USOO7354708B2

(12) United States Patent (10) Patent No.: US 7,354,708 B2 Hall et al. (45) Date of Patent: Apr. 8, 2008

(54) INVASION ASSAYS 5,030,557. A 7/1991 Hogan et al...... 435/6 5, 108,892 A 4, 1992 Burke et al...... 435/6 (75) Inventors: Jeff G. Hall, Madison, WI (US); Victor 5,118,605 A 6/1992 Urdea ...... 435/6 I. Lyamichev, Madison, WI (US); 5,144,019 A 9, 1992 ROSS ... 536/27 Andrea L. Mast, Madison, WI (US); 5,210,015 A 5/1993 Gelfand et al...... 435/6 Mary Ann D. Brow, Madison, WI (US) 5,270,184 A * 12/1993 Walker et al...... 435,912 5,380,833. A 1/1995 Urdea 536,221 (73) Assignee: Third Wave Technologies, Inc., 5,401,830 A * 3/1995 McKenzie ...... 530,371 Madison, WI (US) 5,403,711 A 4/1995 Walder et al...... 435/6 5,407,795 A 4/1995 Kolberg et al...... 435/5 (*) Notice: Subject to any disclaimer, the term of this 5,422,253 A 6/1995 Dahlberg et al...... 435/91.53 patent is extended or adjusted under 35 5,427,930 A 6/1995 Birkenmeyer et al. ... 435/91.52 U.S.C. 154(b) by 90 days. 5,487.972 A 1/1996 Geland et al...... 435/6 5,494,810 A 2/1996 Barany et al...... 435/91.52 (21) Appl. No.: 10/033,297 5,541,311 A 7/1996 Dahlberg et al...... 536,23.7 5,545,729 A 8/1996 Goodchild et al...... 536,245 (22) Filed: Nov. 2, 2001 5,601,976 A 2, 1997 Yamane et al...... 435/6 (65) Prior Publication Data US 2002/0187486 A1 Dec. 12, 2002 (Continued) Related U.S. Application Data FOREIGN PATENT DOCUMENTS (63) Continuation of application No. 09/350,597, filed on EP O 411 18.6 A1 2, 1991 Jul. 9, 1999, now Pat. No. 6,458,535, which is a continuation of application No. 08/823,516, filed on Mar. 24, 1997, now Pat. No. 5,994,069, which is a (Continued) continuation-in-part of application No. 08/759,038, OTHER PUBLICATIONS filed on Dec. 2, 1996, now Pat. No. 6,090,543, which is a continuation-in-part of application No. 08/756, Abrams et al., “Comprehensive Detection of Single Base Changes in Human Genomic DNA Using Denaturing Gradient Gel 386, filed on Nov. 26, 1996, now Pat. No. 5,985,557, Electrophoresis and a GC Clamp.” Genomics 7:463-475 (1990). which is a continuation-in-part of application No. Akhmetzjanov and Vakhitov, “Molecular cloning and nucleotide 08/682,853, filed on Jul. 12, 1996, now Pat. No. sequence of the DNA polymerase gene from Thermus flavus, "Nucl. 6,001,567, which is a continuation-in-part of appli Acids Res. 20:5839 (1992). cation No. 08/599,491, filed on Jan. 24, 1996, now Altamirano et al., “Identification of Hepatitis C Virus Genotypes Pat. No. 5,846,717. among Hospitalized Patients in British Columbia, Canada,” J. Infect. Dis. 171:1034-1038 (1995). (51) Int. Cl. CI2O I/68 (2006.01) (Continued) CI2P 19/34 (2006.01) C7H 2L/02 (2006.01) Primary Examiner Frank Lu C7H 2L/04 (2006.01) (74) Attorney, Agent, or Firm—Casimir Jones, S.C. C7H 2L/00 (2006.01) (57) ABSTRACT (52) U.S. Cl...... 435/6: 435/91.1536/23.1; 536/24.3: 536/24.33: 536/25.3: 536/25.32 (58) Field of Classification Search ...... 435/6, The present invention relates to means for the detection and 435/91. 1, 183: 436/94: 536/23.1, 24.3, characterization of nucleic acid sequences, as well as varia 536/24.33, 25.3, 25.33 tions in nucleic acid sequences. The present invention also See application file for complete search history. relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid (56) References Cited cleavage structure in a site-specific manner. The structure specific activity of a variety of is used to U.S. PATENT DOCUMENTS cleave the target-dependent cleavage structure, thereby indi 4,511,502 A 4, 1985 Builder et al...... 260.112 cating the presence of specific nucleic acid sequences or 4,511,503 A 4, 1985 Olson et al...... 260.112 specific variations thereof. The present invention further 4,512.922 A 4, 1985 Jones et al...... 260.112 relates to methods and devices for the separation of nucleic 4,518,526 A 5, 1985 Olson ...... 260.112 acid molecules based on charge. The present invention also 4,683,194 A 7/1987 Saiki et al...... 435/6 provides methods for the detection of non-target cleavage 4,683,195 A * 7/1987 Mullis et al...... 435/6 4,683.202 A 7/1987 Mullis ...... 435/91 products via the formation of a complete and activated 4,775,619 A 10/1988 Urdea ...... 435/6 protein binding region. The invention further provides sen 4,818,680 A 4, 1989 Collins et al...... 435/6 sitive and specific methods for the detection of human 4,876, 187 A 10/1989 Duck et al...... 435/6 cytomegalovirus nucleic acid in a sample. 4,994,368 A 2, 1991 Goodman et al...... 435/6 5,011,769 A 4, 1991 Duck et al...... 435/6 23 Claims, 128 Drawing Sheets US 7,354,708 B2 Page 2

