric Organocatalysis, Wiley-VCH, 2005. • J. Christoffers, A. Baro (Eds.), Quaternary Stereocenters, Wiley-VCH, 2005. • Catalytic Asymmetric Synthesis, I. Oshima (Ed.), Wiley, 2010. 6 Recent advances of asymmetric catalysis 7 Asymmetric Hydrogenation of Heterocyclic Compounds 8 R. Kuwano, N. Kameyama, R. Ikeda, J. Am. Chem. Soc. 2011, 133, 7312-7315. Camphor-Derived Organocatalytic Synthesis of Chromanones 9 Z.-Q. Rong, Y. Li, G.-Q. Yang, S.-L. You, Synlett 2011, 1033-1037.
    [Show full text]
  • Enantiotopic Discrimination in the NMR Spectrum of Prochiral Solutes in Chiral Liquid Crystals
    Chemical Society Reviews Enantiotopic Discrimination in the NMR Spectrum of Prochiral Solutes in Chiral Liquid Crystals Journal: Chemical Society Reviews Manuscript ID: CS-REV-07-2014-000260 Article Type: Review Article Date Submitted by the Author: 29-Jul-2014 Complete List of Authors: Lesot, Phillippe; Universite Paris Sud (Paris XI), LRMN, ICMMO, UMR 8182 Aroulanda, Christie; Universite Paris Sud (Paris XI), LRMN, ICMMO, UMR 8182 Zimmermann, Herbert; Abteilung Biophysik, Max-Planck-Institut für Medizinische Forschung, Luz, Zeev; Weizmann Institute of Science, Department of Chemical Physics Page 1 of 117 Chemical Society Reviews Chem. Soc. Rev. (2014) - 1 - Enantiotopic Discrimination in the NMR Spectrum of Prochiral Solutes in Chiral Liquid Crystals Philippe Lesot* ,a , Christie Aroulanda a, Herbert Zimmermann b and Zeev Luz c a Laboratoire de RMN en Milieu Orienté CNRS UMR 8182, ICMMO, Bât. 410, Université de Paris-Sud, 91405 Orsay cedex, France. bAbteilung Biophysik, Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany. c Weizmann Institute of Science, Department of Chemical Physics, Rehovot 76100, Israel. Corresponding author : Philippe Lesot: [email protected] Keywords : Prochirality, Enantiotopic sites, NMR, Chiral Liquid Crystals, Dynamics. Type of article : (comprehensive) review Chemical Society Reviews Page 2 of 117 Chem. Soc. Rev. (2014) - 2 - Abstract The splitting of signals in the NMR spectra originating from enantiotopic sites in prochiral molecules when dissolved in chiral solvents is referred to as spectral enantiotopic discrimination. The phenomenon is particularly noticeable in chiral liquid crystals (CLC) due to the combined effect of the anisotropic magnetic interactions and the ordering of the solute in the mesophase.
    [Show full text]
  • The Control of Stereochemistry by the Pentafluorosulfanyl Group
    Organic & Biomolecular Chemistry View Article Online PAPER View Journal | View Issue The control of stereochemistry by the pentafluorosulfanyl group† Cite this: Org. Biomol. Chem., 2018, 16, 3151 Paul R. Savoie, Cortney N. von Hahmann, Alexander Penger, Zheng Wei and John T. Welch * The influence of pentafluorosulfanylation on biological activity has been revealed in numerous compara- tive studies of biologically active compounds, but considerably less is known about the influence of pen- tafluorosulfanylation on reactivity. Among the distinctive properties of the pentafluorosulfanyl group is the profound dipole moment that results from introduction of this substituent. It has been shown that dipolar Received 20th December 2017, effects coupled with the steric demand of the SF5 group may be employed to influence the stereo- Accepted 3rd April 2018 chemistry of reactions, especially those processes with significant charge separation in the transition DOI: 10.1039/c7ob03146g state. The Staudinger ketene-imine cycloaddition reaction is an ideal platform for investigation of dipolar rsc.li/obc control of diastereoselectivity by the pentafluorosulfanyl group. Introduction ation into a hydrocarbon chain, the restricted rotation about the carbon–sulfur bond that results from interactions with Numerous pentafluorosulfanyl(SF5)-containing organic nearby methylene groups, can lead to localized conformational – compounds1 10 have been prepared that have potential utility rigidity of the alkyl chain.21,22 in drug discovery, agrochemical synthesis and materials
