Integral Geometry and Radon Transforms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1810.09017V1 [Math.FA] 21 Oct 2018 Omadsmaitiitgasadivrinformulas
RECONSTRUCTION OF FUNCTIONS ON THE SPHERE FROM THEIR INTEGRALS OVER HYPERPLANE SECTIONS B. RUBIN Abstract. We obtain new inversion formulas for the Funk type transforms of two kinds associated to spherical sections by hyper- planes passing through a common point A which lies inside the n-dimensional unit sphere or on the sphere itself. Transforms of the first kind are defined by integration over complete subspheres and can be reduced to the classical Funk transform. Transforms of the second kind perform integration over truncated subspheres, like spherical caps or bowls, and can be reduced to the hyper- plane Radon transform. The main tools are analytic families of λ-cosine transforms, Semyanisyi’s integrals, and modified stereor- graphic projection with the pole at A. Assumptions for functions are close to minimal. 1. Introduction Spherical integral geometry covers a wide range of problems related to reconstructing functions on the Euclidean sphere from their inte- grals over prescribed submanifolds. Problems of this kind arise in to- mography, convex geometry, and many other areas; see, e.g., [2, 5– 7, 9, 11, 12, 17, 18, 27, 35]. A typical example is the Funk trans- form [3, 4] that grew up from the work of Minkowski [13]. In the n-dimensional setting, this transform integrates a function on the unit sphere Sn in Rn+1 over cross-sections of this sphere by hyperplanes arXiv:1810.09017v1 [math.FA] 21 Oct 2018 passing through the origin o of Rn+1; see (2.4) below. In the present paper we obtain new results related to the similar transforms over spherical sections by hyperplanes passing through an arbitrary fixed point A which lies either inside the sphere or on the sphere itself. -
Inversion Formulas for the Spherical Radon Transform and the Generalized Cosine Transform
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Advances in Applied Mathematics 29 (2002) 471–497 www.academicpress.com Inversion formulas for the spherical Radon transform and the generalized cosine transform Boris Rubin 1 Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem 91904, Israel Received 23 January 2001; accepted 1 December 2001 Abstract The k-dimensional totally geodesic Radon transform on the unit sphere Sn and the corresponding cosine transform can be regarded as members of the analytic family of intertwining fractional integrals α α+k−n R f (ξ) = γn,k(α) f(x) sin d(x,ξ) dx, Sn d(x,ξ) being the geodesic distance between x ∈ Sn and the k-geodesic ξ.Wedevelop a unified approach to the inversion of Rαf for all α 0, 1 k n − 1,n 2. The cases of smooth f and f ∈ Lp are considered. A series of new inversion formulas is obtained. The convolution–backprojection method is developed. 2002 Elsevier Science (USA). All rights reserved. Keywords: Spherical Radon transform; Cosine transform; Sine transform; The convolution–backprojection method 1. Introduction In the present paper we focus on inversion formulas for the following transforms of integral geometry which have numerous important applications E-mail address: [email protected]. 1 Partially supported by the Edmund Landau Center for Research in Mathematical Analysis and Related Areas, sponsored by the Minerva Foundation (Germany). 0196-8858/02/$ – see front matter 2002 Elsevier Science (USA). All rights reserved. PII:S0196-8858(02)00028-3 472 B. Rubin / Advances in Applied Mathematics 29 (2002) 471–497 (see [2–6,12–15,18,20,22] for references). -
Integral Geometry and Algebraic Structures for Tensor Valuations
