Hyaluronidases in Human Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Hyaluronidases in Human Diseases International Journal of Molecular Sciences Review Hyaluronidases in Human Diseases Aditya Kaul 1,2 , Walker D. Short 1,2 , Xinyi Wang 1,2,* and Sundeep G. Keswani 1,2,* 1 Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; [email protected] (A.K.); [email protected] (W.D.S.) 2 Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA * Correspondence: [email protected] (X.W.); [email protected] (S.G.K.); Tel.: +832-824-0469 (X.W.); +832-822-3135 (S.G.K.); Fax: +832-825-3141 (X.W.); +832-825-3141 (S.G.K.) Abstract: With the burgeoning interest in hyaluronic acid (HA) in recent years, hyaluronidases (HYALs) have come to light for their role in regulating catabolism of HA and its molecular weight (MW) distribution in various tissues. Of the six hyaluronidase-like gene sequences in the human genome, HYALs 1 and 2 are of particular significance because they are the primary hyaluronidases active in human somatic tissue. Perhaps more importantly, for the sake of this review, they cleave anti-inflammatory and anti-fibrotic high-molecular-weight HA into pro-inflammatory and pro- fibrotic oligosaccharides. With this, HYALs regulate HA degradation and thus the development and progression of various diseases. Given the dearth of literature focusing specifically on HYALs in the past decade, this review seeks to expound their role in human diseases of the skin, heart, kidneys, and more. The review will delve into the molecular mechanisms and pathways of HYALs and discuss current and potential future therapeutic benefits of HYALs as a clinical treatment. Keywords: disease; hyaluronic acid; hyaluronidase; molecular weight Citation: Kaul, A.; Short, W.D.; Wang, X.; Keswani, S.G. 1. Introduction to Hyaluronidases Hyaluronidases in Human Diseases. Int. J. Mol. Sci. 2021, 22, 3204. The role and significance of hyaluronidases are perhaps best understood by starting https://doi.org/10.3390/ijms22063204 with their substrate, hyaluronic acid. Originally elucidated by German biochemist Karl Meyer in 1934 [1], hyaluronic acid (HA) is a non-sulfated glycosaminoglycan (GAG) found Academic Editor: Lukáš Kubala in most vertebrates, and it has been largely associated with the pathogenesis of fibrosis [2]. While high-molecular-weight HA (HMW-HA) exerts anti-inflammatory and anti-fibrotic Received: 24 February 2021 effects [3], low-molecular-weight HA (LMW-HA) promotes inflammation and fibrosis [4]. Accepted: 18 March 2021 With this knowledge, the importance of hyaluronidases emerges as these enzymes are Published: 22 March 2021 responsible for the cleavage of anti-fibrotic HMW-HA into pro-fibrotic LMW-HA. Hyaluronidases (HYALs) themselves are endoglycosidases and are found in eukary- Publisher’s Note: MDPI stays neutral otes and prokaryotes alike. They were first observed by Duran-Reynals in 1928, who noted with regard to jurisdictional claims in the rapid spread of bacteria, drugs, antiviral vaccines, and subcutaneously-injected India published maps and institutional affil- ink in an extract of mammalian testes. Appropriately, he coined the term “spreading factor” iations. for this molecule [5], a property attributed to the fact that HYALs break down the structural integrity of HA, lowering its viscosity and leading to increased tissue permeability and thus spreading [6]. In 1971, the same Karl Meyer who detailed the chemical structure of HA classified Copyright: © 2021 by the authors. the HYALs into three discrete classes of enzymes [7]. Meyers based his categorization of Licensee MDPI, Basel, Switzerland. HYALs on their mechanism of action, with two groups comprised of endo-β-N-acetyl- This article is an open access article hexosaminidases and one group of endo-β-glucuronidases. Of the former, one class of distributed under the terms and vertebrate enzymes leverages substrate hydrolysis [8], and the other makes use of bacterial conditions of the Creative Commons eliminases, which employ β-elimination of the glycosidic linkage by way of an unsaturated Attribution (CC BY) license (https:// bond [9]. The third group of HYALs, endo-β-glucuronidases, are primarily found in creativecommons.org/licenses/by/ leeches [10], and although not much is known about this class of enzymes, their mechanism 4.0/). Int. J. Mol. Sci. 2021, 22, 3204. https://doi.org/10.3390/ijms22063204 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 13 Int. J. Mol. Sci. 2021, 22, 3204 2 of 11 mechanism of action is thought to be more closely related to the vertebrate enzymes than theirof action bacterial is thought counterparts. to be more closely related to the vertebrate enzymes than their bacterial counterparts.Critically, a large turnover of HA is common in vertebrate tissue [11]. In fact, levels of HACritically, rise