U.S. PATENT DOCUMENTS Brow et al., “Differentiation of Bacterial 16S rRNA Genes and Intergenic Regions and Mycobacterium tuberculosis kato Genes by 5,614.402 A 3/1997 Dahlberg et al...... 435/199 Structure-Specific Cleavage.” J. of Clin. Micro. 5,660,988 A 8, 1997 Duck et al...... 435/6 34:3129-3137 (1996). 5,691,142 A 11/1997 Dahlberg et al. . ... 435/6 Carballeira et al., “Purification of a Thermostable DNA Polymerase 5,698,400 A 12, 1997 Cotton et al...... 435/6 from Thermus thermophilus HB8, Useful in the Polymerase Chain 5,719,028 A 2/1998 Dahlberg et al...... 435/6 Reaction.” Biotechniques 9:276-281 (1990). 5,783,392 A 7, 1998 Seibl et al...... 435/6 Ceska et al., “A helical arch allowing single-stranded DNA to thread 5,792,614 A 8, 1998 Western et al...... 435/6 through T5 5'-.” Nature 382:90-93 (1996). 5,795,763 A 8/1998 Dahlberg et al...... 435/194 Ceska et al., “Structure-specific DNA cleavage by 5' .” 5,830,664 A 11/1998 Rosemeyer et al. . ... 435/6 TIPS 23 (1998). 5,837,450 A 11/1998 Dahlberg et al...... 435/6 Copley and Boot, “Exonuclease Cycling Assay: An Amplified 5,843,654 A 12/1998 Heisler et al...... 435/6 Assay for the Detection of Specific DNA Sequences.” 5,843,669 A 12, 1998 Kaiser et al...... 435/6 BioTechniques 13:888-891 (1992). 5,846,717 A 12, 1998 Brow et al...... 435/6 Cuthbert, "Hepatitis C: Progress and Problems.” Clin. Microbiol. 5,874,283 A 2/1999 Harrington et al...... 435/252 Rev. 7:505-532 (1994). 5,882,867 A 3, 1999 Ullman et al...... 435/6 DeMott et al., “Human RAD2 Homolog 1 5'-3'-Exo/Endonuclease