Integral Geometry and Algebraic Structures for Tensor Valuations Andreas Bernig and Daniel Hug Abstract In this survey, we consider various integral geometric formulas for tensor- valued valuations that have been obtained by different methods. Furthermore we explain in an informal way recently introduced algebraic structures on the space of translation invariant, smooth tensor valuations, including convolution, product, Poincare´ duality and Alesker-Fourier transform, and their relation to kinematic formulas for tensor valuations. In particular, we describe how the algebraic viewpoint leads to new intersectional kinematic formulas and substantially simplified Crofton formulas for translation invariant tensor valuations. We also highlight the connection to general integral geometric formulas for area measures. 1 Introduction An important part of integral geometry is devoted to the investigation of integrals (mean values) of the form Z j(K \ gL) m(dg); G n where K; L ⊂ R are sets from a suitable intersection stable class of sets, G is a group n acting on R and thus on its subsets, m is a Haar measure on G, and j is a functional with values in some vector space W. Common choices for W are the reals or the space of signed Radon measures. Instead of the intersection, Minkowski addition is another natural choice for a set operation which has been studied. The principle aim then is to express such integrals by means of basic geometric functionals of K Andreas Bernig Institut fur¨ Mathematik, Goethe-Universitat¨ Frankfurt, Robert-Mayer-Str. 10, 60054 Frankfurt, Germany, e-mail: [email protected], Daniel Hug Karlsruhe Institute of Technology (KIT), Department of Mathematics, D-76128 Karlsruhe, Germany, e-mail: [email protected] 59 60 Andreas Bernig and Daniel Hug and L. -
Integral Geometry and Radon Transforms, by Sigurdur Helgason, Springer, New York, 2010, Xiv+301 Pp., ISBN 978-1-4419-6054-2, Hardcover
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY S 0273-0979(2012)01391-5 Article electronically published on December 6, 2012 Integral geometry and Radon transforms, by Sigurdur Helgason, Springer, New York, 2010, xiv+301 pp., ISBN 978-1-4419-6054-2, hardcover 1. Integral geometry The book under review is an excellent introduction to the group theoretical and analytic aspects of the field by one of its pioneers. Before reviewing the book, we will provide an overview of the field. Integral geometry draws together analysis, geometry, and numerical mathemat- ics. It has direct applications in PDEs, group representations, and the applied mathematical field of tomography. The fundamental problem in integral geometry is to determine properties of a function f in the plane or three-dimensional space or other manifolds from knowing the integrals of f over lines, planes, hyperplanes, spheres, or other submanifolds. The history of integral geometry starts in the early 1900s with Radon, Funk, Lorenz, and others. In 1917, Johann Radon [60] proved an inversion formula for whathasbecomeknownastheclassical Radon line transform: if is a line in the plane and f is an integrable function, then ż (1.1) RLfpq“ fpxqds, xP where ds is the arc length measure on the line . This is the mathematical model behind X-ray tomography, which we discuss in Section 5. One can extend this n to the hyperplane transform, RH , which integrates over all hyperplanes H in R . 3 RadonalsoprovedaninversionformulaforRH in R . (According to Bockwinkel [5], the inversion for RH had already been obtained by H. A. Lorenz before 1906.) In 1936, Cramer and Wold [10] proved injectivity of the hyperplane transform for probability measures. -
NOTES on RADON TRANSFORMS Abstract These Notes Include the Following Selected Topics: Discussion of Radon's Paper (1917); Tota
NOTES ON RADON TRANSFORMS B. RUBIN Abstract These notes include the following selected topics: Discussion of Radon's paper (1917); totally geodesic Radon transforms on the sphere and associated analytic families of intertwining operators; Radon trans- forms on Grassmann manifolds and matrix spaces; the generalized Minkowski-Funk transform for non-central spherical sections, and small divisors for spherical harmonic expansions; the Busemann-Petty prob- lem on sections of convex bodies. Basic classical ideas and some recent results are presented in a systematic form. Contents 1. Introduction. 2. Radon's paper. 3. The Minkowski-Funk transform and related topics. 4. Totally geodesic Radon transforms on the sphere. 5. Radon transforms on Grassmann manifolds. 6. The generalized Minkowski-Funk transform and small divisors. 7. The Busemann-Petty problem. 8. Radon transforms on matrix spaces. 9. References. 2000 Mathematics Subject Classi¯cation. Primary 44A12; Secondary 14M15, 53C65. Key words and phrases. Radon transforms, fractional integrals, Grassmann man- ifolds, the Busemann-Petty problem . 