Geometric Analysis and Integral Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Analysis and Integral Geometry 598 Geometric Analysis and Integral Geometry AMS Special Session on Radon Transforms and Geometric Analysis in Honor of Sigurdur Helgason’s 85th Birthday January 4–7, 2012 Boston, MA Tufts University Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces January 8–9, 2012 Medford, MA Eric Todd Quinto Fulton Gonzalez Jens Gerlach Christensen Editors American Mathematical Society Geometric Analysis and Integral Geometry AMS Special Session on Radon Transforms and Geometric Analysis in Honor of Sigurdur Helgason’s 85th Birthday January 4–7, 2012 Boston, MA Tufts University Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces January 8–9, 2012 Medford, MA Eric Todd Quinto Fulton Gonzalez Jens Gerlach Christensen Editors 598 Geometric Analysis and Integral Geometry AMS Special Session on Radon Transforms and Geometric Analysis in Honor of Sigurdur Helgason’s 85th Birthday January 4–7, 2012 Boston, MA Tufts University Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces January 8–9, 2012 Medford, MA Eric Todd Quinto Fulton Gonzalez Jens Gerlach Christensen Editors American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Dennis DeTurck, Managing Editor Michael Loss Kailash Misra Martin J. Strauss 2010 Mathematics Subject Classification. Primary 22E30, 43A85, 44A12, 45Q05, 92C55; Secondary 22E46, 32L25, 35S30, 65R32. Library of Congress Cataloging-in-Publication Data AMS Special Session on Radon Transforms and Geometric Analysis (2012 : Boston, Mass.) Geometric analysis and integral geometry : AMS special session in honor of Sigurdur Helgason’s 85th birthday, radon transforms and geometric analysis, January 4-7, 2012, Boston, MA ; Tufts University Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces, January 8-9, 2012, Medford, MA / Eric Todd Quinto, Fulton Gonzalez, Jens Gerlach Christensen, editors. pages cm. – (Contemporary mathematics ; volume 598) Includes bibliographical references. ISBN 978-0-8218-8738-7 (alk. paper) 1. Radon transforms–Congresses. 2. Integral geometry–Congresses. 3. Geometric analysis– Congresses. I. Quinto, Eric Todd, 1951- editor of compilation. II. Gonzalez, Fulton, 1956- editor of compilation. III. Christensen, Jens Gerlach, 1975- editor of compilation. IV. Tufts University. Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces (2012 : Medford, Mass.) V. Title. QA672.A4726 2012 515.1–dc23 2013013624 Contemporary Mathematics ISSN: 0271-4132 (print); ISSN: 1098-3627 (online) DOI: http://dx.doi.org/10.1090/conm/598 Copying and reprinting. Material in this book may be reproduced by any means for edu- cational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledg- ment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Math- ematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.) c 2013 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Copyright of individual articles may revert to the public domain 28 years after publication. Contact the AMS for copyright status of individual articles. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 131211100908 This volume is dedicated to Sigurdur Helgason whose mathematics has inspired many. v Contents Preface ix List of Presenters xi Historical Articles Some Personal Remarks on the Radon Transform Sigurdur Helgason 3 On the Life and Work of S. Helgason G. Olafsson´ and R. J. Stanton 21 Research and Expository Articles Microlocal Analysis of an Ultrasound Transform with Circular Source and Receiver Trajectories G. Ambartsoumian, J. Boman, V. P. Krishnan, and E. T. Quinto 45 Cuspidal discrete series for projective hyperbolic spaces Nils Byrial Andersen and Mogens Flensted-Jensen 59 The Radon transform on SO(3): motivations, generalizations, discretization Swanhild Bernstein and Isaac Z. Pesenson 77 Atomic decompositions of Besov spaces related to symmetric cones Jens Gerlach Christensen 97 A double fibration transform for complex projective space Michael Eastwood 111 Magnetic