5,888,780 A 3/1999 Dahlberg et al. . 435/91.53 Can Efficiently Excise a Displaced DNA Fragment Containing a 5,981,176 A 11/1999 Wallace ...... 435/6 5'-Terminal Abasic Lesion by Endonuclease Activity,” J. Biol. 5,985,557 A 11/1999 Prudent et al. ... 435/6 Chem. 271:30068-30076 (1996). 5,994,069 A * 11/1999 Hall et al...... 435/6 Doty et al., “Strand Separation and Specific Recombination in 6,001,567 A 12/1999 Brow et al...... 435/6 Deoxyribonucleic Acids: Physical Chemical Studies.” Proc. Natl. 6,458,535 B1 * 10/2002 Hall et al...... 435/6 Acad. Sci. USA 46:461-476 (1960). 6,913,881 B1* 7/2005 Aizenstein et al...... 435/6 Duck et al., “Probe Amplifier System Based on Chimeric Cycling 7, 195,871 B2 * 3/2007 Lyamichev et al...... 435/6 Oligonucleotides,” BioTech., 9: 142-147 (1990). Dunn et al., "Complete Nucleotide Sequence of Bacteriophage T7 FOREIGN PATENT DOCUMENTS DNA and the Locations of T7 Genetic Elements.' J. Mol. Biol. EP O 482 714 A1 10, 1991 166:477-535 (1983). WO 89.09.284 10, 1989 Engelke, “Purification of Thermus aquaticus DNA Polymerase WO 90/01069 2, 1990 Expressed in ,” Anal. Biochem 191:396–400 WO 90.15157 12/1990 (1990). WO 91 O995O 7, 1991 Eom et al., “Structure of Taq polymerase with DNA at the WO 92fO2638 2, 1992 polymerase .” Nature 382:278-282 (1996). WO 92.06200 4f1992 Erlich et al., “Recent Advances in the Polymerase Chain Reaction.” WO 94.294.82 12/1994 Science 252: 1643-1651 (1991). WO 95/14106 5, 1995 Fahy et al., “Self-sustained Sequence Replication (3SR): An Iso WO 96.20287 T 1996 thermal Transcription-based Amplification System Alternative to WO 96.4O999 12/1996 PCR. PCR Meth. Appl. 1:25-33 (1991). Garforth et al., “Structure-specific DNA binding by bacteriophage OTHER PUBLICATIONS T5 5'-->3' exonuclease.” Nucleic Acids Res. 25:3801-3807 (1997). Gelfand, PCR Technology Principles and Applications for DNA Anderson and Young, “Quantitative Filter Hybridization', in Amplification (H.A. Erlich, Ed.), Stockton Press, New York, p. 19 Nucleic Acid Hybridization, Eds Hames & Higgins, IRL Press, (1989). Washington, DC, pp. 73-111 (1985). Guatelli et al., “Isothermal, in vitro amplification of nucleic acids by Electrophoresis, 2nd Edition, ed. Anthony T. Andrews, Clarendon a multienzyme reaction modeled after retroviral replication.” Proc. Press, New York, New York (1986), pp. 153-154. Natl. Acad. Sci., 87: 1874-1878 (1990) with an erratum at Proc. Natl. Antao et al. "Athermodynamic study of unusually stable RNA and Acad. Sci., 87: 7797 (1990). DNA hairpins.” Nucl. Acids Res. 19:5901-5905 (1991). Harrington et al., “DNA Structural Elements Required for FEN-1 Bambara et al., “Enzymes and Reactions at the Eukaryotic DNA Binding.” J. Biol. Chem. 270:4503-4508 (1995). Replication Fork,” J. Biol. Chem. 272:4647-4650 (1997). Harrington et al., “The characterization of a mammalian DNA Barany, "Genetic disease detection and DNA amplification using Sturcture-specific endonuclease.” EMBO Journ. 13:1235-1246 cloned thermostable ,” Proc. Natl. Acad. Sci., 88:189-193 (1994). (1991). Harrington and Lieber, "Functional domains within FEN-1 and Barany, “The Ligase Chain Reaction in a PCR World.” PCR RAD2 define of structure-specific : implications for Methods and Applic. 1:5-16 (1991). nucleotide excision repair.” Genes and Develop. 8:1344-1355 Bardwell et al., “Specific Cleavage of Model Recombination and (1994). Repair Intermediates by the Yeast Radl-Rad10 DNA Hayashi, “PCR-SSCP: A Simple and Sensitive Method for Detec Endonuclease.” Science 265:2082-2085 (1994). tion of Mutations in the Genomic DNA.” PCR Meth. Appl. 1:34-38, Barnes et al., “Mechanism of Tracking and Cleavage of Adduct (1991). damaged DNA Substrates by the Mammalian 5'- to 3"Exonuclease? Higuchi, R., (Ehrlich, H.A. (Ed.)), PCR Technology. Principles and Endonuclease RAD2 Homologue 1 or 1", J. Applications for DNA Amplification, Stockton Press, pp. 61-70 Biol. Chem. 271:29624-29632 (1996). (1991). Bergseid et al., “A High Fidelity Thermostable DNA Polymerase Hiraro et al. “Most compact hairpin-turn structure exerted by a short Isolated from Pyrococcus furiosus, "Strategies 4:34-35 (1991). DNA fragment, d(GCGAAGC) in solution: an extraordinarily stable Bhagwat et al., “The 5'-Exonuclease Activity of Bacteriophage T4 structure resistant to nucleases and heat,” Nuc. Acids Res. 22:576 RNase H is Stimulated by the T4 Gene 32 Single-stranded DNA 582 (1994). binding Protein, but Its Flap Endonuclease Is Inhibited,” J. Biol. Holland et al., “Detection of specific polymerase chain reaction Chem. 272:28523-28530 (1997). product by utilizing the 5'-3' exonuclease activity of Thermus Bonch-Osmolovskaya, et al., Microbiology (Engl. Transl. of aquaticus DNA polymerase.” Proc. Natl. Acad. Sci. USA 88:7276 Mikrobiologiya) 57:78-85 (1988). 7280 (1991). Brutlag et al., “An Active Fragment of DNA Polymerase Produced Hosfield et al., “Structure of the DNA Repair and Replication By Proteolytic Cleavage.” Biochem. Biophys. Res. Commun. Endonuclease and Exonuclease FEN-1: Coupling DNA and PCNA 37:982-989 (1969). Binding to FEN-1 Activity,” Cell 95:135-146 (1996). US 7,354,708 B2 Page 3