    [Show full text]
  • Chapter 8. Chiral Catalysts José M
    Chapter 8. Chiral Catalysts José M. Fraile, José I. García, José A. Mayoral 1. The Origin of Enantioselectivity in Catalytic Processes: the Nanoscale of Enantioselective Catalysis. Enantiomerically pure compounds are extremely important in fields such as medicine and pharmacy, nutrition, or materials with optical properties. Among the different methods to obtain enantiomerically pure compounds, asymmetric catalysis1 is probably the most interesting and challenging, in fact one single molecule of chiral catalyst can transfer its chiral information to thousands or even millions of new chiral molecules. Enantioselective reactions are the result of the competition between different possible diastereomeric reaction pathways, through diastereomeric transition states, when the prochiral substrate complexed to the chiral catalyst reacts with the corresponding reagent. The efficiency of the chirality transfer, measured as enantiomeric excess [% ee = (R−S)/(R+S) × 100], depends on electronic and steric factors in a very subtle form. A simple calculation shows that differences in energy of only 2 kcal/mol between these transition states are enough to obtain more than 90% ee, and small changes in any of the participants in the catalytic process can modify significantly this difference in energy. Those modifications may occur in the near environment of the catalytic centre, at less than 1 nm scale, but also at longer distances in the catalyst, substrate, reagent, solvent, or support in the case of immobilized catalysts. This is the reason because asymmetric
    [Show full text]
  • Synthesis and Enzymatic Resolution of Amino Acid Esters in "Green" Solvents — Ionic Liquids
    Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty. ABSTRACT SYNTHESIS AND ENZYMATIC RESOLUTION OF AMINO ACID ESTERS IN "GREEN" SOLVENTS — IONIC LIQUIDS By Hua Zhao Chiral separation has attracted tremendous attention in pharmaceutical and chemical fields, especially in the area of chiral drug development. Chiral amino acids are among the most important intermediates in the asymmetric synthesis of modern drugs.
    [Show full text]
  • Stereochemistry
    Lecture note- 2 Organic Chemistry CHE 502 STEREOCHEMISTRY DEPARTMENT OF CHEMISTRY UTTARAKHAND OPEN UNIVERSITY UNIT 4: STEREOCHEMISTRY 1 CONTENTS 4.1 Objectives 4.2 Introduction 4.3 Isomerism 4.4 Structural (Constitutional) Isomerism 4.5 Stereo (Configurational) isomerism 4.5.1 Geometrical Isomerism 4.5.2 Optical Isomerism 4.6 Element of Symmetry 4.7 Stereogenic centre (Stereogenicity) 4.7.1 Optical activity and Enantiomerism 4.7.2 Properties of enantiomerism 4.7.3 Chiral and achiral molecules with two stereogenic centers 4.7.4 Diastereomers 4.7.5 Properties of Diastereomers 4.7.6 Erythro (syn) Threo (anti) diastereomers 4.7.7 Meso compounds 4.8 Relative and absolute configurations 4.8.1 D/L nomenclature 4.8.2 R/S nomenclature 4.8.3 Sequence Rule 4.9 Newman and sawhorse projection formulae 4.10 Fisher flying and wedge formulae 4.11 Racemic mixture (racemates) 4.12 Quasi enantiomers 4.13 Quasi racemates 4.14 Stereochemistry of allenes, spiranes, biphenyls, ansa compounds, cyclophanes and related compounds 4.15 Summary 4.16 Terminal Questions 4.17 Answers 4.1 OBJECTIVES In this unit learner will be able to: ➢ Depict various types of isomerism exhibited by organic compounds and their representation ➢ Analyze the three dimensional depictions of organic compounds and their two dimensional representations. ➢ Learn Stereogenicity, chirality, enantiomerism, diastereomerism, their relative and absolute configurations ➢ Learn about the various stereo chemical descriptors such as (cis-trans, E/Z, D/L, d/l, erythro/threo, R/S and syn/anti) given to organic molecules differ ➢ Describe the stereochemistry of various rigid and complex molecules like spiranes, adamentanes, catenanes, cyclophanes etc.