1 2 B. RUBIN 1. Introduction According I.M. Gelfand [Ge], one of the basic problems of integral geometry can be stated as follows. Given a manifold X, let ¥ be a certain family of submanifolds of X. We write x 2 X; » 2 ¥, and consider the mapping Z (1.1) f(x) ! (Rf)(») = f » that assigns to each su±ciently good function f on X a collection of integrals of f over submanifolds » 2 ¥. The problem is to study mapping properties of (1.1) (range, kernel, norm estimates) and ¯nd explicit inversion formulas in appropriate function spaces. It is assumed that ¥ itself is endowed with the structure of a manifold. -
Applications of Riesz Transforms and Monogenic Wavelet Frames in Imaging and Image Processing
Applications of Riesz Transforms and Monogenic Wavelet Frames in Imaging and Image Processing By the Faculty of Mathematics and Computer Science of the Technische Universität Bergakademie Freiberg approved Thesis to attain the academic degree of doctor rerum naturalium (Dr. rer. nat.) submitted by Dipl. Math. Martin Reinhardt born on the 1st December, 1987 in Suhl Assessors: Prof. Dr. Swanhild Bernstein Prof. Dr. Konrad Froitzheim Date of the award: Freiberg, 6th March, 2019 Versicherung Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Hilfe eines Promotionsberaters habe ich nicht in Anspruch genommen. Weitere Personen haben von mir keine geldwerten Leistungen für Arbeiten erhalten, die nicht als solche kenntlich gemacht worden sind. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt. 6. Dezember 2018 Dipl. Math. Martin Reinhardt Declaration I hereby declare that I completed this work without any improper help from a third party and without using any aids other than those cited. All ideas derived directly or indirectly from other sources are identified as such. I did not seek the help of a professional doctorate-consultant. Only those persons identified as having done so received any financial payment from me for any work done for me. This thesis has not previously been published in the same or a similar form in Germany or abroad. 6th March, 2019 Dipl. Math. Martin Reinhardt 5 Contents Preface 7 Introduction 9 1. -
Radon Transforms and Microlocal Analysis in Compton Scattering Tomography
RADON TRANSFORMS AND MICROLOCAL ANALYSIS IN COMPTON SCATTERING TOMOGRAPHY A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2017 By James W Webber School of Mathematics Contents Abstract 4 Declaration 5 Copyright 6 Acknowledgements 7 Author contributions 8 1 Introduction 9 1.1 The hyperplane Radon transform . 10 1.2 The Funk{Radon transform . 13 1.3 Radon transforms over a general class of hypersurfaces in Rn ... 15 1.4 The spherical Radon transform . 17 1.5 The circular arc Radon transform . 20 1.6 Sobolev space estimates . 23 1.7 Microlocal analysis . 26 1.7.1 Fourier integral operators . 28 1.8 An introduction to the papers . 35 1.8.1 X-ray Compton scattering tomography . 36 1.8.2 Three dimensional Compton scattering tomography . 37 1.8.3 Microlocal analysis of a spindle transform . 38 Bibliography 41 2 X{ray Compton scattering tomography 48 3 Three dimensional Compton scattering tomography 77 2 4 Microlocal analysis of a spindle transform 106 5 Conclusions and further work 133 A Definitions 137 3 Abstract Radon transforms and microlocal analysis in Compton scattering tomography James W Webber A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy, 2017 In this thesis we present new ideas and mathematical insights in the field of Compton Scattering Tomography (CST), an X-ray and gamma ray imaging technique which uses Compton scattered data to reconstruct an electron density of the target. This is an area not considered extensively in the literature, with only two dimensional gamma ray (monochromatic source) CST problems being analysed thus far [50, 48, 46]. -
Even If Google Sent You Here, What Follows Is NOT the Book RANDOM