Hosfield et al., “Newly Discovered Archaebacterial Flap Mathur et al., “The DNA polymerase gene from the Endonucleases Show a Structure-Specific Mechanism for DNA hyperthermophilic marine archacbacterium Pyrococcus firiosus, Substrate Binding and Catalysis Resembling Human Flap shows sequence homology with O-like DNA polymerases.” Nucl. Endonuclease-1, J. Biol. Chem. 273:27154-17164. Acids Res. 19:6952 (1991). Huang et al., “Role of Calf RTH-1 Nuclease in Removal of Milligan and Ublenbeck, “Synthesis of Small RNAs Using T7 RNA 5'-Ribonucleotides during Okazaki Frament Processing.” Biochem Polymerase.” Methods Enzymol. 180:51 (1989). istry 35:9266-9277 (1996). Milligan et al., “Oligoribonucleotide synthesis using T7 RNA Hwang et al., “The crystal structure of flap endonuclease-1 from polymerase and synthetic DNA templates.” Nucl. Acids. Res. Methanococcus jannaschii,' Nature Structural Biology 5:707-713 15(21): 8783-8789 (1987). (1998). Mullis, “The Polymerase Chain Reaction in an Anemic Mode: How Inchauspe et al., “Use of Conserved Sequences from Hepatitis C to Avoid Cold Oligodeoxyribonuclear Fusion.” PCR Methods Virus for the Detection of Viral RNA in Infected Sera by Polymerase Applic. 1:1-4 (1991). Chain Reaction.” Hepatology 14:595-600 (1991). Mullis and Faloona, “Specific Synthesis of DNA in Vitro via a Ito et al., “Compilation and alignment of DNA polymerase Polymerase-Catalyzed Chain Reaction.” Methods in Enzymology sequences.” Nucl. Acids Res. 19:4045-4057 (1991). 155:335-350 (1987). Jacob and Monod, “On the Regulation of Gene Activity.” Cold Murante et al., "Calf 5' to 3' Exof Endonuclease Must Slide from a Springs Harbor Symposium on Quantitative Biol. XXVI: 193-211 5' End of the Substrate to Perform Structure-specific Cleavage.” J. (1961). Biol. Chem. 270:30377-30383 (1995). Johnson et al., “Requirement of the Yeast RTHI 5" to 3' Exonuclease Murante et al., “The Calf 5'- to 3'-Exonuclease Is Also an for the Stability of Simple Repetitive DNA,” Science 269:238-240 Endonuclease with Both Activities Dependent on Primers Annealed (1995). Upstream of the Point of Cleavage.” J. Biol. Chem. 269:1191-1196 Kaledin et al., “Isolation and Properties of DNA Polymerase From (1994). the Extremely Thermophilic Bacterium Thermus flavus," Murray et al., “Structural and Functional Conversation of the Biokhimiya 46(9): 1576-1584 (1981). Human Homolog of the Schizosaccharomyces pombe rad2 gene, Kim et al., “Crystal structure of Thermus aquaticus DNA Which is Required for Chromosome Segregation and Recovery polymerase,” Nature 376:612-616 (1995). from DNA Damage.” Molecular and Cellular Biology 14:4878 Kornberg, DNA Replication, W.H. Freeman and Co., San Francisco, 4888 (1994). pp. 127-139 (1980). Myers et al., “Reverse Transcription and DNA amplification by a Kotler et al., “DNA sequencing: Modular primers assembled from Thermus thermophilus DNA Polymerase.” Biochem. 30:7661-7666 a library of hexamers or pentamers.” Proc. Natl. Acad. Sci. USA (1991). 90.4241-4245 (1993). Nielsen PE et al., “Peptide nucleic acids (PNAS): Potential anti Kwoh et al., “Transcription-based amplification system and detec sense and anti-gene agents.” Anticancer Drug Des. 8:53-63 (1993). tion of amplified human immunodeficiency virus type 1 with a Nolan et al., “Kinetic Analysis of Human Flap Endonuclease-1 by bead-based sandwich hybridization format.” Proc. Natl. Acad. Sci., Flow Cytometry,” 35:11668-11677 (1996). 86: 1173-1177 (1989). Nugent et al., “Characterization of the Apurinic Endonuclease Kwok et al., “Effects of primer-template mismatches on the Activity of Drosophila Rrpl.” Biochemistry 32:11445-11452 polymerase chain reaction: Human immunodeficiency virus type 1 (1993). model studies.” Nucl. Acids Res., 18:999-1005 (1990). Perler et al., “Intervening sequences in an Archaea DNA polymerase Landegren.“Molecular mechanics of nucleic acid sequence ampli gene.” Proc. Natl. Acad. Sci. USA 89:5577-5581 (1992). Pontius and Berg, “Rapid renaturation of complementary DNA fication.” Trends in Genetics 9:199-204 (1993). Strands mediated by cationic detergents: A role for high-probability Lawyer et al., “Isolation, Characterization, and Expression in binding domains in enhancing the kinetics of molecular assembly Escherichia coli of the DNA Polymerase Gene from Thermus processes.” Proc. Natl. Acad. Sci. USA88:8237-8241 (1991). aquaticus,” J. Biol. Chem. 264:6427-6437 (1989). Rao et al., “Methanococcus jannaschii Flap Endonuclease: Expres Leirimo et al., “Replacement of Potassium Chloride by Potassium sion, Purification, and Substrate Requirements,” J. of Bacteriology Glutamate Dramatically Enhances Protein-DNA Interactions in 180:5406-5412 (1998). Vitro.” Biochem. 26:2095-2101 (1987). Reagan et al., “Characterization of a Mutant Strain of Sac Levine, “The Tumor Suppressor Genes,” Annu. Rev. Biochem. charomyces cerevisiae with a Deletion of the RAD27 Gene, a 62:623 (1993). Structural Homolog of the RAD2 Nucleotide Excision Repair Li et al., "Lagging Strand DNA Synthesis at the Eukaryotic Rep Gene.” J. of Bacteriology 177:364-371 (1995). lication Fork Involves Binding and Stimulation of FEN-1 by Saiki et al., “Primer-Directed Enzymatic Amplification of DNA Proliferating Cell Nuclear Antigen.” J. Biol. Chem. 270:22109 with a Thermostable DNA Polymerase.” Science 239:487-491 22112 (1995). (1988). Lieber, “The FEN-1 family of structure-specific nucleases in Sambrook et al., Molecular Cloning. A Laboratory Manual, Cold eukaryotic DNA replication, recombination and repair, BioEssays Spring Harbor Laboratory Press, Cold Spring Harbor, pp. 1.63-1.69 19:233-240 (1997). (1989). Lindahl, et al., “ IV: A New Exonuclease From Setlow and Kornberg, “Deoxyribonucleic Acid Polymerase: Two Mammalian Tissues.” Proc. N.A.S. 62:597-603 (1968). Distinct Enzymes in One Polypeptide,” J. Biol. Chem. 247:232-240 Lindahl and Karlström “Heat-Induced Depyrimidination of (1972). Deoxyribonucleic Acid in Neutral Solution.” Biochem. 12:5151 Siegal et al., “A 5' to 3' exonuclease functionally interacts with calf 5154 (1973). DNA polymerase e.” Proc. Natl. Acad. Sci. USA 89:9377-9381 Longley et al. “Characterization of the 5' to 3' exonuclease associ (1992). ated with Thermus aquaticus DNA polymerase,” Nucl. Acids Res. Shen et al., “Flap endonuclease homologs in archaebacteria exist as 18:7317-7322 (1990). independent proteins.” TIBS 23 (1998). Lundquist, et al., “Transient Generation of Displaced Single Shen et al., “Essential Amino Acids for Substrate Binding and Stranded DNA during Nick Translation.” Cell 31:53-60 (1982). Catalysis of Human Flap Endonuclease 1.” J. of Biol. Chem. Lyamichev et al. "Structure-Specific Endonucleolytic Cleavage of 271-9173-9176 (1996). Nucleic Acids by Eubacterial DNA Polymerases,” Science 260:778 Smith et al., “Novel Method of Detecting Single Base Substitutions 783 (1993). in RNA Molecules by Differential Melting Behavior in Solution.” Marmur and Lane, "Strand Separation and Specific Recombination Genomics 3:217-223 (1988). in Deoxyribonucleic acids: Biological Studies.” Proc. Natl. Acad. Sommers et al., “Conditional Lethality of Null Mutations in RTHI Sci. USA 46:453-461 (1960). That Encodes the Yeast Counterpart of a Mammalian 5'- to US 7,354,708 B2 Page 4

