1. Fundamentals of Mechanics 1.1 Lagrangian Mechanics

Total Page:16

File Type:pdf, Size:1020Kb

1. Fundamentals of Mechanics 1.1 Lagrangian Mechanics View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Almae Matris Studiorum Campus Celestial Mechanics - 2015-16 1 Carlo Nipoti, Dipartimento di Fisica e Astronomia, Universit`adi Bologna 22/3/2016 1. Fundamentals of mechanics 1.1 Lagrangian mechanics [LL; GPS; A] 1.1.1 Generalized coordinates ! Particle: point mass ! Particle position vector r. In Cartesian components r = (x; y; z). ! Particle velocity v = dr=dt = r_. In Cartesian components vx = dx=dt, etc... 2 2 2 2 ! Particle acceleration a = d r=dt = v_ = ¨r. In Cartesian components ax = d x=dt , etc... ! N particles =) s = 3N degrees of freedom ! Generalized coordinates: any s quantities qi that define the positions of the N-body system (q = q1; :::; qs) ! Generalized velocities:q _i (q_ =q _1; :::; q_s) ! We know from experience that, given q and q_ for all particles in the system at a given time, we are able to predict q(t) at any later time t. In other words, if all q and q_ are specified =) q¨ are known. ! Equations of motion are ordinary differential equations for q(t) that relate q¨ with q and q_ . The solution q(t) is the path (orbit). 1.1.2 Principle of least action & Euler-Lagrange equations ! Given a mechanical system, we define the Lagrangian function L(q; q_ ; t). L does not depend on higher derivatives, consistent with the idea that motion is determined if q and q_ are given. ! Given two instants t and t , we define the action, which is the functional S(γ) = R t2 L(q; q_ ; t)dt, where γ 1 2 t1 are paths of the form q(t). 2 Laurea in Astronomia - Universita` di Bologna ! The system occupies positions q1 and q2 at time t1 and t2, respectively. Note that in this formalism instead of fixing position and velocity at the initial time t1, we fix positions at the initial and final times. ! Principle of least action (or Hamilton's principle): from t1 to t2 the system moves in such a way that S is an extremum over all paths (often the extremum is such that S is minimized, hence the name \principle of least action"). So, for 1 degree of freedom Z t2 Z t2 Z t2 @L @L δS = δ L(q; q;_ t)dt = [L(q + δq; q_ + δq;_ t) − L(q; q;_ t)] dt = δq + δq_ dt = 0; t1 t1 t1 @q @q_ Now, we have @L @L d(δq) @L d @L d @L δq + = δq + δq − δq; @q @q_ dt @q dt @q_ dt @q_ so the above equation can be rewritten as @L t2 Z t2 @L d @L δS = δq + − δqdt = 0; @q_ @q dt @q_ t1 t1 which is verified for all δq only when @L d @L − = 0; @q dt @q_ because δq(t1) = δq(t2) = 0, as all possible paths are such that q(t1) = q1 and q(t2) = q2. ! Generalizing to the case of s degrees of freedom we have the Euler-Lagrange (E-L) equations: @L d @L − = 0; i = 1; :::; s @qi dt @q_i ! Transformations like L! AL, with A constant, or L!L + dF=dt, where F = F (q; t) do not affect the particles' motion, because L0 = AL =) δS0 = δAS = AδS = 0 () δS = 0; and Z t2 0 0 dF L = L + dF=dt =) S = S + dt = S + F (q2; t2) − F (q1; t1) = S + C; t1 dt where C is a constant (independent of q, q_ ) =) δS0 = δS, so δS0 = 0 () δS0 = 0. 1.1.3 Inertial frames ! Galileo's relativity principle. Inertial coordinate systems are such that 1. All the laws of nature at all times are the same in all inertial systems. 2. All coordinate systems that move with respect to an inertial sytem with uniform rectilinear motion are inertial. ! In an inertial reference system space is homogeneous and isotropic and time is homogeneous. Celestial Mechanics - 2015-16 3 ! Free particle: particle subject to no force. ! In any inertial reference frame a free particle that is at rest at a given time will remain at rest at all later times. ! Lagrangian of a free particle cannot contain explicitly the position vector r (space is homogeneous) or the time t (time is homogeneous) and cannot depend on the direction of v (space is isotropic) =)L = L(v2) ! More specifically, it can be shown (see LL) that for a free particle 1 L = mv2; 2 where m is particle mass. T = (1=2)mv2 is the particle kinetic energy. ! In Cartesian coordinates q = r = (x; y; z) and q_ = v = (vx; vy; vz), so for a free particle the Lagrangian is 1 2 2 2 L = 2 m(vx + vy + vz ). The E-L equations for a free particle are d @L = 0; dt @v so for the x component d @L dvx = m = 0 =) vx = const; dt @vx dt and similarly for y and z components. =) dv=dt = 0, which is the law of inertia (Newton's first law of motion). 