Schr¨odinger equation on compact symmetric spaces and the geodesic Radon transform of one forms Tomoyuki Kakehi 129 F -method for constructing equivariant differential operators Toshiyuki Kobayashi 139 Schiffer’s Conjecture, Interior Transmission Eigenvalues and Invisibility Cloaking: Singular Problem vs. Nonsingular Problem Hongyu Liu 147 vii viii CONTENTS Approximate Reconstruction from Circular and Spherical Mean Radon Transform Data W. R. Madych 155 Analytic and Group-Theoretic Aspects of the Cosine Transform G. Olafsson,´ A. Pasquale, and B. Rubin 167 Quantization of linear algebra and its application to integral geometry Hiroshi Oda and Toshio Oshima 189 Mean value theorems on symmetric spaces Franc¸ois Rouviere` 209 Semyanistyi fractional integrals and Radon transforms B. Rubin 221 Radon-Penrose transform between symmetric spaces Hideko Sekiguchi 239 Principal series representations of infinite dimensional Lie groups, II: Construction of induced representations Joseph A. Wolf 257 Preface Geometric analysis on Euclidean and homogeneous spaces encompasses parts of representation theory, integral geometry, harmonic analysis, microlocal analysis, and partial differential equations. It is used in a wide array of applications in fields as diverse as inverse problems, tomography, and signal and data analysis. This volume provides articles giving historical perspectives, overviews of current research in these interrelated areas, and new results. We hope this motivates beginning researchers in these fields, and we wish that readers will be left with a good sense of important past work as well as current research in these exciting and active fields of mathematics. One theme of the volume is the geometric analysis motivated by the work of Sigurdur Helgason. An historical perspective is provided in the first article by Prof. Helgason himself and in the second article by Profs. Olafsson´ and Stanton. This emphasis is natural, since the volume is based, in part, on the AMS Special Session on Radon Transforms and Geometric Analysis in honor of Sigurdur Helgason’s 85th birthday held in Boston during the 2012 AMS Annual Meeting. Research papers related to this viewpoint, in particular, on Radon transforms and related mathematics are presented by Bernstein & Pesenson, Kakehi, Madych, Olafsson,´ Pasquale & Rubin, Rouvi`ere, Rubin, and others. The workshop on Geometric analysis on Euclidean and homogeneous spaces, held at Tufts University immediately following the AMS annual meeting, sought to expand on the topics presented at the special session. It was broader in scope, as evidenced by the contributions to this volume. Among contributions in pure mathematics are articles on representation the- ory and equivariant differential operators (Kobayashi and Oda & Oshima), Pen- rose transforms (Eastwood and Sekiguchi), wavelets related to symmetric cones (Christensen), representation theory and inductive limits of Lie groups (Wolf), and noncommutative harmonic analysis (Andersen & Flensted-Jensen). The interplay between integral geometry and applications is explored in the more applied articles. These include developing an elliptical Radon transform for ultrasound (Ambartsoumian, Boman, Krishnan & Quinto), using Schiffer’s conjec- ture to understand partial cloaking (Liu), and Radon transforms in crystallography (Bernstein & Pesenson) and thermoacoustic tomography (Madych). We thank the U.S. National Science Foundation and the Tufts University Dean’s Discretionary Fund for their support of the Tufts workshop. We are grateful to Tufts University Staff Assistant Megan Monaghan for the work she did behind the scenes to make the workshop successful. ix xPREFACE We thank the American Mathematical Society for its support of the Special Session honoring Sigurdur Helgason, and finally, we are indebted to Christine M. Thivierge, Associate Editor for Proceedings, for her indispensable role in making these proceedings a success. List of Presenters Radon Transforms and Geometric Analysis in Honor of Sigurdur Helgason’s 85th Birthday American Mathematical Society National Meeting January 4-7 2012, Boston, MA Speakers Mark Agranovsky (Bar-Ilan University): Abel-Radon transform and CR functions. Nils Byrial Andersen, (Aarhus University, Denmark): Cusp Forms on hyperbolic spaces. Jan Boman (Stockholm University): Local injectivity of weighted Radon transforms. Jens Gerlach Christensen (Tufts University): Decomposition of spaces of distributions using G˚arding vectors. Susanna Dann (University of Missouri): Paley-Wiener Theorems on
