A&A 622, A47 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834056 & © ESO 2019 Astrophysics Asteroid cratering families: recognition and collisional interpretation A. Milani1,†, Z. Kneževic´2, F. Spoto3, and P. Paolicchi4 1 Department of Mathematics, University of Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy 2 Serbian Academy Sci. Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia e-mail:
[email protected] 3 IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau, 75014 Paris, France e-mail:
[email protected] 4 Department of Physics, University of Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy e-mail:
[email protected] Received 9 August 2018 / Accepted 17 November 2018 ABSTRACT Aims. We continue our investigation of the bulk properties of asteroid dynamical families identified using only asteroid proper ele- ments to provide plausible collisional interpretations. We focus on cratering families consisting of a substantial parent body and many small fragments. Methods. We propose a quantitative definition of cratering families based on the fraction in volume of the fragments with respect to the parent body; fragmentation families are above this empirical boundary. We assess the compositional homogeneity of the families and their shape in proper element space by computing the differences of the proper elements of the fragments with respect to the ones of the major body, looking for anomalous asymmetries produced either by post-formation dynamical evolution, or by multiple collisional/cratering events, or by a failure of the hierarchical clustering method (HCM) for family identification. Results. We identified a total of 25 dynamical families with more than 100 members ranging from moderate to heavy cratering.