1.1.4 Lagrangian of a free particle in different systems of coordinates ! Let us write the Lagrangian of a free particle in different systems of coordinates. Note that, if dl is the infinitesimal displacement, v2 = (dl=dt)2 = dl2=dt2. ! In Cartesian coordinates dl2 = dx2 + dy2 + dz2, so 1 L = m(_x2 +y _2 +z _2) 2 ! In cylindrical coordinates dl2 = dR2 + R2dφ2 + dz2, so 1 L = m(R_ 2 + R2φ_2 +z _2) 2 ! In spherical coordinates dl2 = dr2 + r2d#2 + r2 sin2 #dφ2, so 1 L = m(_r2 + r2#_2 + r2 sin2 #φ_2) 2 ! The above can be derived also by taking the expression of the position vector r, differentiating and squaring (Problem 1.1; see e.g. BT08 app. B). ! Alternatively, we can derive the same expressions for the cylindrical and spherical coordinates, starting from the Cartesian coordinates (Problem 1.2). 4 Laurea in Astronomia - Universita` di Bologna Problem 1.1 Derive the Lagrangian of a free particle in cylindrical coordinates starting from the expression of the position vector r. r = ReR + zez dr = R_ e + Re_ +z _e ; dt R R z because e_ z = 0. Now, eR = cos φex + sin φey and eφ = − sin φex + cos φey So deR = (− sin φex + cos φey)dφ deR = eφdφ _ e_ R = φeφ so dr = R_ e + Rφ_e +z _e ; dt R φ z 2 2 dr 2 2 2 2 v = = R_ + R φ_ +z _ : dt Problem 1.2 Derive the Lagrangian of a free particle in spherical coordinates starting from the Cartesian coordinates. For instance, in spherical coordinates r, #, φ we have x = r sin # cos φ, y = r sin # sin φ, z = r cos #; so x_ =r _ sin # cos φ + r cos # cos φ#_ − r sin # sin φφ,_ y_ =r _ sin # sin φ + r cos # sin φ#_ + r sin # cos φφ,_ z_ =r _ cos # − r sin ##;_ then v2 =x _ 2 +y _2 +z _2 =r _2 + r2#_2 + r2 sin2 #φ_2: The Lagrangian of a free particle in spherical coordinates is 1 L = m r_2 + r2#_2 + r2 sin2 #φ_2 : 2 1.1.5 Lagrangian of a system of particles ! Additivity of the Lagrangian: take two dynamical systems A and B. If each of them were an isolated system, they would have, respectively, Lagrangians LA and LB. If they are two parts of the same system (but so Celestial Mechanics - 2015-16 5 distant that the interaction is negligible) the total Lagrangian must be L = LA + LB. ! So, for a system of non-interacting particles X 1 L = m v2; 2 a a a=1;:::;N were the subscript a identifies the a-th the particle with velocty va. So L = T , where T is the total kinetic energy. ! Closed system: system of particles that interact, but are not affected by external forces. ! Lagrangian for a closed system of interacting particles: L = T − V where T is the kinetic energy and V is potential energy. ! The potential energy V depends only on the positions of the particles: V = V (q). This is a consequence of the assumption that the interaction is instantaneously propagated: a change in position of one of the particles instantaneously affects the force experienced by the other particles. ! In Cartesian coordinates we have q = ra = (xa; ya; za) positions (a = 1; :::; N) and q_ = va = (vx;a; vy;a; vz;a) (velocities), so the Lagrangian for a closed system of N particles is 1 X L = m v2 − V (r ; r ; :::r ) 2 a a 1 2 N a=1;::;N ! We have seen that in general T = T (q; q_ ): see, for instance, the expression of T in cylindrical or spherical coordinates. ! The transformation between Cartesian and generalized coordinates is given by X @fx;a xa = fx;a(q1; :::qs); x_ a = q_k; @qk k=1;:::;s and similarly for ya and za. By substituting these expressions in the Lagrangian in Cartesian coordinates it follows that in generalized coordinates 1 X L = A (q)_q q_ − V (q); 2 ik i k i;k where i = 1; : : : ; s and k = 1; : : : ; s, where s is the number of degrees of freedom (s = 3N for a system of N particles). So the kinetic energy generally depends also on the generalized coordinates q. ! Newton's second law of motion. Consider the Lagrangian in Cartesian coordinates. Applying Euler-Lagrange equations @L d @L − = 0; @ra dt @va 6 Laurea in Astronomia - Universita` di Bologna we get the equations of motion: @V @V mav_ a = − ; i:e: max¨a = − ; etc: @ra @xa i.e.