rapidly a large under turnover pathological of HA isconditions, common inincluding vertebrate burns, tissue shock, [11]. Inand fact, after levels major of surgeriesHA rise rapidly [12]. Understanding under pathological how conditions,HYALs promote including HA burns,degradation shock, helps and afterdetermine major theirsurgeries influence [12]. Understandingin various disease how states. HYALs As promote such, the HA next degradation section of helpsthis review determine will theirspe- cificallyinfluence focus in various on HYALs disease in states.humans As by such, detailing the next the section HYALs of and this their review mechanism will specifically of ac- tion.focus on HYALs in humans by detailing the HYALs and their mechanism of action. 2. Background and Mechanism of Action in Humans Six hyaluronidase hyaluronidase-like-like genes have been elucidated in the human genome, allall of which are highly homologous, both within the paralog and acrossacross otherother vertebrates,vertebrates, includingincluding mice. In terms of location, HYALs 1, 2, and 3 are found tightlytightly clustered on chromosomechromosome loci 3p21.3,3p21.3, andandHYALs HYALs 4 ,45, ,5 and, and6 are6 are found found in ain similar a similar fashion fashion on chromosomeon chromosome 7q31.3 7q31.3 [13]. HYALs[13]. HYALs 5 and 56 andare 6 also are knownalso known as sperm as sperm adhesion adhesion molecule molecule 1 (SPAM1/PH20 1 (SPAM1/PH20) and) HYALP1and HY-, ALP1respectively., respectively.HYAL6 HYAL6is known is known as HYALP1 as HYALP1as it isas a it pseudogene is a pseudogene that isthat transcribed is transcribed but butnot not translated translated in humansin humans [14 [14].]. The The arrangement arrangement of of the the genes genes suggests suggests that that oneone originaloriginal gene sequence underwent two duplication events and a subsequent en masse duplication event to generate the chromosomal distribution found in humans and mice; notably, this means that that properties properties of of HYALs HYALs uncovered uncovered in in murine murine studies studies can can largely largely be be translated translated to humans.to humans. We We indicate indicate the the chromosomal chromosomal locations locations of of these these six six HYALsHYALs andand their primary function, degradation of HA in the extracellular space, inin Figure1 1.. Figure 1. Schematic illustration depicting thethe chromosomalchromosomal locationslocations ofof hyaluronidases hyaluronidases ( HYALs(HYALs) 1–6) 1and–6 and a secreted a secreted HYAL HYAL enzyme enzyme cleaving cleaving hyaluronic hyaluronic acid (HA).acid (HAHYALs). HYALs 1–3 are 1– located3 are located on chromosome on chro- mosome loci 3p21.3, and HYALs 4–6 on 7q31.3. Hyaluronidases are involved in the constant turno- loci 3p21.3, and HYALs 4–6 on 7q31.3. Hyaluronidases are involved in the constant turnover of the ver of the extracellular proteoglycan hyaluronan, generating fragments of various molecular extracellular proteoglycan hyaluronan, generating fragments of various molecular weights depending weights depending on the type of hyaluronidase. Pictured here is an extracellular hyaluronidase degradingon the type HA, of hyaluronidase. although it is Picturedimportant here to isnote an extracellularthat HYAL may hyaluronidase reside inside degrading endosomes HA, or although be boundit is important to the membrane to note that surfa HYALce. mayThis residefigure insideis a broad endosomes illustration or be and bound is not to drawn the membrane to scale. surface. Cre- atedThis figurewith BioRender.com. is a broad illustration and is not drawn to scale. Created with BioRender.com. Among the sixsix HYALs,HYALs, HYALs HYALs 1 1 and and 2 are2 are the the primary primary hyaluronidases hyaluronidases responsible responsible for forthe the catabolism catabolism of HA of HA in somatic in somatic tissue. tissue. Because BecauseHYALs HYALs 3, 4 ,3 and, 4, and5 have 5 have weak weak expression expres- sionpatterns patterns and HYAL6and HYAL6is a pseudogene, is a pseudogene, by process by process of elimination, of elimination these, fourthese HYALs four HYALs likely do not participate in cleavage of HA [14]. (Refer to Table1 for a summary of the human Int. J. Mol. Sci. 2021, 22, 3204 3 of 11 HYALs). However, this theory was properly corroborated by Csoka et al. when the group discovered that the mechanism for catabolism of HA involves HYAL2 working in lockstep with HA-receptor CD44 to break down HMW-HA into 20 kDa fragments. HYAL2, secured at the cell surface by glycosylphosphatidylinositol (GPI), produces the fragments, which are then packaged into acidic endosomes and transported intracellularly. Once
Recommended publications
  • Identification of Novel Genetic Variants Associated with Short Stature in A