    [Show full text]
  • Chirality in Organic Molecules
    M. U. en Química, Universitat de València 44606 - Advanced Organic Chemistry Prof. Pablo Gaviña Unit 2 Stereochemistry, stereoselectivity and stereoelectronic effects Recommended textbooks: - Francis. A. Carey, Richard J. Sundberg, Advanced Organic Chemistry. Part A: Structure and Mechanisms, 5th Edition, Springer. - F. A. Carroll, Perspectives on Structure and Mechanism in Organic Chemistry, 2nd Ed., 2010, Wiley 1 - Basic concepts of isomerism and stereoisomerism - Symmetry of organic molecules. Elements of symmetry. - Reasons of chirality in organic molecules. Stereogenic elements. Nomenclature. - Diastereoisomerism. - Prostereoisomerism and prochirality: topicity and its descriptors. - Conformational analysis. Stereoelectronic effects. - Influence of configuration and conformation on the reactivity of organic molecules. - Stereoselectivity and stereospecifity of organic reactions. 2 General concepts of isomerism and stereoisomerism Qualitative elementary composition: C, H, O Quantitative chemical composition: C 66.66%, H 11.11%, O 22.22% Empirical formula: (C4H8O)n Molecular mass: 72, n = 1 Molecular formula: C4H8O Constitution of the molecule: Nature and bonding of its atoms. Structure: Constitution and stereochemistry (configuration and conformation) Isomers: -Constitutional -Stereoisomerism -Configurational isomers -Conformers (C4H8O)n 3 CONSTITUTIONAL ISOMERISM AND STEREOISOMERISM Isomers are chemical compounds that have the same molecular formula but differ in the constitution or arrangement of their atoms in space. ISOMERS Constitutional
    [Show full text]
  • Stereochemistry and Stereoselective Synthesis
    www.ShimiPedia.ir www.ShimiPedia.ir László Poppe and Mihály Nógrádi Editors László Poppe, József Nagy, Gábor Hornyánszky and Zoltán Boros Contributing Authors Stereochemistry and Stereoselective Synthesis www.ShimiPedia.ir www.ShimiPedia.ir Edited by László Poppe and Mihály Nógrádi Contributing Authors László Poppe, József Nagy, Gábor Hornyánszky and Zoltán Boros Stereochemistry and Stereoselective Synthesis An Introduction www.ShimiPedia.ir Editors All books published by Wiley-VCH are carefully produced. Nevertheless, authors, Dr. László Poppe editors, and publisher do not warrant the Budapest Univ. of Technology & information contained in these books, Economics including this book, to be free of errors. Dept. of Organic Chemistry & Readers are advised to keep in mind that Technology statements, data, illustrations, procedural Szt. Gellért tér 4 details or other items may inadvertently 1111 Budapest be inaccurate. Hungary Library of Congress Card No.: applied for Dr. Mihály Nógrádi Budapest Univ. of Technology & British Library Cataloguing-in-Publication Economics Data Dept. of Organic Chemistry & A catalogue record for this book is avail- Technology able from the British Library. Szt. Gellért tér 4 1111 Budapest Hungary Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek Contributing Authors lists this publication in the Deutsche Dr. László Poppe Nationalbibliografie; detailed Budapest Univ. of Technology & bibliographic data are available on the Economics Internet at <http://dnb.d-nb.de>. Dept. of Organic Chemistry & Technology © 2016 Wiley-VCH Verlag GmbH & Co. Szt. Gellért tér 4 KGaA, Boschstr. 12, 69469 Weinheim, 1111 Budapest Germany Hungary All rights reserved (including those of Dr. József Nagy translation into other languages). No part Budapest Univ.
    [Show full text]
  • Bsc Chemistry
    Subject Chemistry Paper No and Title 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Module No and 19; Prostereoisomerism (Prochirality) Title Module Tag CHE_P1_M19 CHEMISTRY Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Module No. 19: Prostereoisomerism (Prochirality) TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 2.1 Molecular Symmetry and Chirality 2.2 What is prochirality? 3. Homotopic and Heterotopic Ligands and Faces 3.1 Topicity of Ligands and Faces 3.2 Homotopic Ligands and Faces 3.3 Heterotopic Ligands and Faces 4. Summary CHEMISTRY Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Module No. 19: Prostereoisomerism (Prochirality) 1. Learning Outcomes After studying this module, you shall be able to Understand the connection between molecular symmetry and chirality. Differentiate between chiral and prochiral molecule. Know the difference between homotopic and heterotopic ligands and faces. To identify the prochirality in molecules. Identify the different type of stereotopic ligands and faces in the molecules. 2. Introduction 2.1 Molecular Symmetry and Chirality A molecule (or an object) can have only one mirror image. If the image is superimposable on the original, the molecule is called achiral. On the other hand, if it is not superimposable on the original, the molecule and its mirror image form two distinct species called enantiomers, giving rise to a type of stereoisomerism known as enantiomerism. Such molecules are called chiral and the two enantiomers are said to differ in their sense of chirality or handedness in the same way as right hand differs from the left hand. Three terms have almost been used interchangeably to describe molecules, which show enantiomerism: asymmetric, dissymmetric, and chiral.