3'-Exonuclease Required for Lagging Strand DNA Synthesis in Agrawal et al., “Modified oligonucleotides as therapeutic and Reconstituted Systems,” J. of Biol. Chem. 270:4193-4196 (1995). diagnostic agents.” Current Opinion in Biotechnology, 6:12-19 Stark, “Multicopy expression vectors carrying the lac repressor (1995). gene for regulated high-level expression of genes in Escherichia coli,” Gene 5:255-267 (1987). Corey, “4800-fold Acceleration of Hybridization of Chemically Studier and Moffatt, “Use of Bacteriophage T7 RNA Polymerase to Modified Oligonucleotides,” J. of the Amer: Chem. Soc. 117:9373 Direct Selective High-level Expression of Cloned Genes,” J. Mol. 9374 (1995). Biol. 189: 113-130 (1986). Cotton, "Current methods of mutation detection,' Mutation Tindall and Kunkel, “Fidelity of DNA by the Thermus aquaticus Research 285:125-144 (1993). DNA Polymerase.” Biochem. 27:6008–6013 (1988). Turchi et al., “Enzymatic completion of mammalian lagging-Strand Schmidt et al., “The user of oligonucleotide probes containing DNa replication.” Proc. Natl. Acad. Sci. USA 91:9803-9807 (1994). 2'-deoxy-2'fluoronucleosides for regiospecific cleavage of RNA by Uhlenbeck, "A Small catalytic oligoribonucleotide.” Nature RNaseH from Escherichia coli,” Biochimica et Biophysica Acta. 328:596-600 (1987). 1130:41-46 (1991). Urdea et al., “A novel method for the rapid detection of specific Lee et al., “Allelic discrimination by nick-translation PCR with nucleotide sequences in crude biological samples without blotting or radioactivity; application to the analysis if hepatitis B virus in fluorogenic probes.” Nucleic Acids Res. 21 (16):3761-3766 (1993). human serum.” Gene 61:253-264 (1987). Livak et al., “Oligonucleotides With Fluorescent Dyes at Opposite Wu and Wallace, “The Ligation Amplification Reaction Ends Provide a Quenched Probe System. Useful for Detecting PCR (LAR)—Amplification of Specific DNA Sequences. Using Sequen Product and Nucleic Acid Hybridization.” PCR Methods and Appln. tial Rounds of Template-Dependent Ligation.” Genomics 4:560-569 4:357-362 (1995). (1989). Gamper et al., “Solution Hybridization of Crosslinkable DNA Wu et al., “Processing of branched DNA intermediates by a com Oligonucleotides to Bacteriophage M13 DNA." J. Mol. Biol. plex of human FEN-1 and PCNA.” Nucleic Acids Research 197:349-362 (1987). 24; 2036-2043 (1996). Xu et al., "Biochemical and Mutational Studies of the 5'-3' Lima et al., “Implication of RNA Structure on Antisense Exonuclease of DNA Polymerase 1 of Escherichia coli, 'J. Mol. Oligonucleotide Hybridization Kinetics,” Biochemistry 31:12055 Biol. 268:284-302 (1997). 12061 (1992). Zwickl et al., “Glyceraldehyde-3-Phosphate Dehydrogenase from Sigman et al., “Chemical Nucleases.” Chem. Rev. 93:2295 (1993). the Hyperthermophilic Archaebacterium Pyrococcus woesei: Char Youil et al., “Screening for Mutations by Mismatch Cleav acterization of the Enzyme, Cloning and Sequencing of the Gene, age with T4 Endonuclease VII.” Proc. Natl. Acad. Sci. USA 92:87 and Expression in Escherichia coli,” J. Bact. 172:4329-4338 91 (1995). (1990). Hiraoka et al., “Sequence of human FEN-1, a structure specific Abramson et al., “Characterization of the 5'-3' Exonuclease Activity endonuclease, and chromosomal localization of the gene (FEN1) in of Thermus aquaticus DNA Polymerase.” FASEB J. 5(4) 386 mouse and human.” Genomics 25:220-225 (1995). (1991). Augustyns et al., "Hybridization specificity, enzymatic activity and Roychoudhury and Wu, “Novel Properties of Escherichia coli biological (Ha-ras) activity of oligonucleotides containing 2,4- Exonuclease III,” J. Biol. Chem. 252:4786-4789 (1977). dideoxy-beta-D-erythro-hexopyranosyl nucleosides,” Nucleic Acids Res. 21:4670-4676 (1993). * cited by examiner