Recommended publications
  • Ladder Operators for Lam\'E Spheroconal Harmonic Polynomials
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 8 (2012), 074, 16 pages Ladder Operators for Lam´eSpheroconal Harmonic Polynomials? Ricardo MENDEZ-FRAGOSO´ yz and Eugenio LEY-KOO z y Facultad de Ciencias, Universidad Nacional Aut´onomade M´exico, M´exico E-mail: [email protected] URL: http://sistemas.fciencias.unam.mx/rich/ z Instituto de F´ısica, Universidad Nacional Aut´onomade M´exico, M´exico E-mail: eleykoo@fisica.unam.mx Received July 31, 2012, in final form October 09, 2012; Published online October 17, 2012 http://dx.doi.org/10.3842/SIGMA.2012.074 Abstract. Three sets of ladder operators in spheroconal coordinates and their respective actions on Lam´espheroconal harmonic polynomials are presented in this article. The poly- nomials are common eigenfunctions of the square of the angular momentum operator and of the asymmetry distribution Hamiltonian for the rotations of asymmetric molecules, in the body-fixed frame with principal axes. The first set of operators for Lam´epolynomials of a given species and a fixed value of the square of the angular momentum raise and lower and lower and raise in complementary ways the quantum numbers n1 and n2 counting the respective nodal elliptical cones. The second set of operators consisting of the cartesian components L^x, L^y, L^z of the angular momentum connect pairs of the four species of poly- nomials of a chosen kind and angular momentum. The third set of operators, the cartesian componentsp ^x,p ^y,p ^z of the linear momentum, connect pairs of the polynomials differing in one unit in their angular momentum and in their parities.
    [Show full text]
  • Arxiv:1810.09017V1 [Math.FA] 21 Oct 2018 Omadsmaitiitgasadivrinformulas
    RECONSTRUCTION OF FUNCTIONS ON THE SPHERE FROM THEIR INTEGRALS OVER HYPERPLANE SECTIONS B. RUBIN Abstract. We obtain new inversion formulas for the Funk type transforms of two kinds associated to spherical sections by hyper- planes passing through a common point A which lies inside the n-dimensional unit sphere or on the sphere itself. Transforms of the first kind are defined by integration over complete subspheres and can be reduced to the classical Funk transform. Transforms of the second kind perform integration over truncated subspheres, like spherical caps or bowls, and can be reduced to the hyper- plane Radon transform. The main tools are analytic families of λ-cosine transforms, Semyanisyi’s integrals, and modified stereor- graphic projection with the pole at A. Assumptions for functions are close to minimal. 1. Introduction Spherical integral geometry covers a wide range of problems related to reconstructing functions on the Euclidean sphere from their inte- grals over prescribed submanifolds. Problems of this kind arise in to- mography, convex geometry, and many other areas; see, e.g., [2, 5– 7, 9, 11, 12, 17, 18, 27, 35]. A typical example is the Funk trans- form [3, 4] that grew up from the work of Minkowski [13]. In the n-dimensional setting, this transform integrates a function on the unit sphere Sn in Rn+1 over cross-sections of this sphere by hyperplanes arXiv:1810.09017v1 [math.FA] 21 Oct 2018 passing through the origin o of Rn+1; see (2.4) below. In the present paper we obtain new results related to the similar transforms over spherical sections by hyperplanes passing through an arbitrary fixed point A which lies either inside the sphere or on the sphere itself.
