Groundwater Flow

Total Page:16

File Type:pdf, Size:1020Kb

Groundwater Flow Chapter C: Groundwater Flow By Donald S. Sweetkind, Melissa D. Masbruch, Victor M. Heilweil, and Susan G. Buto Chapter C of Conceptual Model of the Great Basin Carbonate and Alluvial Aquifer System Edited by Victor M. Heilweil and Lynette E. Brooks Scientific Investigations Report 2010–5193 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2011 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Heilweil, V.M., and Brooks, L.E., eds., 2011, Conceptual model of the Great Basin carbonate and alluvial aquifer system: U.S. Geological Survey Scientific Investigations Report 2010-5193, 188 p. iii Contents Hydrographic Areas and Regional Groundwater Flow Systems ......................................................... 1 Groundwater Movement ............................................................................................................................. 2 Potentiometric-Surface Map ............................................................................................................. 3 Data and Construction of Potentiometric-Surface Map ...................................................... 4 Analysis of Potentiometric-Surface Map ............................................................................... 6 Geologic Controls Affecting Groundwater Flow ..................................................................................... 7 Structural Belts, Transverse Zones, and Mineral Belts ................................................................ 8 Calderas ................................................................................................................................................ 9 Extension .............................................................................................................................................. 9 Faults as Hydrogeologic Features .................................................................................................. 10 Aquifer Storage Volumes ................................................................................................................. 11 Likelihood of Hydraulic Connection Across Hydrographic Area Boundaries ......................... 14 Limitations .................................................................................................................................................... 17 Summary ...................................................................................................................................................... 17 References Cited ........................................................................................................................................ 18 Figures C–1 Schematic diagram showing conceptualized groundwater flow in the Great Basin carbonate and alluvial aquifer system study area .......................................... 3 C–2 Cross section showing the modeled hydrogeologic framework, potentiometric surface, and likelihood of hydraulic connections across hydrographic area boundaries and groundwater-flow systems in the Great Basin carbonate and alluvial aquifer system study area .................................................................................... 6 C–3 Schematic diagram showing conceptualized juxtaposition of hydrogeologic units (HGUs) by different types of structures ......................................................................... 8 C–4 Estimated volume of water stored within Cenozoic hydrogeologic units in the 17 groundwater-flow systems of the Great Basin carbonate and alluvial aquifer system study area ....................................................................................................... 14 Tables C–1 Previously reported estimates of specific yield for Cenozoic hydrogeologic units within the Great Basin carbonate and alluvial aquifer system study area ...........12 C–2 Likelihood of hydraulic connection across hydrographic area boundaries within the Great Basin carbonate and alluvial aquifer system study area ......................15 iv Conversion Factors Inch/Pound to SI Multiply By To obtain Length inch (in.) 2.54 centimeter (cm) inch (in.) 25.4 millimeter (mm) foot (ft) 0.3048 meter (m) mile (mi) 1.609 kilometer (km) Area acre 4,047 square meter (m2) acre 0.4047 hectare (ha) square mile (mi2) 2.590 square kilometer (km2) Volume gallon (gal) 3.785 liter (L) gallon (gal) 0.003785 cubic meter (m3) gallon (gal) 3.785 cubic decimeter (dm3) cubic foot (ft3) 28.32 cubic decimeter (dm3) cubic foot (ft3) 0.02832 cubic meter (m3) acre-foot (acre-ft) 1,233 cubic meter (m3) acre-foot (acre-ft) 0.001233 cubic hectometer (hm3) Flow rate acre-foot per year (acre-ft/yr) 1,233 cubic meter per year (m3/yr) acre-foot per year (acre-ft/yr) 0.001233 cubic hectometer per year (hm3/yr) foot per year (ft/yr) 0.3048 meter per year (m/yr) cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s) cubic foot per day (ft3/d) 0.02832 cubic meter per day (m3/d) gallon per minute (gal/min) 0.06309 liter per second (L/s) Hydraulic conductivity foot per day (ft/d) 0.3048 meter per day (m/d) inch per day (in./d) 25.38 millimeter per day (mm/d) Transmissivity* foot squared per day (ft2/d) 0.09290 meter squared per day (m2/d) Note: The conversion factors given above are for the entire report. Not all listed conversion factors will be in any given chapter of this report. Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: °F=(1.8×°C)+32 Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows: °C=(°F-32)/1.8 Temperature in kelvin (K) may be converted to degrees Fahrenheit (°F) as follows: °F=1.8K-459.67 Temperature in kelvin (K) may be converted to degrees Celsius (°C) as follows: °C=K-273.15 Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88). Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83). Altitude, as used in this report, refers to distance above the vertical datum. *Transmissivity: The standard unit for transmissivity is cubic foot per day per square foot times foot of aquifer thickness [(ft3/d)/ft2]ft. In this report, the mathematically reduced form, foot squared per day (ft2/d), is used for convenience. Chapter C: Groundwater Flow By Donald S. Sweetkind, Melissa D. Masbruch, Victor M. Heilweil, Susan G. Buto The Great Basin carbonate and alluvial aquifer system 2. Death Valley (HA 243 in the current study) is extended (GBCAAS) study area includes a vast climatologically and slightly to the southwest from the original RASA boundary geologically diverse part of the western United States. This to match the Death Valley regional flow system (DVRFS) chapter further develops the conceptual understanding of study area boundary (Belcher, 2004); it is divided into two groundwater flow in the GBCAAS by (1) subdividing the valleys by Cardinalli and others (1968): Grapevine Canyon study area into smaller regions of hydrographic areas (HAs) (HA 231) and Oriental Wash (HA 232). and groundwater flow systems, (2) presenting a regional 3. Beryl-Enterprise Area (HA 280) is referred to by Cardinalli potentiometric-surface map that can be used to determine and others (1968) as the Escalante Desert (HA 197). generalized groundwater flow directions, (3) integrating 4. Tenmile Creek Area (HA 48 in the current study) is re- geologic constraints along the boundaries of the HAs in ferred to by Cardinalli and others (1968) as Dixie Creek- the regional potentiometric-surface map, and (4) further Tenmile Creek area (HA 48). interpreting geologic controls on the flow of groundwater. 5. Great Salt Lake Desert West Part (HA 261A in the current Because of the large size of the study area and sparsity of study) is referred to by Cardinalli and others (1968) as water-level data in many areas, the potentiometric-surface map Great Salt Lake Desert (HA 192). depicts a simplified representation of groundwater conditions best suited for evaluating groundwater flow in a regional 6. Pilot Valley (HA 252 in the current study) is included by context. Cardinalli and others (1968) as part of the Great Salt Lake Desert (HA 192). 7. Grouse Creek Valley (HA 251 in the current study) is re- Hydrographic Areas and Regional ferred to by Cardinalli and others (1968) as Grouse Creek Valley (HA 190) and has a significantly different south- Groundwater Flow Systems western boundary. The GBCAAS study area comprises 165 individual HAs 8. Deep Creek Valley (HA 253 in the current study) is (pl. 1). HAs in Nevada were delineated systematically by referred to by Cardinalli and others (1968) as Deep Creek the U.S. Geological Survey (USGS) and Nevada Division of Valley (HA 193). Water Resources (NDWR)
Recommended publications
  • Northern Paiute and Western Shoshone Land Use in Northern Nevada: a Class I Ethnographic/Ethnohistoric Overview
    U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management NEVADA NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Ginny Bengston CULTURAL RESOURCE SERIES NO. 12 2003 SWCA ENVIROHMENTAL CON..·S:.. .U LTt;NTS . iitew.a,e.El t:ti.r B'i!lt e.a:b ~f l-amd :Nf'arat:1.iern'.~nt N~:¥G~GI Sl$i~-'®'ffl'c~. P,rceP,GJ r.ei l l§y. SWGA.,,En:v,ir.e.m"me'Y-tfol I €on's.wlf.arats NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Submitted to BUREAU OF LAND MANAGEMENT Nevada State Office 1340 Financial Boulevard Reno, Nevada 89520-0008 Submitted by SWCA, INC. Environmental Consultants 5370 Kietzke Lane, Suite 205 Reno, Nevada 89511 (775) 826-1700 Prepared by Ginny Bengston SWCA Cultural Resources Report No. 02-551 December 16, 2002 TABLE OF CONTENTS List of Figures ................................................................v List of Tables .................................................................v List of Appendixes ............................................................ vi CHAPTER 1. INTRODUCTION .................................................1 CHAPTER 2. ETHNOGRAPHIC OVERVIEW .....................................4 Northern Paiute ............................................................4 Habitation Patterns .......................................................8 Subsistence .............................................................9 Burial Practices ........................................................11
    [Show full text]
  • Quaternary Tectonics of Utah with Emphasis on Earthquake-Hazard Characterization
    QUATERNARY TECTONICS OF UTAH WITH EMPHASIS ON EARTHQUAKE-HAZARD CHARACTERIZATION by Suzanne Hecker Utah Geologiral Survey BULLETIN 127 1993 UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES 0 STATE OF UTAH Michael 0. Leavitt, Governor DEPARTMENT OF NATURAL RESOURCES Ted Stewart, Executive Director UTAH GEOLOGICAL SURVEY M. Lee Allison, Director UGSBoard Member Representing Lynnelle G. Eckels ................................................................................................... Mineral Industry Richard R. Kennedy ................................................................................................. Civil Engineering Jo Brandt .................................................................................................................. Public-at-Large C. Williatn Berge ...................................................................................................... Mineral Industry Russell C. Babcock, Jr.............................................................................................. Mineral Industry Jerry Golden ............................................................................................................. Mineral Industry Milton E. Wadsworth ............................................................................................... Economics-Business/Scientific Scott Hirschi, Director, Division of State Lands and Forestry .................................... Ex officio member UGS Editorial Staff J. Stringfellow .........................................................................................................