Recommended publications
  • Forced Mechanical Oscillations
    169 Carl von Ossietzky Universität Oldenburg – Faculty V - Institute of Physics Module Introductory laboratory course physics – Part I Forced mechanical oscillations Keywords: HOOKE's law, harmonic oscillation, harmonic oscillator, eigenfrequency, damped harmonic oscillator, resonance, amplitude resonance, energy resonance, resonance curves References: /1/ DEMTRÖDER, W.: „Experimentalphysik 1 – Mechanik und Wärme“, Springer-Verlag, Berlin among others. /2/ TIPLER, P.A.: „Physik“, Spektrum Akademischer Verlag, Heidelberg among others. /3/ ALONSO, M., FINN, E. J.: „Fundamental University Physics, Vol. 1: Mechanics“, Addison-Wesley Publishing Company, Reading (Mass.) among others. 1 Introduction It is the object of this experiment to study the properties of a „harmonic oscillator“ in a simple mechanical model. Such harmonic oscillators will be encountered in different fields of physics again and again, for example in electrodynamics (see experiment on electromagnetic resonant circuit) and atomic physics. Therefore it is very important to understand this experiment, especially the importance of the amplitude resonance and phase curves. 2 Theory 2.1 Undamped harmonic oscillator Let us observe a set-up according to Fig. 1, where a sphere of mass mK is vertically suspended (x-direc- tion) on a spring. Let us neglect the effects of friction for the moment. When the sphere is at rest, there is an equilibrium between the force of gravity, which points downwards, and the dragging resilience which points upwards; the centre of the sphere is then in the position x = 0. A deflection of the sphere from its equilibrium position by x causes a proportional dragging force FR opposite to x: (1) FxR ∝− The proportionality constant (elastic or spring constant or directional quantity) is denoted D, and Eq.
    [Show full text]
  • THE HOMOGENEITY SCALE of the UNIVERSE 1 Introduction On
    THE HOMOGENEITY SCALE OF THE UNIVERSE P. NTELIS Astroparticle and Cosmology Group, University Paris-Diderot 7 , 10 rue A. Domon & Duquet, Paris , France In this study, we probe the cosmic homogeneity with the BOSS CMASS galaxy sample in the redshift region of 0.43 <z<0.7. We use the normalised counts-in-spheres estimator N (<r) and the fractal correlation dimension D2(r) to assess the homogeneity scale of the universe. We verify that the universe becomes homogenous on scales greater than RH 64.3±1.6 h−1Mpc, consolidating the Cosmological Principle with a consistency test of ΛCDM model at the percentage level. Finally, we explore the evolution of the homogeneity scale in redshift. 1 Introduction on Cosmic Homogeneity The standard model of Cosmology, known as the ΛCDM model is based on solutions of the equations of General Relativity for isotropic and homogeneous universes where the matter is mainly composed of Cold Dark Matter (CDM) and the Λ corresponds to a cosmological con- stant. This model shows excellent agreement with current data, be it from Type Ia supernovae, temperature and polarisation anisotropies in the Cosmic Microwave Background or Large Scale Structure. The main assumption of these models is the Cosmological Principle which states that the universe is homogeneous and isotropic on large scales [1]. Isotropy is well tested through various probes in different redshifts such as the Cosmic Microwave Background temperature anisotropies at z ≈ 1100, corresponding to density fluctuations of the order 10−5 [2]. In later cosmic epochs, the distribution of source in surveys the hypothesis of isotropy is strongly supported by in X- ray [3] and radio [4], while the large spectroscopic galaxy surveys such show no evidence for anisotropies in volumes of a few Gpc3 [5].As a result, it is strongly motivated to probe the homogeneity property of our universe.