    Human Genetics https://doi.org/10.1007/s00439-020-02191-x ORIGINAL INVESTIGATION Identifcation of novel genetic variants associated with short stature in a Baka Pygmies population Matteo Zoccolillo1 · Claudia Moia2 · Sergio Comincini2 · Davide Cittaro3 · Dejan Lazarevic3 · Karen A. Pisani1 · Jan M. Wit4 · Mauro Bozzola5 Received: 1 April 2020 / Accepted: 30 May 2020 © The Author(s) 2020 Abstract Human growth is a complex trait determined by genetic factors in combination with external stimuli, including environment, nutrition and hormonal status. In the past, several genome-wide association studies (GWAS) have collectively identifed hundreds of genetic variants having a putative efect on determining adult height in diferent worldwide populations. Theo- retically, a valuable approach to better understand the mechanisms of complex traits as adult height is to study a population exhibiting extreme stature phenotypes, such as African Baka Pygmies. After phenotypic characterization, we sequenced the whole exomes of a cohort of Baka Pygmies and their non-Pygmies Bantu neighbors to highlight genetic variants associated with the reduced stature. Whole exome data analysis revealed 29 single nucleotide polymorphisms (SNPs) signifcantly associated with the reduced height in the Baka group. Among these variants, we focused on SNP rs7629425, located in the 5′-UTR of the Hyaluronidase-2 (HYAL2) gene. The frequency of the alternative allele was signifcantly increased compared to African and non-African populations. In vitro luciferase assay showed signifcant diferences in transcription modulation by rs7629425 C/T alleles. In conclusion, our results suggested that the HYAL2 gene variants may play a role in the etiology of short stature in Baka Pygmies population.
    [Show full text]
  • Hyaluronidase PH20 (SPAM1) Rabbit Polyclonal Antibody – TA337855
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA337855 Hyaluronidase PH20 (SPAM1) Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: WB Recommended Dilution: WB Reactivity: Human Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: The immunogen for anti-SPAM1 antibody is: synthetic peptide directed towards the C- terminal region of Human SPAM1. Synthetic peptide located within the following region: CYSTLSCKEKADVKDTDAVDVCIADGVCIDAFLKPPMETEEPQIFYNASP Formulation: Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. Note that this product is shipped as lyophilized powder to China customers. Purification: Affinity Purified Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 58 kDa Gene Name: sperm adhesion molecule 1 Database Link: NP_694859 Entrez Gene 6677 Human P38567 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 Hyaluronidase PH20 (SPAM1) Rabbit Polyclonal Antibody – TA337855 Background: Hyaluronidase degrades hyaluronic acid, a major structural proteoglycan found in extracellular matrices and basement membranes. Six members of the hyaluronidase family are clustered into two tightly linked groups on chromosome 3p21.3 and 7q31.3. This gene was previously referred to as HYAL1 and HYA1 and has since been assigned the official symbol SPAM1; another family member on chromosome 3p21.3 has been assigned HYAL1.
    [Show full text]
  • Epidemiology of Mucopolysaccharidoses Update
    diagnostics Review Epidemiology of Mucopolysaccharidoses Update Betul Celik 1,2 , Saori C. Tomatsu 2 , Shunji Tomatsu 1 and Shaukat A. Khan 1,* 1 Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; [email protected] (B.C.); [email protected] (S.T.) 2 Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; [email protected] * Correspondence: [email protected]; Tel.: +302-298-7335; Fax: +302-651-6888 Abstract: Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by a lysosomal enzyme deficiency or malfunction, which leads to the accumulation of glycosaminoglycans in tissues and organs. If not treated at an early stage, patients have various health problems, affecting their quality of life and life-span. Two therapeutic options for MPS are widely used in practice: enzyme replacement therapy and hematopoietic stem cell transplantation. However, early diagnosis of MPS is crucial, as treatment may be too late to reverse or ameliorate the disease progress. It has been noted that the prevalence of MPS and each subtype varies based on geographic regions and/or ethnic background. Each type of MPS is caused by a wide range of the mutational spectrum, mainly missense mutations. Some mutations were derived from the common founder effect. In the previous study, Khan et al. 2018 have reported the epidemiology of MPS from 22 countries and 16 regions. In this study, we aimed to update the prevalence of MPS across the world. We have collected and investigated 189 publications related to the prevalence of MPS via PubMed as of December 2020. In total, data from 33 countries and 23 regions were compiled and analyzed.