U.S. Patent Apr. 8, 2008 Sheet 13 of 128 US 7,354,708 B2

U.S. Patent Apr. 8, 2008 Sheet 14 of 128 US 7,354,708 B2

Cleavage Sites Y b Substrate Strand

2 W &YCGGAATTCGAGCTCGCC C S.Š KGCCTTAAGCTCGAGCG G AryKSK Template Strand SksCY \s

FIG. 5 U.S. Patent Apr. 8, 2008 Sheet 15 of 128 US 7,354,708 B2

DNAP T S TARGET

DNA M -- - M

FIG. 6 U.S. Patent Apr. 8, 2008 Sheet 16 of 128 US 7,354,708 B2

DNAP CYCLE NUMBER U.S. Patent Apr. 8, 2008 Sheet 17 Of 128 US 7,354,708 B2

U.S. Patent Apr. 8, 2008 Sheet 18 of 128 US 7,354,708 B2

a.

s U.S. Patent Apr. 8 , 2008 Sheet 19 Of 128 US 7 9 354,708 B2

£10|| U.S. Patent Apr. 8, 2008 Sheet 20 of 128 US 7,354,708 B2

27 nt 5' - Substrate DNA (206 nt -14G6 CAGCTATGACCATGATTACGCCAAGCT->( ) SGTCGATACTGGTACTAATG SCSM. C. 19 - 12 5' 1QQ

85 nt Substrate DNA (206 nt) 1. ^46 GCATGCCTGCAGGTCGACTCTAGAGGATCCC ->- So CGTACGGACGTCCAGCTGAGATCTCCTAGG ( QYSAvC 5 Sos 30 - 12 1QQ FIG. 1 1A

15 nt Substrate RNA (46 nt) - 21 AAGCUUGCAUGCCUGCAGGUCGACUCUAGAGGAUCCCC 3' 3' CGTACGGACGTCCAGCTGAGATCTCCTAGG 5' 30- 0

F.G. 12A U.S. Patent Apr. 8, 2008 Sheet 21 of 128 US 7,354,708 B2

FIG. 11B

FIG. 12B

U.S. Patent US 7,354,708 B2

--

U.S. Patent Apr. 8, 2008 Sheet 25 Of 128 US 7,354,708 B2

Cleavage & & a. Sites 9% Y b 2 %Y(CGGAATTCGAGCTCGCC C ya SS KGCCTTAAGCTCGAGCGG KSCSQXY. es WNKScks

FIG. 15E U.S. Patent Apr. 8, 2008 Sheet 26 of 128 US 7,354,708 B2

c ? l C CMO H O C/D C/O g C/D D CCU D O U 5 - CC Q- S D 2 - 2 2 D CD O CL U -

N. -- --

CO

r -- --

cy -- S.

CN

sa s Her U.S. Patent Apr. 8, 2008 Sheet 27 Of 128 US 7,354,708 B2

4.l. *Galv?o?ýš? B|WÄZNE d|109dzº U.S. Patent Apr. 8, 2008 Sheet 28 of 128 US 7,354,708 B2

SITES OF CLEAVAGE (32p) A WITH A GAP OF 6 nt. 6.4c.Oc 60% 164 40% GATTTAGGGACACTATAG5' 36.46 CCGGAAT C CTTAAGCTAAATC CACTGTGATATCTTATGTGCCTTA, G 3 f

FIG. 18A

U.S. Patent Apr. 8, 2008 Sheet 31 of 128 US 7,354,708 B2

1 5' N TARGET NUCLEIC ACID (206 nt) 3'

35 ft 2 5' C leavage site TARGET NUCLEIC ACID (206 nt) 3' Jrt ITT I I I I I I I I I I I, XSYPILOT OLIGONUCLEOTIDE5

85 ?t 3. 5 Cleavage site TARGET NUCLEIC ACID (206 nt) 3' 5 ------5- PILOT OLIGONUCLEOTIDE