    [Show full text]
  • The Damped Harmonic Oscillator
    THE DAMPED HARMONIC OSCILLATOR Reading: Main 3.1, 3.2, 3.3 Taylor 5.4 Giancoli 14.7, 14.8 Free, undamped oscillators – other examples k m L No friction I C k m q 1 x m!x! = !kx q!! = ! q LC ! ! r; r L = θ Common notation for all g !! 2 T ! " # ! !!! + " ! = 0 m L 0 mg k friction m 1 LI! + q + RI = 0 x C 1 Lq!!+ q + Rq! = 0 C m!x! = !kx ! bx! ! r L = cm θ Common notation for all g !! ! 2 T ! " # ! # b'! !!! + 2"!! +# ! = 0 m L 0 mg Natural motion of damped harmonic oscillator Force = mx˙˙ restoring force + resistive force = mx˙˙ ! !kx ! k Need a model for this. m Try restoring force proportional to velocity k m x !bx! How do we choose a model? Physically reasonable, mathematically tractable … Validation comes IF it describes the experimental system accurately Natural motion of damped harmonic oscillator Force = mx˙˙ restoring force + resistive force = mx˙˙ !kx ! bx! = m!x! ! Divide by coefficient of d2x/dt2 ! and rearrange: x 2 x 2 x 0 !!+ ! ! + " 0 = inverse time β and ω0 (rate or frequency) are generic to any oscillating system This is the notation of TM; Main uses γ = 2β. Natural motion of damped harmonic oscillator 2 x˙˙ + 2"x˙ +#0 x = 0 Try x(t) = Ce pt C, p are unknown constants ! x˙ (t) = px(t), x˙˙ (t) = p2 x(t) p2 2 p 2 x(t) 0 Substitute: ( + ! + " 0 ) = ! 2 2 Now p is known (and p = !" ± " ! # 0 there are 2 p values) p t p t x(t) = Ce + + C'e " Must be sure to make x real! ! Natural motion of damped HO Can identify 3 cases " < #0 underdamped ! " > #0 overdamped ! " = #0 critically damped time ---> ! underdamped " < #0 # 2 !1 = ! 0 1" 2 ! 0 ! time ---> 2 2 p = !" ± " ! # 0 = !" ± i#1 x(t) = Ce"#t+i$1t +C*e"#t"i$1t Keep x(t) real "#t x(t) = Ae [cos($1t +%)] complex <-> amp/phase System oscillates at "frequency" ω1 (very close to ω0) ! - but in fact there is not only one single frequency associated with the motion as we will see.
    [Show full text]
  • VIBRATIONAL SPECTROSCOPY • the Vibrational Energy V(R) Can Be Calculated Using the (Classical) Model of the Harmonic Oscillator
    VIBRATIONAL SPECTROSCOPY • The vibrational energy V(r) can be calculated using the (classical) model of the harmonic oscillator: • Using this potential energy function in the Schrödinger equation, the vibrational frequency can be calculated: The vibrational frequency is increasing with: • increasing force constant f = increasing bond strength • decreasing atomic mass • Example: f cc > f c=c > f c-c Vibrational spectra (I): Harmonic oscillator model • Infrared radiation in the range from 10,000 – 100 cm –1 is absorbed and converted by an organic molecule into energy of molecular vibration –> this absorption is quantized: A simple harmonic oscillator is a mechanical system consisting of a point mass connected to a massless spring. The mass is under action of a restoring force proportional to the displacement of particle from its equilibrium position and the force constant f (also k in followings) of the spring. MOLECULES I: Vibrational We model the vibrational motion as a harmonic oscillator, two masses attached by a spring. nu and vee! Solving the Schrödinger equation for the 1 v h(v 2 ) harmonic oscillator you find the following quantized energy levels: v 0,1,2,... The energy levels The level are non-degenerate, that is gv=1 for all values of v. The energy levels are equally spaced by hn. The energy of the lowest state is NOT zero. This is called the zero-point energy. 1 R h Re 0 2 Vibrational spectra (III): Rotation-vibration transitions The vibrational spectra appear as bands rather than lines. When vibrational spectra of gaseous diatomic molecules are observed under high-resolution conditions, each band can be found to contain a large number of closely spaced components— band spectra.