    [Show full text]
  • Evaluation of the Prognostic Potential of Hyaluronic Acid and Hyaluronidase (HYAL1) for Prostate Cancer1
    [CANCER RESEARCH 63, 2638–2644, May 15, 2003] Evaluation of the Prognostic Potential of Hyaluronic Acid and Hyaluronidase (HYAL1) for Prostate Cancer1 J. Timothy Posey, Mark S. Soloway, Sinan Ekici, Mario Sofer, Francisco Civantos, Robert C. Duncan, and Vinata B. Lokeshwar2 Departments of Urology [J. T. P., M. S. S., S. E., M. S., F. C., V. B. L.], Department of Epidemiology [R. C. D.], and Cell Biology and Anatomy [V. B. L.], University of Miami School of Medicine, Miami, Florida 33101 ABSTRACT lapse), local/systemic recurrence] in ϳ10–50% of cases, depending on a variety of prognostic factors (5–7). Treatment failure may be Despite the development of nomograms designed to evaluate the prog- attributable to a local recurrence or distant metastasis. Existing pre- nosis of a patient with prostate cancer (CaP), the information has been operative indicators (i.e., PSA levels, clinical stage, biopsy Gleason limited to prostate-specific antigen (PSA), clinical stage, Gleason score, and tumor volume estimates. To improve our ability to predict prognosis, sum) or their combination in nomograms, as well as surgical and ϩ Ϫ information regarding the molecular properties of CaP is needed. Hyalu- pathologic parameters (i.e., prostatectomy Gleason sum, margin / , ronic acid (HA) is a glycosaminoglycan that promotes tumor metastasis. node status, seminal vesicle, and EPE), provide a limited estimate of Hyaluronidase (HAase) is an enzyme that degrades HA into angiogenic the prognosis for CaP (8, 9). Identifying molecules that are expressed fragments. We recently showed that in CaP tissues, whereas HA is local- in clinically localized CaP but associate with CaP invasion and ized mostly in the tumor-associated stroma, HYAL1 type HAase is exclu- metastasis might significantly improve the prognostic capabilities and sively localized in CaP cells (Lokeshwar et al.
    [Show full text]
  • DRUGS REQUIRING PRIOR AUTHORIZATION in the MEDICAL BENEFIT Page 1
    Effective Date: 08/01/2021 DRUGS REQUIRING PRIOR AUTHORIZATION IN THE MEDICAL BENEFIT Page 1 Therapeutic Category Drug Class Trade Name Generic Name HCPCS Procedure Code HCPCS Procedure Code Description Anti-infectives Antiretrovirals, HIV CABENUVA cabotegravir-rilpivirine C9077 Injection, cabotegravir and rilpivirine, 2mg/3mg Antithrombotic Agents von Willebrand Factor-Directed Antibody CABLIVI caplacizumab-yhdp C9047 Injection, caplacizumab-yhdp, 1 mg Cardiology Antilipemic EVKEEZA evinacumab-dgnb C9079 Injection, evinacumab-dgnb, 5 mg Cardiology Hemostatic Agent BERINERT c1 esterase J0597 Injection, C1 esterase inhibitor (human), Berinert, 10 units Cardiology Hemostatic Agent CINRYZE c1 esterase J0598 Injection, C1 esterase inhibitor (human), Cinryze, 10 units Cardiology Hemostatic Agent FIRAZYR icatibant J1744 Injection, icatibant, 1 mg Cardiology Hemostatic Agent HAEGARDA c1 esterase J0599 Injection, C1 esterase inhibitor (human), (Haegarda), 10 units Cardiology Hemostatic Agent ICATIBANT (generic) icatibant J1744 Injection, icatibant, 1 mg Cardiology Hemostatic Agent KALBITOR ecallantide J1290 Injection, ecallantide, 1 mg Cardiology Hemostatic Agent RUCONEST c1 esterase J0596 Injection, C1 esterase inhibitor (recombinant), Ruconest, 10 units Injection, lanadelumab-flyo, 1 mg (code may be used for Medicare when drug administered under Cardiology Hemostatic Agent TAKHZYRO lanadelumab-flyo J0593 direct supervision of a physician, not for use when drug is self-administered) Cardiology Pulmonary Arterial Hypertension EPOPROSTENOL (generic)
    [Show full text]
  • HYAL2 Antibody (R30915)