    [Show full text]
  • Inversion Formulas for the Spherical Radon Transform and the Generalized Cosine Transform
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Advances in Applied Mathematics 29 (2002) 471–497 www.academicpress.com Inversion formulas for the spherical Radon transform and the generalized cosine transform Boris Rubin 1 Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem 91904, Israel Received 23 January 2001; accepted 1 December 2001 Abstract The k-dimensional totally geodesic Radon transform on the unit sphere Sn and the corresponding cosine transform can be regarded as members of the analytic family of intertwining fractional integrals α α+k−n R f (ξ) = γn,k(α) f(x) sin d(x,ξ) dx, Sn d(x,ξ) being the geodesic distance between x ∈ Sn and the k-geodesic ξ.Wedevelop a unified approach to the inversion of Rαf for all α 0, 1 k n − 1,n 2. The cases of smooth f and f ∈ Lp are considered. A series of new inversion formulas is obtained. The convolution–backprojection method is developed. 2002 Elsevier Science (USA). All rights reserved. Keywords: Spherical Radon transform; Cosine transform; Sine transform; The convolution–backprojection method 1. Introduction In the present paper we focus on inversion formulas for the following transforms of integral geometry which have numerous important applications E-mail address: [email protected]. 1 Partially supported by the Edmund Landau Center for Research in Mathematical Analysis and Related Areas, sponsored by the Minerva Foundation (Germany). 0196-8858/02/$ – see front matter 2002 Elsevier Science (USA). All rights reserved. PII:S0196-8858(02)00028-3 472 B. Rubin / Advances in Applied Mathematics 29 (2002) 471–497 (see [2–6,12–15,18,20,22] for references).
    [Show full text]
  • Integral Geometry and Algebraic Structures for Tensor Valuations
    Integral Geometry and Algebraic Structures for Tensor Valuations Andreas Bernig and Daniel Hug Abstract In this survey, we consider various integral geometric formulas for tensor- valued valuations that have been obtained by different methods. Furthermore we explain in an informal way recently introduced algebraic structures on the space of translation invariant, smooth tensor valuations, including convolution, product, Poincare´ duality and Alesker-Fourier transform, and their relation to kinematic formulas for tensor valuations. In particular, we describe how the algebraic viewpoint leads to new intersectional kinematic formulas and substantially simplified Crofton formulas for translation invariant tensor valuations. We also highlight the connection to general integral geometric formulas for area measures. 1 Introduction An important part of integral geometry is devoted to the investigation of integrals (mean values) of the form Z j(K \ gL) m(dg); G n where K; L ⊂ R are sets from a suitable intersection stable class of sets, G is a group n acting on R and thus on its subsets, m is a Haar measure on G, and j is a functional with values in some vector space W. Common choices for W are the reals or the space of signed Radon measures. Instead of the intersection, Minkowski addition is another natural choice for a set operation which has been studied. The principle aim then is to express such integrals by means of basic geometric functionals of K Andreas Bernig Institut fur¨ Mathematik, Goethe-Universitat¨ Frankfurt, Robert-Mayer-Str. 10, 60054 Frankfurt, Germany, e-mail: [email protected], Daniel Hug Karlsruhe Institute of Technology (KIT), Department of Mathematics, D-76128 Karlsruhe, Germany, e-mail: [email protected] 59 60 Andreas Bernig and Daniel Hug and L.
    [Show full text]
  • Classics in Mathematics Richard Courant· Fritz John Introduction To
    Classics in Mathematics Richard Courant· Fritz John Introduction to Calculus and Analysis Volume I Springer-V erlag Berlin Heidelberg GmbH Richard Courant • Fritz John Introd uction to Calculus and Analysis Volume I Reprint of the 1989 Edition Springer Originally published in 1965 by Interscience Publishers, a division of John Wiley and Sons, Inc. Reprinted in 1989 by Springer-Verlag New York, Inc. Mathematics Subject Classification (1991): 26-XX, 26-01 Cataloging in Publication Data applied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme Courant, Richard: Introduction to calcu1us and analysis / Richard Courant; Fritz John.- Reprint of the 1989 ed.- Berlin; Heidelberg; New York; Barcelona; Hong Kong; London; Milan; Paris; Singapore; Tokyo: Springer (Classics in mathematics) VoL 1 (1999) ISBN 978-3-540-65058-4 ISBN 978-3-642-58604-0 (eBook) DOI 10.1007/978-3-642-58604-0 Photograph of Richard Courant from: C. Reid, Courant in Gottingen and New York. The Story of an Improbable Mathematician, Springer New York, 1976 Photograph of Fritz John by kind permission of The Courant Institute of Mathematical Sciences, New York ISSN 1431-0821 This work is subject to copyright. All rights are reserved. whether the whole or part of the material is concemed. specifically the rights of trans1ation. reprinting. reuse of illustrations. recitation. broadcasting. reproduction on microfilm or in any other way. and storage in data banks. Duplication of this publication or parts thereof is permitted onlyunder the provisions of the German Copyright Law of September 9.1965. in its current version. and permission for use must always be obtained from Springer-Verlag. Violations are Iiable for prosecution under the German Copyright Law.