    [Show full text]
  • Harmonic Oscillator with Time-Dependent Effective-Mass And
    Harmonic oscillator with time-dependent effective-mass and frequency with a possible application to 'chirped tidal' gravitational waves forces affecting interferometric detectors Yacob Ben-Aryeh Physics Department, Technion-Israel Institute of Technology, Haifa,32000,Israel e-mail: [email protected] ; Fax: 972-4-8295755 Abstract The general theory of time-dependent frequency and time-dependent mass ('effective mass') is described. The general theory for time-dependent harmonic-oscillator is applied in the present research for studying certain quantum effects in the interferometers for detecting gravitational waves. When an astronomical binary system approaches its point of coalescence the gravitational wave intensity and frequency are increasing and this can lead to strong deviations from the simple description of harmonic oscillations for the interferometric masses on which the mirrors are placed. It is shown that under such conditions the harmonic oscillations of these masses can be described by mechanical harmonic-oscillators with time- dependent frequency and effective-mass. In the present theoretical model the effective- mass is decreasing with time describing pumping phenomena in which the oscillator amplitude is increasing with time. The quantization of this system is analyzed by the use of the adiabatic approximation. It is found that the increase of the gravitational wave intensity, within the adiabatic approximation, leads to squeezing phenomena where the quantum noise in one quadrature is increased and in the other quadrature it is decreased. PACS numbers: 04.80.Nn, 03.65.Bz, 42.50.Dv. Keywords: Gravitational waves, harmonic-oscillator with time-dependent effective- mass 1 1.Introduction The problem of harmonic-oscillator with time-dependent mass has been related to a quantum damped oscillator [1-7].
    [Show full text]
  • 22.51 Course Notes, Chapter 9: Harmonic Oscillator
    9. Harmonic Oscillator 9.1 Harmonic Oscillator 9.1.1 Classical harmonic oscillator and h.o. model 9.1.2 Oscillator Hamiltonian: Position and momentum operators 9.1.3 Position representation 9.1.4 Heisenberg picture 9.1.5 Schr¨odinger picture 9.2 Uncertainty relationships 9.3 Coherent States 9.3.1 Expansion in terms of number states 9.3.2 Non-Orthogonality 9.3.3 Uncertainty relationships 9.3.4 X-representation 9.4 Phonons 9.4.1 Harmonic oscillator model for a crystal 9.4.2 Phonons as normal modes of the lattice vibration 9.4.3 Thermal energy density and Specific Heat 9.1 Harmonic Oscillator We have considered up to this moment only systems with a finite number of energy levels; we are now going to consider a system with an infinite number of energy levels: the quantum harmonic oscillator (h.o.). The quantum h.o. is a model that describes systems with a characteristic energy spectrum, given by a ladder of evenly spaced energy levels. The energy difference between two consecutive levels is ∆E. The number of levels is infinite, but there must exist a minimum energy, since the energy must always be positive. Given this spectrum, we expect the Hamiltonian will have the form 1 n = n + ~ω n , H | i 2 | i where each level in the ladder is identified by a number n. The name of the model is due to the analogy with characteristics of classical h.o., which we will review first. 9.1.1 Classical harmonic oscillator and h.o.
    [Show full text]
  • Exact Solution for the Nonlinear Pendulum (Solu¸C˜Aoexata Do Pˆendulon˜Aolinear)
    Revista Brasileira de Ensino de F¶³sica, v. 29, n. 4, p. 645-648, (2007) www.sb¯sica.org.br Notas e Discuss~oes Exact solution for the nonlinear pendulum (Solu»c~aoexata do p^endulon~aolinear) A. Bel¶endez1, C. Pascual, D.I. M¶endez,T. Bel¶endezand C. Neipp Departamento de F¶³sica, Ingenier¶³ade Sistemas y Teor¶³ade la Se~nal,Universidad de Alicante, Alicante, Spain Recebido em 30/7/2007; Aceito em 28/8/2007 This paper deals with the nonlinear oscillation of a simple pendulum and presents not only the exact formula for the period but also the exact expression of the angular displacement as a function of the time, the amplitude of oscillations and the angular frequency for small oscillations. This angular displacement is written in terms of the Jacobi elliptic function sn(u;m) using the following initial conditions: the initial angular displacement is di®erent from zero while the initial angular velocity is zero. The angular displacements are plotted using Mathematica, an available symbolic computer program that allows us to plot easily the function obtained. As we will see, even for amplitudes as high as 0.75¼ (135±) it is possible to use the expression for the angular displacement, but considering the exact expression for the angular frequency ! in terms of the complete elliptic integral of the ¯rst kind. We can conclude that for amplitudes lower than 135o the periodic motion exhibited by a simple pendulum is practically harmonic but its oscillations are not isochronous (the period is a function of the initial amplitude).