    [Show full text]
  • A History of Beaver County, Utah Centennial County History Series
    A HISTORY OF 'Beaver County Martha Sonntag Bradley UTAH CENTENNIAL COUNTY HISTORY SERIES A HISTORY OF 'Beaver County Martha Sonntag Bradley The settlement of Beaver County began in February 1856 when fifteen families from Parowan moved by wagon thirty miles north to Beaver Valley. The county was created by the Utah legislature on 31 January 1856, a week before the Parowan group set out to make their new home. However, centuries before, prehistoric peoples lived in the area, obtaining obsidian for arrow and spear points from the Mineral Mountains. Later, the area became home to Paiute Indians. Franciscan Friars Dominguez and Escalante passed through the area in October 1776. The Mormon settlement of Beaver devel­ oped at the foot of the Tushar Mountains. In 1859 the community of Minersville was es­ tablished, and residents farmed, raised live­ stock, and mined the lead deposits there. In the last quarter of the nineteenth century the Mineral Mountains and other locations in the county saw extensive mining develop­ ment, particularly in the towns of Frisco and Newhouse. Mining activities were given a boost with the completion of the Utah South­ ern Railroad to Milford in 1880. The birth­ place of both famous western outlaw Butch Cassidy and inventor of television Philo T. Farnsworth, Beaver County is rich in history, historic buildings, and mineral treasures. ISBN: 0-913738-17-4 A HISTORY OF 'Beaver County A HISTORY OF Beaver County Martha Sonntag Bradley 1999 Utah State Historical Society Beaver County Commission Copyright © 1999 by Beaver County Commission All rights reserved ISBN 0-913738-17-4 Library of Congress Catalog Card Number 98-61325 Map by Automated Geographic Reference Center—State of Utah Printed in the United States of America Utah State Historical Society 300 Rio Grande Salt Lake City, Utah 84101-1182 Contents ACKNOWLEDGMENTS vii GENERAL INTRODUCTION ix CHAPTER 1 Beaver County: The Places That Shape Us .
    [Show full text]
  • The Resource Management Plan
    BEAVER COUNTY RESOURCE MANAGEMENT PLAN Beaver County Commissioners Michael F. Dalton, Chair Mark S. Whitney Tammy Pearson Planning & Zoning Commission Darrel Davis, Chairman Kyle Blackner, Administrator Von Christiansen, Attorney Jamie Kelsey, Secretary Steve Kinross Mike Riley Walter Schofield Kolby Blackner Drew Coombs Don Noyes Public Lands KevenDRAFT Whicker, Public Lands Administrator County Staff Scott Albrecht, Michelle Evans, Tracy McMullin, Heidi Eyre Adopted June X, 2017 i TABLE OF CONTENTS INTRODUCTION .......................................................................................................................... v LEGAL BASIS FOR COUNTY RESOURCE MANAGEMENT PLANNING .......................... ix SOCIAL-ECONOMIC LINKAGES ............................................................................................. xi CURRENT RESOURCE MANAGEMENT SETTING .............................................................. xv DESIRED RESOURCE MANAGEMENT SETTING .............................................................. xvii 1. LAND USE ............................................................................................................................. 1 2. ENERGY, MINING, MINERAL & GEOLOGICAL RESOURCES .................................... 9 2.1 Mining and Mineral & Geological Resources .................................................................. 9 2.2 Energy Resources ............................................................................................................ 20 3. AGRICULTURE .................................................................................................................
    [Show full text]
  • Water Resources of Millard County, Utah
    WATER RESOURCES OF MILLARD COUNTY, UTAH by Fitzhugh D. Davis Utah Geological Survey, retired OPEN-FILE REPORT 447 May 2005 UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, stated or implied, regarding its suitability for a particular use. The Utah Department of Natural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product. This Open-File Report makes information available to the public in a timely manner. It may not conform to policy and editorial standards of the Utah Geological Survey. Thus it may be premature for an individual or group to take action based on its contents. WATER RESOURCES OF MILLARD COUNTY, UTAH by Fitzhugh D. Davis Utah Geological Survey, retired 2005 This open-file release makes information available to the public in a timely manner. It may not conform to policy and editorial standards of the Utah Geological Survey. Thus it may be premature for an individual or group to take action based on its contents. Although this product is the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for a particular use. The Utah Department of Natural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product.