    HYAL2 Antibody (R30915) Catalog No. Formulation Size R30915 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human, Mouse, Rat. Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Antigen affinity Buffer Lyophilized from 1X PBS with 2.5% BSA and 0.025% sodium azide/thimerosal UniProt Q12891 Applications Western blot : 0.5-1ug/ml Limitations This HYAL2 antibody is available for research use only. Western blot testing of HYAL2 antibody and Lane 1: HeLa; 2: SMMC-7721; 3: COLO320; 4: MCF-7; 5: HT1080 cell lysate Description Hyaluronoglucosaminidase 2, also known as hyaluronidase 2, and LuCa-2, is an enzyme that in humans is encoded by the HYAL2 gene. HYAL2 cDNAs encode a preprotein with an N-terminal signal peptide. Northern blot analysis indicated that the gene was expressed in all human tissues tested except adult brain, and Western blot analysis detected the protein in all mouse tissues examined except adult brain. HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored protein on the cell surface and serves as a receptor for entry into the cell of the jaagsiekte sheep retrovirus (JSRV). The findings of Rai et al.(2001) that HYAL2 is a GPI-anchored protein on the cell surface showed that GFP would likely be cleaved from HYAL2 during GPI addition, leaving HYAL2 on the cell surface and resulting in GFP transit to the lysosome for degradation. Application Notes The stated application concentrations are suggested starting amounts. Titration of the HYAL2 antibody may be required due to differences in protocols and secondary/substrate sensitivity.
    [Show full text]
  • 12MS6741 BQ Vol 8:Layout 1 8/13/12 2:10 PM Page 1
    12MS6741_BQ_Vol_8:Layout 1 8/13/12 2:10 PM Page 1 BioTherapeutics B Quarterly Volume 8/Summer 2012 Diagnostic and Pharmaceutical News for You and Your Medical Practice $4.95 Diagnostics I Pharmaceuticals I DxRx Solutions I Continuing Education I News 12MS6741_BQ_Vol_8:Layout 1 8/13/12 2:10 PM Page 2 Choose the Only FDA-approved Hyaluronidase Synthesized by a Recombinant Process OTHER clinically utilized hyaluronidase productscts contain cattle or sheep testes-derived hyaluronidase Hylenex® recombinant (hyaluronidase human injection) is a Safe, Effective and Low Cost Option* • Hylenex recombinant is: – the ONLY recombinant human hyaluronidase available and – the lowest priced FDA-approved hyaluronidase available.* Hylenex® Vitrase® Wydase® Hydase Amphadase® Compounded recombinant Not Since Not Since Not Since Available for Use YES YES 1999 2008 2010 YES FDA-approved YES YES YES YES YES NO FDA-regulated Manufacturing YES YES Not Currently Not Currently Not Currently NO (cGMP**) Made Made Made Recombinant Sheep Cattle Cattle Cattle Cattle Source of Active Ingredient Human Testes Testes Testes Testes Testes Units/mL 150 200 150 150 150 150 *Cost comparison based on published Wholesale Acquisition Cost per single-use vial comparing FDA-approved available products. Red Book March 2012. Price comparison is not indicative of fi nal customer price and is not intended to be a comparison of safety or effi cacy of drugs. **cGMP= Current Good Manufacturing Practices See Important Safety Information and Brief Summary of Full Prescribing Information. BioTherapeutics
    [Show full text]
  • Label, Multicenter, Single Arm Study in Fifty-One (51) Patients
    NDA 21-859/S-009 Page 3 HIGHLIGHTS OF PRESCRIBING INFORMATION • Hypersensitivity (4) _______________ _______________ These highlights do not include all the information needed to use WARNINGS AND PRECAUTIONS HYLENEX recombinant safely and effectively. See full prescribing • Spread of Localized Infection. (5.1) information for HYLENEX recombinant. • Ocular Damage. (5.2) • Enzyme Inactivation with Intravenous Administration. (5.3) ____________________ ____________________ HYLENEX recombinant (hyaluronidase human injection) ADVERSE REACTIONS Initial U.S. Approval: 2005 • Allergic and anaphylactic-like reactions have been reported, rarely (6) __________________ _________________ INDICATIONS AND USAGE To report SUSPECTED ADVERSE REACTIONS, contact Halozyme HYLENEX recombinant is a tissue permeability modifier indicated as an Therapeutics, Inc. at 1-877-877-1679 or FDA at 1-800-FDA-1088 or adjuvant www.fda.gov/medwatch. • ____________________ ____________________ in subcutaneous fluid administration for achieving hydration (1.1) DRUG INTERACTIONS • to increase the dispersion and absorption of other injected drugs (1.2) • Furosemide, the benzodiazepines and phenytoin are incompatible with • in subcutaneous urography for improving resorption of radiopaque hyaluronidase (7.1) agents (1.3) • _______________ ______________ Hyaluronidase should not be used to enhance the absorption and DOSAGE AND ADMINISTRATION dispersion of dopamine and/or alpha agonist drugs (7.2) • Subcutaneous fluid administration: • Local anesthetics: Hyaluronidase hastens onset