    [Show full text]
  • Solving the Harmonic Oscillator Equation
    Solving the Harmonic Oscillator Equation Morgan Root NCSU Department of Math Spring-Mass System Consider a mass attached to a wall by means of a spring. Define y=0 to be the equilibrium position of the block. y(t) will be a measure of the displacement from this equilibrium at a given time. Take dy(0) y(0) = y0 and dt = v0. Basic Physical Laws Newton’s Second Law of motion states tells us that the acceleration of an object due to an applied force is in the direction of the force and inversely proportional to the mass being moved. This can be stated in the familiar form: Fnet = ma In the one dimensional case this can be written as: Fnet = m&y& Relevant Forces Hooke’s Law (k is FH = −ky called Hooke’s constant) Friction is a force that FF = −cy& opposes motion. We assume a friction proportional to velocity. Harmonic Oscillator Assuming there are no other forces acting on the system we have what is known as a Harmonic Oscillator or also known as the Spring-Mass- Dashpot. Fnet = FH + FF or m&y&(t) = −ky(t) − cy&(t) Solving the Simple Harmonic System m&y&(t) + cy&(t) + ky(t) = 0 If there is no friction, c=0, then we have an “Undamped System”, or a Simple Harmonic Oscillator. We will solve this first. m&y&(t) + ky(t) = 0 Simple Harmonic Oscillator k Notice that we can take K = m and look at the system: &y&(t) = −Ky(t) We know at least two functions that will solve this equation.
    [Show full text]
  • Notes on the Critically Damped Harmonic Oscillator Physics 2BL - David Kleinfeld
    Notes on the Critically Damped Harmonic Oscillator Physics 2BL - David Kleinfeld We often have to build an electrical or mechanical device. An understand- ing of physics may help in the design and tuning of such a device. Here, we consider a critically damped spring oscillator as a model design for the shock absorber of a car. We consider a mass, denoted m, that is connected to a spring with spring constant k, so that the restoring force is F =-kx, and which moves in a lossy manner so that the frictional force is F =-bv =-bx˙. Prof. Newton tells us that F = mx¨ = −kx − bx˙ (1) Thus k b x¨ + x + x˙ = 0 (2) m m The two reduced constants are the natural frequency k ω = (3) 0 m and the decay constant b α = (4) m so that we need to consider 2 x¨ + ω0x + αx˙ = 0 (5) The above equation describes simple harmonic motion with loss. It is dis- cussed in lots of text books, but I want to consider a formulation of the solution that is most natural for critical damping. We know that when the damping constant is zero, i.e., α = 0, the solution 2 ofx ¨ + ω0x = 0 is given by: − x(t)=Ae+iω0t + Be iω0t (6) where A and B are constants that are found from the initial conditions, i.e., x(0) andx ˙(0). In a nut shell, the system oscillates forever. 1 We know that when the the natural frequency is zero, i.e., ω0 = 0, the solution ofx ¨ + αx˙ = 0 is given by: x˙(t)=Ae−αt (7) and 1 − e−αt x(t)=A + B (8) α where A and B are constants that are found from the initial conditions.