    [Show full text]
  • Applications of Imino-Diels–Alder Reactions in Synthesis
    Applications of Imino-Diels–Alder Reactions in Synthesis A thesis presented by Jasprit Kaur Chahal As partial fulfilment of the requirements for the award of the degree of Doctor Philosophy of Imperial College London Thorpe Laboratory Department of Chemistry Imperial College London South Kensington Campus London SW7 2AZ 1 Declaration of Originality The work reported in this thesis is my own and information derived from the published and unpublished work of others has been appropriately referenced. 2 Abstract The aim of the project was to synthesise (−)-morphine utilising a tethered intramolecular imino-Diels–Alder reaction. This thesis begins by providing brief reviews on the subjects of total synthesis of morphine and asymmetric imino-Diels–Alder reaction. The major section focuses on the research findings in the past four years. Starting with investigations in the development of a novel stereoselective imino-Diels–Alder reaction of methyl propargyl ether derived (1 E, 3Z)-1-silyloxy-3-(phenylthio)-1,3- dienes with trans -2-phenylcyclohexyl glyoxylate derived N-tosylimine. Following with the progress made so far to synthesise triene II; this was envisaged to be prepared from the enantiomerically pure alcohol III and allylic halide IV. The alcohol III was prepared in a five-step sequence from p-anisaldehyde. However, the synthesis of the allylic halide IV from D-lyxose was more challenging and problematic. Initial efforts for its synthesis via a route incorporating the Ohira–Bestmann reaction caused an unwanted epimerisation. Further efforts, through an eleven-step sequence including Wittig dibromomethylenation and intramolecular ene–yne metathesis gave V or VI . However, the reductive eliminations to give the alcohol precursor to IV were unsuccessful.
    [Show full text]
  • Thesis-Alieh
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Saskatchewan's Research Archive ALDOL COUPLINGS OF CHIRAL FRAGMENTS WITH KINETIC RESOLUTION: SCOPE AND LIMITATIONS A thesis submitted to the College of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in the Department of Chemistry University of Saskatchewan Saskatoon by Alieh Kazemeini © Copyright Alieh Kazemeini December, 2011. All rights reserved. Permission to Use In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make this thesis freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised the thesis work, or in their absence, by the Head of the Department, or the Dean of the College in which the thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition will be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in this thesis. Requests for permission to copy or to make other use of material in this thesis in whole or in part should be addressed to: The Head Department of Chemistry University of Saskatchewan 110 Science Place Saskatoon, SK S7N 5C9 CANADA i Acknowledgements First of all, I would like to express my deepest and greatest gratitude to my supervisor, Dr.
    [Show full text]
  • Preview Chapter 6 on Stereochemistry in PDF Format
    CHAPTER 6 Stereochemistry Intent and Purpose Stereochemistry is the study of the static and dynamic aspects of the three-dimensional shapes of molecules. It has long provided a foundation for understanding structure and re- activity. At the same time, stereochemistry constitutes an intrinsically interesting research field in its own right. Many chemists find this area of study fascinating due simply to the aes- thetic beauty associated with chemical structures, and the intriguing ability to combine the fields of geometry, topology, and chemistry in the study of three-dimensional shapes. In ad- dition, there are extremely important practical ramifications of stereochemistry. Nature is inherently chiral because the building blocks of life (␣-amino acids, nucleotides, and sugars) are chiral and appear in nature in enantiomerically pure forms. Hence, any substances cre- ated by humankind to interact with or modify nature are interacting with a chiral environ- ment. This is an important issue for bioorganic chemists, and a practical issue for pharma- ceutical chemists. The Food and Drug Administration (FDA) now requires that drugs be produced in enantiomerically pure forms, or that rigorous tests be performed to ensure that both enantiomers are safe. In addition, stereochemistry is highly relevant to unnatural systems. As we will de- scribe herein, the properties of synthetic polymers are extremely dependent upon the stereo- chemistry of the repeating units. Finally, the study of stereochemistry can be used to probe reaction mechanisms, and we will explore the stereochemical outcome of reactions through- out the chapters in parts II and III of this text. Hence, understanding stereochemistry is nec- essary for most fields of chemistry, making this chapter one of paramount importance.
    [Show full text]