    [Show full text]
  • Identifying Host Genetic Factors Controlling Susceptibility to Blood-Stage Malaria in Mice
    Identifying host genetic factors controlling susceptibility to blood-stage malaria in mice Aurélie Laroque Department of Biochemistry McGill University Montreal, Quebec, Canada December 2016 A thesis submitted to McGill University in partial fulfilment of the requirements of the degree of Doctor of Philosophy. © Aurélie Laroque, 2016 ABSTRACT This thesis examines genetic factors controlling host response to blood stage malaria in mice. We first phenotyped 25 inbred strains for resistance/susceptibility to Plasmodium chabaudi chabaudi AS infection. A broad spectrum of responses was observed, which suggests rich genetic diversity among different mouse strains in response to malaria. A F2 intercross was generated between susceptible SM/J and resistant C57BL/6 mice and the progeny was phenotyped for susceptibility to P. chabaudi chabaudi AS infection. A whole genome scan revealed the Char1 locus as a key regulator of parasite density. Using a haplotype mapping approach, we reduced the locus to a 0.4Mb conserved interval that segregates with resistance/susceptibility to infection for the search of positional candidate genes. In addition, I pursued the work on the Char10 locus that was previously identified in [AcB62xCBA/PK]F2 animals (LOD=10.8, 95% Bayesian CI=50.7-75Mb). Pyruvate kinase deficiency was found to protect mice and humans against malaria. However, AcB62 mice are susceptible to P. chabaudi infection despite carrying the protective PklrI90N mutation. We characterized the Char10 locus and showed that it modulates the severity of the pyruvate deficiency phenotype by regulating erythroid responses. We created 4 congenic lines carrying different portions of the Char10 interval and demonstrated that Char10 is found within a maximal 4Mb interval.
    [Show full text]
  • HYAL3 (E-11): Sc-377430
    SANTA CRUZ BIOTECHNOLOGY, INC. HYAL3 (E-11): sc-377430 BACKGROUND APPLICATIONS Hyaluronidases (HAases or HYALs) are a family of lysosomal enzymes that are HYAL3 (E-11) is recommended for detection of HYAL3 of human origin by crucial for the spread of bacterial infections and of toxins present in a vari- Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), ety of venoms. HYALs may also be involved in the progression of cancer. In immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell humans, six HYAL proteins have been identified. HYAL proteins use hydroly- lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- sis to degrade hyaluronic acid (HA), which is present in body fluids, tissues, 1:500), immunohistochemistry (including paraffin-embedded sections) and the extracellular matrix of vertebrate tissues. HA keeps tissues hydrated, (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA maintains osmotic balance, and promotes cell proliferation, differentiation, (starting dilution 1:30, dilution range 1:30-1:3000). and metastasis. HA is also an important structural component of cartilage Suitable for use as control antibody for HYAL3 siRNA (h): sc-60826, HYAL3 and acts as a lubricant in joints. HYAL3 is a 417-amino acid protein that is shRNA Plasmid (h): sc-60826-SH and HYAL3 shRNA (h) Lentiviral Particles: highly expressed in testis and bone marrow, but has relatively low expression sc-60826-V. in all other tissues. Unlike HYAL 1 and HYAL2, HYAL3 is an unlikely tumor supressor candidate, given the lack of detected mutations in its gene.