i Note: Even if Google sent you here, what follows is NOT the book RANDOM FIELDS AND GEOMETRY published with Springer in 2007, but rather a companion volume, still under production, that gives a simpler version of the theory of the first book as well as lots of applications. You can find the original Random Fields and Geometry on the Springer site. Meanwhile, enjoy what is available of the second volume, and keep in mind that we are happy to receive all comments, suggestions and, most of all, cor- rections. ii Applications of RANDOM FIELDS AND GEOMETRY Foundations and Case Studies Robert J. Adler Faculty of Industrial Engineering and Management and Faculty of Electrical Engineering Technion { Israel Institute of Technology Haifa, Israel e-mail: [email protected] Jonathan E. Taylor Department of Statistics Stanford University Stanford, California. e-mail: [email protected] Keith J. Worsley Department of Mathematics and Statistics McGill University Montr´eal,Canada and Department of Statistics University of Chicago Chicago, Illinois. e-mail: [email protected] May 20, 2015 0 Preface Robert J. Adler Jonathan E. Taylor1 Keith Worsley Haifa, Israel Stanford, California Montreal, Canada ie.technion.ac.il/Adler.phtml www-stat.stanford.edu/∼jtaylo www.math.mcgill.ca/keith 1Research supported in part by NSF grant DMS-0405970 Contents 0 Preface .................................................... iii 1 Introduction ............................................... 1 1.1 An Initial Example......................................1 1.2 Gaussian and Related Random Fields......................3 1.3 Shape and the Euler Characteristic........................4 1.4 The Large-Scale Structure of the Universe..................7 1.4.1 Survey Data......................................7 1.4.2 Designing and Testing a Model......................8 1.5 Brain Imaging......................................... -
Decay Properties of Riesz Transforms and Steerable Wavelets∗
SIAM J. IMAGING SCIENCES c 2013 Society for Industrial and Applied Mathematics Vol. 6, No. 2, pp. 984–998 Decay Properties of Riesz Transforms and Steerable Wavelets∗ † ‡ † John Paul Ward , Kunal Narayan Chaudhury , and Michael Unser Abstract. The Riesz transform is a natural multidimensional extension of the Hilbert transform, and it has been the object of study for many years due to its nice mathematical properties. More recently, the Riesz transform and its variants have been used to construct complex wavelets and steerable wavelet frames in higher dimensions. The flip side of this approach, however, is that the Riesz transform of a wavelet often has slow decay. One can nevertheless overcome this problem by requiring the original wavelet to have sufficient smoothness, decay, and vanishing moments. In this paper, we derive necessary conditions in terms of these three properties that guarantee the decay of the Riesz transform and its variants, and, as an application, we show how the decay of the popular Simoncelli wavelets can be improved by appropriately modifying their Fourier transforms. By applying the Riesz transform to these new wavelets, we obtain steerable frames with rapid decay. Key words. Riesz transform, steerable wavelets, singular integrals AMS subject classifications. 32A55, 42C40 DOI. 10.1137/120864143 1. Introduction. The Riesz transform of a real-valued function f(x)onRd is the vector- valued function Rf(x)=(R1f(x),...,Rdf(x)) given by − R x y xi yi y (1.1) if( )=Cd lim f( ) d+1 d , →0 x−y> x − y where Cd is an absolute constant depending on the dimension d [5]. -
Merchán, Tomás Ph.D., May 2020 PURE
Merch´an,Tom´asPh.D., May 2020 PURE MATHEMATICS SINGULAR INTEGRALS AND RECTIFIABILITY (79 pages) Dissertation Advisors: Benjamin Jaye and Fedor Nazarov The goal of this thesis is to shed further light on the connection between two basic properties of singular integral operators, the L2-boundedness and the existence in principal value. We do so by providing geometric conditions that allow us to obtain results which are valid for a wide class of kernels, and sharp for operators of great importance: the Riesz and Huovinen transforms. The content of this thesis has turned out to be essential to prove that, in the case of the Huovinen transform associated to a measure with positive and finite upper density, the existence in principal value implies the rectifiability of the underlying measure. SINGULAR INTEGRALS AND RECTIFIABILITY A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Tom´asMerch´an May 2020 c Copyright All rights reserved Except for previously published materials Dissertation written by Tom´asMerch´an B.S., Universidad de Sevilla, 2015 M.S., Kent State University, 2017 Ph.D., Kent State University, 2020 Approved by Benjamin Jaye , Co-Chair, Doctoral Dissertation Committee Fedor Nazarov , Co-Chair, Doctoral Dissertation Committee Artem Zvavitch , Members, Doctoral Dissertation Committee Feodor Dragan Maxim Dzero Accepted by Andrew M. Tonge , Chair, Department of Mathematical Sciences James L. Blank , Dean, College of Arts and Sciences TABLE OF CONTENTS TABLE OF CONTENTS . iv ACKNOWLEDGMENTS . vi 1 Introduction . 