    [Show full text]
  • Sam Karlin 1924—2007
    Sam Karlin 1924—2007 This paper was written by Richard Olshen (Stanford University) and Burton Singer (Princeton University). It is a synthesis of written and oral contributions from seven of Karlin's former PhD students, four close colleagues, all three of his children, his wife, Dorit, and with valuable organizational assistance from Rafe Mazzeo (Chair, Department of Mathematics, Stanford University.) The contributing former PhD students were: Krishna Athreya (Iowa State University) Amir Dembo (Stanford University) Marcus Feldman (Stanford University) Thomas Liggett (UCLA) Charles Micchelli (SUNY, Albany) Yosef Rinott (Hebrew University, Jerusalem) Burton Singer (Princeton University) The contributing close colleagues were: Kenneth Arrow (Stanford University) Douglas Brutlag (Stanford University) Allan Campbell (Stanford University) Richard Olshen (Stanford University) Sam Karlin's children: Kenneth Karlin Manuel Karlin Anna Karlin Sam's wife -- Dorit Professor Samuel Karlin made fundamental contributions to game theory, analysis, mathematical statistics, total positivity, probability and stochastic processes, mathematical economics, inventory theory, population genetics, bioinformatics and biomolecular sequence analysis. He was the author or coauthor of 10 books and over 450 published papers, and received many awards and honors for his work. He was famous for his work ethic and for guiding Ph.D. students, who numbered more than 70. To describe the collection of his students as astonishing in excellence and breadth is to understate the truth of the matter. It is easy to argue—and Sam Karlin participated in many a good argument—that he was the foremost teacher of advanced students in his fields of study in the 20th Century. 1 Karlin was born in Yonova, Poland on June 8, 1924, and died at Stanford, California on December 18, 2007.
    [Show full text]
  • Integral Geometry and Radon Transforms, by Sigurdur Helgason, Springer, New York, 2010, Xiv+301 Pp., ISBN 978-1-4419-6054-2, Hardcover
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY S 0273-0979(2012)01391-5 Article electronically published on December 6, 2012 Integral geometry and Radon transforms, by Sigurdur Helgason, Springer, New York, 2010, xiv+301 pp., ISBN 978-1-4419-6054-2, hardcover 1. Integral geometry The book under review is an excellent introduction to the group theoretical and analytic aspects of the field by one of its pioneers. Before reviewing the book, we will provide an overview of the field. Integral geometry draws together analysis, geometry, and numerical mathemat- ics. It has direct applications in PDEs, group representations, and the applied mathematical field of tomography. The fundamental problem in integral geometry is to determine properties of a function f in the plane or three-dimensional space or other manifolds from knowing the integrals of f over lines, planes, hyperplanes, spheres, or other submanifolds. The history of integral geometry starts in the early 1900s with Radon, Funk, Lorenz, and others. In 1917, Johann Radon [60] proved an inversion formula for whathasbecomeknownastheclassical Radon line transform: if is a line in the plane and f is an integrable function, then ż (1.1) RLfpq“ fpxqds, xP where ds is the arc length measure on the line . This is the mathematical model behind X-ray tomography, which we discuss in Section 5. One can extend this n to the hyperplane transform, RH , which integrates over all hyperplanes H in R . 3 RadonalsoprovedaninversionformulaforRH in R . (According to Bockwinkel [5], the inversion for RH had already been obtained by H. A. Lorenz before 1906.) In 1936, Cramer and Wold [10] proved injectivity of the hyperplane transform for probability measures.