FIG. 20A U.S. Patent Apr. 8, 2008 Sheet 32 of 128 US 7,354,708 B2

se CN cC

U.S. Patent Apr. 8, 2008 Sheet 33 of 128 US 7,354,708 B2

1 2 3 4 5 6 7 8 a 7 b

age - 27 206 - war as - 24 85

27 24

L ENZYME:- DNAPTaq ATaq

FIG. 21 A FIG. 21B U.S. Patent Apr. 8, 2008 Sheet 34 of 128 US 7,354,708 B2

O O CN

CC

A st SS

Air s

C - N ar CNN c5 O

U.S. Patent Apr. 8, 2008 Sheet 36 of 128 US 7,354,708 B2

N u-1

5' 3' k->

PLASMID TARGET

k =P 5'TERMINAL PHOSPHATE

FIG. 24A U.S. Patent Apr. 8, 2008 Sheet 37 Of 128 US 7,354,708 B2

FIG. 24B U.S. Patent Apr. 8, 2008 Sheet 38 of 128 US 7,354,708 B2

CoA

O - n - I -

Xo

CN X O o

LL gce D 2

o

CD

2.L s O 2

y

U.S. Patent Apr. 8, 2008 Sheet 40 of 128 US 7,354,708 B2

-C22

-C15

FIG. 27

U.S. Patent Apr. 8, 2008 Sheet 42 of 128 US 7,354,708 B2

U.S. Patent Apr. 8, 2008 Sheet 43 of 128 US 7,354,708 B2

U.S. Patent Apr. 8, 2008 Sheet 44 of 128 US 7,354,708 B2

2

FIG. 31 U.S. Patent Apr . 8, 2008 Sheet 45 of 128 US 7 9 354,708 B2

U.S. Patent Apr. 8, 2008 Sheet 46 of 128 US 7,354,708 B2

CO N g U.S. Patent Apr. 8, 2008 Sheet 47 of 128 US 7,354,708 B2

U.S. Patent Apr. 8, 2008 Sheet 48 of 128 US 7,354,708 B2

55°C 60°C

FIG. 35 U.S. Patent Apr. 8, 2008 Sheet 49 of 128 US 7,354,708 B2

ELEVATEDC CLEAVAGE AGENT

v/""CLEAVAGE STE

FIG. 36A

UPSTREAMOLEGONUCLEOTOE CLEAVAGE AGENT Y-clavaGEsCLEAVAGE SITE

FIG. 36B U.S. Patent Apr. 8, 2008 Sheet 50 of 128 US 7,354,708 B2 -*-*****eee833eeegeeggae,gaeae-909ITOB908'd

,g-poqqiq283naqoqnopon?po?2-?D3D2e234423223323432222342-,8

09ITO9NILOBHIQ39\//\\/3TDBAISWANI U.S. Patent Apr. 8, 2008 Sheet 51. Of 128 US 7,354,708 B2

FIG. 38 U.S. Patent Apr. 8, 2008 Sheet 52 of 128 US 7,354,708 B2

2 3 4 5 6 7 8 9 10 1 1 2 3 14

F.G. 39 U.S. Patent Apr. 8, 2008 Sheet 53 of 128 US 7,354,708 B2

1 2 3 4 5 6 7

narry rarylhur run vs. s. s r. ss. -- - -a arrams. # verr w vir v-as-a-r ------a-- rs sur sur - war a

FIG. 40 U.S. Patent Apr. 8, 2008 Sheet 54 of 128 US 7,354,708 B2

FIG. 41 U.S. Patent Apr. 8, 2008 Sheet 55 of 128 US 7,354,708 B2

OBAVJETON[] –3808d 0BAWETO —3.808d

U.S. Patent Apr. 8, 2008 Sheet 57 Of 128 US 7,354,708 B2

U.S. Patent Apr. 8, 2008 Sheet 58 Of 128 US 7,354,708 B2

(s,Lou?uueOLO)OZ. (s,Lou?ue9O)#7/ U.S. Patent Apr. 8, 2008 Sheet 59 of 128 US 7,354,708 B2

H0 9/ U.S. Patent Apr. 8, 2008 Sheet 60 of 128 US 7,354,708 B2

U.S. Patent Apr. 8, 2008 Sheet 61 of 128 US 7,354,708 B2

--

70 74 75 76 SAMPLE V7 Odp' 74 dop' 7500/bdp 760ip LOADINGPOSITION

s

-

FIG. 48

U.S. Patent Apr. 8, 2008 Sheet 63 of 128 US 7,354,708 B2

5O 55 60 65 -

U.S. Patent Apr. 8, 2008 Sheet 64 of 128 US 7,354,708 B2

F.G. 50 U.S. Patent Apr. 8, 2008 Sheet 65 of 128 US 7,354,708 B2

18

ºÈ?zzzzzzzzzzzz 1 4 DOEL),:ZZZZZZZZZZZZZZZZZZ? ZZZZXZZZZZZZZZ

F.G. 51 U.S. Patent Apr. 8, 2008 Sheet 66 of 128 US 7,354,708 B2

s U.S. Patent Apr. 8, 2008 Sheet 67 of 128 US 7,354,708 B2

PRIMER - + C T A G

* is - E., B., , ,

*" .. . r . ; * * , ... sai asis .. ... r. s. sr. . wri- is al creas

... t

ses

* aair. rv r

w r rak

or r--

k -

w ar

h

r als paths

A s ar 25 s s .