1 1.1 Basic Notation and Concepts . .3 2 Classification of Symmetric measures . -
A Generalization of the Funk–Radon Transform
A generalization of the Funk{Radon transform Michael Quellmalz∗ The Funk{Radon transform assigns to a function on the two-sphere its mean values along all great circles. We consider the following generalization: we replace the great circles by the small circles being the intersection of the sphere with planes containing a common point ζ inside the sphere. If ζ is the origin, this is just the classical Funk{ Radon transform. We find two mappings from the sphere to itself that enable us to represent the generalized Radon transform in terms of the Funk{Radon transform. This representation is utilized to characterize the nullspace and range as well as to prove an inversion formula of the generalized Radon transform. Math Subject Classifications. 45Q05, 44A12. Keywords and Phrases. Radon transform, spherical means, Funk{Radon transform. 1 Background 2 On the two-dimensional sphere S , every circle can be described as the intersection of the sphere with a plane, 2 C (ξ; x) = η 2 S j hξ; ηi = x ; 2 where ξ 2 S is the normal vector of the plane and x 2 [−1; 1] is the signed distance of the plane to the origin. For x = ±1, the circle C (ξ; x) consists of only the singleton ±ξ. The spherical mean 2 2 2 operator S : C(S ) ! C(S × [−1; 1]) assigns to a continuous function f defined on S its mean values along all circles of the sphere, i.e. Z Sf(ξ; x) = f(η) dµ(η); C (ξ;x) where µ denotes the Lebesgue measure on the circle C (ξ; x) normalized such that µ(C (ξ; x)) = 1. -
Recent Developments in the Stereological Analysis of Particles*
Ann. Inst. Statist. Math. Vol. 43, No. 3, 455-468 (1991) RECENT DEVELOPMENTS IN THE STEREOLOGICAL ANALYSIS OF PARTICLES* EVA B. VEDEL JENSEN Department of Theoretical Statistics, Institute of Mathematics, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark (Received November 14, 1989; revised March 26, 1991) Abstract. Recent developments in the stereological analysis of particles are reviewed. The trend has been towards methods which are applicable without specific assumptions about particle shape. Geometric samples of a local 3-d character are used. Stereological estimators of particle intensity, particle size distribution and particle interaction are presented and discussed. Key words and phrases: Intensity, K-function, mark distribution, marked point processes, measure decomposition, nucleator, second-order properties, stereology, stochastic geometry. 1. Introduction Stereology is the science of making statistical inference about spatial struc- tures from samples of a geometric nature. Such methods are used in the study of the different components of spatial materials such as metals, minerals, synthetic materials or biological tissues. The physical size of the components of interest may be of the order of #m and are then studied by some microscopic technique. Until recently, the geometric samples used in a stereological analysis have consisted of line or plane sections of the structure. The step from spatial structures to their sections involves a great loss of information and so traditional stereological methods commonly yield only "global" information of a statistical character. A further consequence of this loss of information is that, in order to give a spatial interpretation to size data collected on sections, the solutions of ill-posed problems are required: numerical solutions in which small deviations due to measurement error can lead to large discrepancies in the final solution (cf.