    [Show full text]
  • NOTES on RADON TRANSFORMS Abstract These Notes Include the Following Selected Topics: Discussion of Radon's Paper (1917); Tota
    NOTES ON RADON TRANSFORMS B. RUBIN Abstract These notes include the following selected topics: Discussion of Radon's paper (1917); totally geodesic Radon transforms on the sphere and associated analytic families of intertwining operators; Radon trans- forms on Grassmann manifolds and matrix spaces; the generalized Minkowski-Funk transform for non-central spherical sections, and small divisors for spherical harmonic expansions; the Busemann-Petty prob- lem on sections of convex bodies. Basic classical ideas and some recent results are presented in a systematic form. Contents 1. Introduction. 2. Radon's paper. 3. The Minkowski-Funk transform and related topics. 4. Totally geodesic Radon transforms on the sphere. 5. Radon transforms on Grassmann manifolds. 6. The generalized Minkowski-Funk transform and small divisors. 7. The Busemann-Petty problem. 8. Radon transforms on matrix spaces. 9. References. 2000 Mathematics Subject Classi¯cation. Primary 44A12; Secondary 14M15, 53C65. Key words and phrases. Radon transforms, fractional integrals, Grassmann man- ifolds, the Busemann-Petty problem . 1 2 B. RUBIN 1. Introduction According I.M. Gelfand [Ge], one of the basic problems of integral geometry can be stated as follows. Given a manifold X, let ¥ be a certain family of submanifolds of X. We write x 2 X; » 2 ¥, and consider the mapping Z (1.1) f(x) ! (Rf)(») = f » that assigns to each su±ciently good function f on X a collection of integrals of f over submanifolds » 2 ¥. The problem is to study mapping properties of (1.1) (range, kernel, norm estimates) and ¯nd explicit inversion formulas in appropriate function spaces. It is assumed that ¥ itself is endowed with the structure of a manifold.
    [Show full text]
  • Fritz John, 1910–1994 an Elegant Construction of the Fundamental Solution for Par- Fritz John Died in New Rochelle, NY, on February 10, 1994
    people.qxp 3/16/99 5:26 PM Page 255 Mathematics People Mathematics of the AMS and the Society for Industrial and Moser Receives Wolf Prize Applied Mathematics (1968), the Craig Watson Medal of Jürgen Moser of the Eidgenössische Technische Hochschule the U.S. National Academy of Sciences (1969), the John von in Zürich will receive the 1994–1995 Wolf Prize in Mathe- Neumann Lectureship of SIAM (1984), the L. E. J. Brouwer matics. The noted German mathematician will be honored Medal (1984), an Honorary Professorship at the Instituto with the $100,000 award by the Israel-based Wolf Foun- de Matematica Pura e Applicada (1989), and an honorary dation for his “fundamental work on stability in Hamil- doctorate from the University of Bochum (1990). Moser is tonian mechanics and his profound and influential con- a member of the U.S. National Academy of Sciences. tributions to nonlinear differential equations.” The 1994–1995 Wolf Prizes will be presented in March —from Wolf Foundation News Release by the president of Israel, Ezer Weizman, at the Knesset (Parliament) building in Jerusalem. A total of $600,000 will be awarded for outstanding achievements in the fields Aisenstadt Prizes Announced of agriculture, chemistry, physics, medicine, the arts, and mathematics. The Wolf Foundation was established by the The Centre de Recherches Mathématiques in Montreal has late Ricardo Wolf, an inventor, diplomat, and philanthropist. announced that the third and fourth André Aisenstadt Among Moser’s most important achievements is his Mathematics Prizes have been awarded to Nigel D. Hig- role in the development of KAM (Kolmogorov-Arnold- son of Pennsylvania State University and Michael J.