    [Show full text]
  • The Harmonic Oscillator
    Appendix A The Harmonic Oscillator Properties of the harmonic oscillator arise so often throughout this book that it seemed best to treat the mathematics involved in a separate Appendix. A.1 Simple Harmonic Oscillator The harmonic oscillator equation dates to the time of Newton and Hooke. It follows by combining Newton’s Law of motion (F = Ma, where F is the force on a mass M and a is its acceleration) and Hooke’s Law (which states that the restoring force from a compressed or extended spring is proportional to the displacement from equilibrium and in the opposite direction: thus, FSpring =−Kx, where K is the spring constant) (Fig. A.1). Taking x = 0 as the equilibrium position and letting the force from the spring act on the mass: d2x M + Kx = 0. (A.1) dt2 2 = Dividing by the mass and defining ω0 K/M, the equation becomes d2x + ω2x = 0. (A.2) dt2 0 As may be seen by direct substitution, this equation has simple solutions of the form x = x0 sin ω0t or x0 = cos ω0t, (A.3) The original version of this chapter was revised: Pages 329, 330, 335, and 347 were corrected. The correction to this chapter is available at https://doi.org/10.1007/978-3-319-92796-1_8 © Springer Nature Switzerland AG 2018 329 W. R. Bennett, Jr., The Science of Musical Sound, https://doi.org/10.1007/978-3-319-92796-1 330 A The Harmonic Oscillator Fig. A.1 Frictionless harmonic oscillator showing the spring in compressed and extended positions where t is the time and x0 is the maximum amplitude of the oscillation.
    [Show full text]
  • Forced Oscillation and Resonance
    Chapter 2 Forced Oscillation and Resonance The forced oscillation problem will be crucial to our understanding of wave phenomena. Complex exponentials are even more useful for the discussion of damping and forced oscil- lations. They will help us to discuss forced oscillations without getting lost in algebra. Preview In this chapter, we apply the tools of complex exponentials and time translation invariance to deal with damped oscillation and the important physical phenomenon of resonance in single oscillators. 1. We set up and solve (using complex exponentials) the equation of motion for a damped harmonic oscillator in the overdamped, underdamped and critically damped regions. 2. We set up the equation of motion for the damped and forced harmonic oscillator. 3. We study the solution, which exhibits a resonance when the forcing frequency equals the free oscillation frequency of the corresponding undamped oscillator. 4. We study in detail a specific system of a mass on a spring in a viscous fluid. We give a physical explanation of the phase relation between the forcing term and the damping. 2.1 Damped Oscillators Consider first the free oscillation of a damped oscillator. This could be, for example, a system of a block attached to a spring, like that shown in figure 1.1, but with the whole system immersed in a viscous fluid. Then in addition to the restoring force from the spring, the block 37 38 CHAPTER 2. FORCED OSCILLATION AND RESONANCE experiences a frictional force. For small velocities, the frictional force can be taken to have the form ¡ m¡v ; (2.1) where ¡ is a constant.
    [Show full text]
  • Shallow Water Waves on the Rotating Sphere
    PHYSICAL RBVIEW E VOLUME SI, NUMBER S MAYl99S Shallowwater waves on the rotating sphere D. MUller andJ. J. O'Brien Centerfor Ocean-AtmosphericPrediction Studies,Florida State Univenity, TallahDSSee,Florida 32306 (Received8 September1994) Analytical solutions of the linear wave equation of shallow waters on the rotating, spherical surface have been found for standing as weD as for inertial waves. The spheroidal wave operator is shown to playa central role in this wave equation. Prolate spheroidal angular functions capture the latitude- longitude anisotropy, the east-westasymmetry, and the Yoshida inhomogeneity of wave propagation on the rotating spherical surface. The identification of the fundamental role of the spheroidal wave opera- tor permits an overview over the system's wave number space. Three regimes can be distinguished. High-frequency gravity waves do not experience the Yoshida waveguide and exhibit Cariolis-induced east-westasymmetry. A second, low-frequency regime is exclusively populated by Rossby waves. The familiar .8-plane regime provides the appropriate approximation for equatorial, baroclinic, low- frequency waves. Gravity waves on the .8-plane exhibit an amplified Cariolis-induced east-westasym- metry. Validity and limitations of approximate dispersion relations are directly tested against numeri- caDy calculated solutions of the full eigenvalueproblem. PACSnumber(s): 47.32.-y. 47.3S.+i,92.~.Dj. 92.10.Hm L INTRODUcnON [4] in the framework of the .B-pJaneapproximation. In this Cartesian approximation of the spherical geometry The first theoretical investigation of the large-scale near the equator Matsuno identified Rossby, mixed responseof the ocean-atmospheresystem to external tidal Rossby-gravity, as well as gravity waves, including the forces was conducted by Laplace [I] in terms of the KelVin wave.
    [Show full text]