    [Show full text]
  • Molecular Basis, Diagnosis and Clinical Management Of
    cardio_special issue 2013_biomarin:Hrev_master 05/03/13 09.19 Pagina 2 Cardiogenetics 2013; 3(s1):exxxx3(s1):e2 Molecular basis, diagnosis storage of glycosaminoglycans (GAGs), previ- ously called mucopolysaccharides.1 The defi- Correspondence: Rossella Parini, Department of and clinical management of ciency of one of the enzymes participating in Pediatrics, San Gerardo Hospital, Via Pergolesi mucopolysaccharidoses the GAGs degradation pathway causes progres- 33, 20900 Monza, Italy. sive storage in the lysosomes and consequently Tel. +39.039.2333286 - Fax: +39.039.2334364. E-mail: [email protected] Rossella Parini,1 Francesca Bertola,2 in the cells and results in tissues and organs 3 Pierluigi Russo dysfunction. The damage is both direct or by Key words: mucopolysaccharidoses (MPS), heart, 1UOS Malattie Metaboliche Rare, activation of secondary and tertiary pathways heart and MPS, genetics and MPS. 2 Department of Pediatrics, Fondazione among which a role is played by inflammation. The incidence of MPSs as a group is reported Acknowledgments: RP and PR acknowledge MBBM, Azienda Ospedaliera San between 1:25000 and 1:45000.3 At present 11 dif- patients and their families and Drs. Andrea Gerardo, University of Milano-Bicocca; ferent enzyme deficiencies are involved in Imperatori and Lucia Boffi who collaborated in 2Consortium for Human Molecular the clinical cardiological evaluation of MPSs MPSs producing 7 distinct clinical phenotypes1 Genetics, University of Milano-Bicocca; patients. RP thanks Fondazione Pierfranco e (Table 1).4 Depending on the enzyme deficien- 3UO Department of Cardiology, Azienda Luisa Mariani of Milano for providing financial cy, the catabolism of dermatan sulphate, support for clinical assistance to metabolic Ospedaliera San Gerardo, Monza, Italy heparan sulphate, keratan sulphate, chon- patients and Mrs.
    [Show full text]
  • Genetic Deletions in Sputum As Diagnostic Markers for Early Detection of Stage I Non ^ Small Cell Lung Cancer Ruiyun Li,1Nevins W
    Imaging, Diagnosis, Prognosis Genetic Deletions in Sputum as Diagnostic Markers for Early Detection of Stage I Non ^ Small Cell Lung Cancer Ruiyun Li,1Nevins W. Todd,2 Qi Qiu,3 Ta o F a n , 3 Richard Y. Zhao,3 William H. Rodgers,3 Hong-Bin Fang,4 Ruth L. Katz,5 Sanford A. Stass,3 and Feng Jiang3 Abstract Purpose: Analysis of molecular genetic markers in biological fluids has been proposed as a powerful tool for cancer diagnosis. We have characterized in detail the genetic signatures in primary non ^ small cell lung cancer, which provided potential diagnostic biomarkers for lung cancer. The aim of this study was to determine whether the genetic changes can be used as markers in sputum specimen for the early detection of lung cancer. Experimental Design: Genetic aberrations in the genes HYAL2, FHIT,andSFTPC were evalu- ated in paired tumors and sputum samples from 38 patients with stage I non ^ small cell lung cancer and in sputum samples from 36 cancer-free smokers and 28 healthy nonsmokers by using fluorescence in situ hybridization. Results: HYAL2 and FHIT weredeletedin84%and79%tumorsandin45%and40%paired sputum, respectively. SFTPC was deleted exclusively in tumor tissues (71%).There was concor- dance of HYAL2 or FHIT deletions in matched sputum and tumor tissues from lung cancer patients (r =0.82,P =0.04;r =0.84,P = 0.03), suggesting that the genetic changes in sputum might indicate the presence of the same genetic aberrations in lung tumors. Furthermore, abnor- mal cells were found in 76% sputum by detecting combined HYAL2 and FHIT deletions whereas in 47% sputum by cytology, of the cancer cases, implying that detecting the combination of HYAL2 and FHIT deletions had higher sensitivity than that of sputum cytology for lung cancer diagnosis.
    [Show full text]