    [Show full text]
  • Radon Transforms and Microlocal Analysis in Compton Scattering Tomography
    RADON TRANSFORMS AND MICROLOCAL ANALYSIS IN COMPTON SCATTERING TOMOGRAPHY A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2017 By James W Webber School of Mathematics Contents Abstract 4 Declaration 5 Copyright 6 Acknowledgements 7 Author contributions 8 1 Introduction 9 1.1 The hyperplane Radon transform . 10 1.2 The Funk{Radon transform . 13 1.3 Radon transforms over a general class of hypersurfaces in Rn ... 15 1.4 The spherical Radon transform . 17 1.5 The circular arc Radon transform . 20 1.6 Sobolev space estimates . 23 1.7 Microlocal analysis . 26 1.7.1 Fourier integral operators . 28 1.8 An introduction to the papers . 35 1.8.1 X-ray Compton scattering tomography . 36 1.8.2 Three dimensional Compton scattering tomography . 37 1.8.3 Microlocal analysis of a spindle transform . 38 Bibliography 41 2 X{ray Compton scattering tomography 48 3 Three dimensional Compton scattering tomography 77 2 4 Microlocal analysis of a spindle transform 106 5 Conclusions and further work 133 A Definitions 137 3 Abstract Radon transforms and microlocal analysis in Compton scattering tomography James W Webber A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy, 2017 In this thesis we present new ideas and mathematical insights in the field of Compton Scattering Tomography (CST), an X-ray and gamma ray imaging technique which uses Compton scattered data to reconstruct an electron density of the target. This is an area not considered extensively in the literature, with only two dimensional gamma ray (monochromatic source) CST problems being analysed thus far [50, 48, 46].
    [Show full text]
  • Even If Google Sent You Here, What Follows Is NOT the Book RANDOM
    i Note: Even if Google sent you here, what follows is NOT the book RANDOM FIELDS AND GEOMETRY published with Springer in 2007, but rather a companion volume, still under production, that gives a simpler version of the theory of the first book as well as lots of applications. You can find the original Random Fields and Geometry on the Springer site. Meanwhile, enjoy what is available of the second volume, and keep in mind that we are happy to receive all comments, suggestions and, most of all, cor- rections. ii Applications of RANDOM FIELDS AND GEOMETRY Foundations and Case Studies Robert J. Adler Faculty of Industrial Engineering and Management and Faculty of Electrical Engineering Technion { Israel Institute of Technology Haifa, Israel e-mail: [email protected] Jonathan E. Taylor Department of Statistics Stanford University Stanford, California. e-mail: [email protected] Keith J. Worsley Department of Mathematics and Statistics McGill University Montr´eal,Canada and Department of Statistics University of Chicago Chicago, Illinois. e-mail: [email protected] May 20, 2015 0 Preface Robert J. Adler Jonathan E. Taylor1 Keith Worsley Haifa, Israel Stanford, California Montreal, Canada ie.technion.ac.il/Adler.phtml www-stat.stanford.edu/∼jtaylo www.math.mcgill.ca/keith 1Research supported in part by NSF grant DMS-0405970 Contents 0 Preface .................................................... iii 1 Introduction ............................................... 1 1.1 An Initial Example......................................1 1.2 Gaussian and Related Random Fields......................3 1.3 Shape and the Euler Characteristic........................4 1.4 The Large-Scale Structure of the Universe..................7 1.4.1 Survey Data......................................7 1.4.2 Designing and Testing a Model......................8 1.5 Brain Imaging.........................................
    [Show full text]
  • An Algebraic Approach to Harmonic Polynomials on S3
    AN ALGEBRAIC APPROACH TO HARMONIC POLYNOMIALS ON S3 Kevin Mandira Limanta A thesis in fulfillment of the requirements for the degree of Master of Science (by Research) SCHOOL OF MATHEMATICS AND STATISTICS FACULTY OF SCIENCE UNIVERSITY OF NEW SOUTH WALES June 2017 ORIGINALITY STATEMENT 'I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.' Signed .... Date Show me your ways, Lord, teach me your paths. Guide me in your truth and teach me, for you are God my Savior, and my hope is in you all day long. { Psalm 25:4-5 { i This is dedicated for you, Papa. ii Acknowledgement This thesis is the the result of my two years research in the School of Mathematics and Statistics, University of New South Wales. I learned quite a number of life lessons throughout my entire study here, for which I am very grateful of.
    [Show full text]