FIG. 53

U.S. Patent Apr. 8, 2008 Sheet 69 of 128 US 7,354,708 B2

G Et GH 9. G HN B GD Ph 30lgG) NNH3 GE) -----5N 1- G) 3 3C N Ph N Ph H aOnh HN 3. s HN () w 4c.2 E. 2 NH2 NH2 BROMIDE (1,3-PROPANEDIAMINO)- (DIETHYLENETRAMINO)- PROPOUM PROPDIUM Mo M M IMG 2Ir-NYAMG e-I, 216e rol-9-a- N N' Mo N Me M Cs CS o Mé N &y Mé N y Mé N (N-N'-TETRAMETHYL- (N-N'-TETRAMETHYL THAZOLE 1,2-ETHANEDAMNO)- 1,3-PROPANEDIAMINO)- ORANGE PROPYL THAZOLE ORANGE PROPYL THAZOLE ORANGE o Mo Mo Mo o: S 9-8 G.S.c M.a E. M. GS-2M. s S ad N SS 4C s S

Mo Q) isN Mo R) TOTAB Mo TOTO Rege G) Relie hNSN Pha-e-NSPh H.N. Ph e N 2 el 4cGd Oa o,O 4C n & S NH NH2 NH2 N-y 2 TOED1 (RH) Eth TOED2 (R-CH, M

H e2 "DS F.G. 55 a?? CO 5. U.S. Patent Apr. 8, 2008 Sheet 70 of 128 US 7,354,708 B2

———————— U.S. Patent Apr. 8, 2008 Sheet 71 Of 128 US 7,354,708 B2

U.S. Patent Apr. 8, 2008 Sheet 72 of 128 US 7,354,708 B2

FIG. 58

U.S. Patent Apr. 8, 2008 Sheet 78 of 128 US 7,354,708 B2

S-33 5. CLEAVAGESITE G G G cGCTGTCTCGCT A coacAGAGCG, 3

GC 11 - 8 - O CT CLEAVAGE SITE CT G GYCGCTGTCT G A GCGACAGA 3 A

F.G. 60 U.S. Patent Apr. 8, 2008 Sheet 79 of 128 US 7,354,708 B2

S3 - UNCUT

... -- CLEAVED U.S. Patent Apr. 8, 2008 Sheet 80 of 128 US 7,354,708 B2

- S-60 UNCUT

F.G. 62 U.S. Patent Apr. 8, 2008 Sheet 81 of 128 US 7,354,708 B2

1 2

sai SEsia's

3- CIRCULAR -- LINEAR

FIG. 63 U.S. Patent Apr. 8, 2008 Sheet 82 of 128 US 7,354,708 B2

i cus

KD - i 97.4 -

66.2 - 55.0 - 42.7 - 40.0 -

31.0 -

F.G. 64 U.S. Patent Apr. 8, 2008 Sheet 83 of 128 US 7,354,708 B2

op2 (6) C/D CC D c ENZYME - CD &

FIG. 65 U.S. Patent Apr. 8, 2008 Sheet 84 of 128 US 7,354,708 B2

-H a -- - -- TERMINAL - - -- ALKALINE + + + it THERMAL DEGRADATION

i.

5'-nAGAAAggaagggaagaaag.cgaaagG F.G. 66 U.S. Patent Apr. 8, 2008 Sheet 85 of 128 US 7,354,708 B2

arr

- - - a s aS ". re. artyar . B s a . . . as au r A. t r-r ... U.S. Patent Apr. 8, 2008 Sheet 86 of 128 US 7,354,708 B2

-serpre-ses-----sourosawaarease arrier-rrrr", "r"

- 8 o

O s to 2. O . S st s 3 O s 3 P

- isgs 2 SS O S

4. wrx vs 'star U.S. Patent Apr. 8, 2008 Sheet 87 of 128 US 7,354,708 B2

U.S. Patent Apr. 8, 2008 Sheet 88 of 128 US 7,354,708 B2

Sn

Sp

CN U.S. Patent Apr. 8, 2008 Sheet 89 of 128 US 7,354,708 B2

U.S. Patent Apr. 8, 2008 Sheet 90 Of 128 US 7,354,708 B2

8| U.S. Patent Apr. 8, 2008 Sheet 91. Of 128 US 7,354,708 B2

U.S. Patent Apr. 8, 2008 Sheet 92 Of 128 US 7,354,708 B2

U.S. Patent Apr. 8, 2008 Sheet 94 of 128 US 7,354,708 B2

1 BASE 1 BASE 1 BASE ALL COMP MSMATCHALL COMPM ISMATCH ALL COMP MSMATCH 2N. 2N 1NP 1NP

NVADER 67 114.l.115 116 112 113

5

520C V17

FIG. 75A 1 BASE BASE 1 BASE ALL COMPM ISMATCH ALL COMP MISMATCH ALL COMP MSMATCH | 2N 2N 1NP 1NP NVADER 67 114 ... 115. 116.112. 13 # 2 3 4 5 6

55°C V1806 V1221 V10

FIG. 75B 1 BASE BASE 1 BASE ALL COMP MISMATCHALL COMP MISMATCH AL COMP MSMATCH 2N 2N. 1NP 1NP NWADER 67 114 115 116 112 113 6

580C w N V2 V5. V5 V2

... t assissass-as-ad'...i.s: ... . .x.3. * is or . . . s: 3:...* ...... :

U.S. Patent Apr. 8, 2008 Sheet 96 of 128 US 7,354,708 B2

TEMP -o- 47o 50o 53o 56,o TARGET -- 165 166 165 166 165. 166 165 166

FIG. 77