    [Show full text]
  • Conifers of the San Francisco Mountains, San Rafael Swell, and Roan Plateau Ronald M
    Great Basin Naturalist Volume 31 | Number 3 Article 11 9-30-1971 Conifers of the San Francisco Mountains, San Rafael Swell, and Roan Plateau Ronald M. Lanner Utah State University Ronald Warnick Utah State University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Lanner, Ronald M. and Warnick, Ronald (1971) "Conifers of the San Francisco Mountains, San Rafael Swell, and Roan Plateau," Great Basin Naturalist: Vol. 31 : No. 3 , Article 11. Available at: https://scholarsarchive.byu.edu/gbn/vol31/iss3/11 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. CONIFERS OF THE SAN FRANCISCO MOUNTAINS, SAN RAFAEL SWELL, AND ROAN PLATEAU 1 Ronald M. Lanner2 and Ronald Warnick 2 This is the second in a series of notes on conifer distribution in The Great Basin and adjacent mountain areas. An earlier paper (Lanner, 1971) presented results of field surveys in selected parts of northern Utah. This article will cover three Utah areas further to the south, which represent diverse geological and environmental conditions. The occurrence of previously unrecorded species localities is supported by specimens deposited in the Intermountain Herbarium at Utah State University, Logan, Utah (UTC). San Francisco Mountains The San Francisco Mountains, a typical Great Basin fault-block range, are located in Beaver and Millard counties. The range is ori- ented roughly on a north-south axis and is about 18 miles in length.
    [Show full text]
  • Tribally Approved American Indian Ethnographic Analysis of the Proposed Wah Wah Valley Solar Energy Zone
    Tribally Approved American Indian Ethnographic Analysis of the Proposed Wah Wah Valley Solar Energy Zone Ethnography and Ethnographic Synthesis For Solar Programmatic Environmental Impact Statement and Solar Energy Study Areas in Portions of Arizona, California, Nevada, and Utah Participating Tribes Confederated Tribes of the Goshute Reservation, Ibapah, Utah Paiute Indian Tribe of Utah, Cedar City, Utah By Richard W. Stoffle Kathleen A. Van Vlack Hannah Z. Johnson Phillip T. Dukes Stephanie C. De Sola Kristen L. Simmons Bureau of Applied Research in Anthropology School of Anthropology University of Arizona October 2011 Solar PEIS Ethnographic Assessment Page 1 WAH WAH VALLEY The proposed Wah Wah Valley solar energy zone (SEZ) is located in the southwestern portion of Utah and is outlined in red below (Figure 1). The proposed Wah Wah Valley SEZ sits in Beaver County, approximately 50 miles northwest of Cedar City and 34 miles east of the Utah/Nevada state line. State-route 21 runs through the length of the northern portion of the SEZ and provides access to the area. Figure 1 Google Earth Image of Wah Wah Valley SEZ American Indian Study Area The greater Wah Wah Valley SEZ American Indian study area lies in the Utah Basin and Range province within the Wah Wah Valley. The larger SEZ American Indian study area extends beyond the boundaries of the proposed SEZ because the presence of cultural resources extends into the surrounding landscape. The Wah Wah Valley SEZ American Indian study area includes plant communities, geological features, water sources, and trail systems located in and around the SEZ boundary.
    [Show full text]
  • Nevada Hydrographic Areas and Sub-Areas/Listed Alphabetically by Primary County of Location Basin Area Area Area Num
    Appendix A-4--Nevada Hydrographic Areas and Sub-Areas/Listed Alphabetically by Primary County of Location Basin Area Area Area Num. Num. (sq.mi.) (acres) Desig Hydrograph Area/Sub-Area Counties [1] [2] [3] [4] Nearest Cities [6] Name Included [5] Carson City, 8 104 69 44,160 Eagle Valley Carson City Yes Douglas Frenchman, 10 125 43 27,520 Stingaree Valley Churchill Yes Eastgate 5 77 58 37,120 Fireball Valley Churchill Nixon, Fernley No Frenchman, 10 126 110 70,400 Cowkick Valley Churchill Yes Eastgate 10 133 416 266,240 Edwards Creek Valley Churchill Eastgate, Austin No 10 127 216 138,240 Eastgate Valley Area Churchill Eastgate Yes Bradys Hot Springs, 5 75 178 113,920 Brady Hot Springs Area Churchill, Lyon Yes Fernley Churchill, Frenchman, Fallon, 10 124 285 182,400 Fairview Valley Yes Mineral Eastgate Churchill, 10 123 227 145,280 Rawhide Flats Schurz, Fallon No Mineral, Lyon Churchill, 4 74 164 104,960 White Plains Lovelock, Fernley Yes Pershing Churchill, 10 128 1,303 833,920 Dixie Valley Dixie Valley, Fallon Yes Pershing, Lander Churchill, 8 101 2,022 1,294,080 Carson Desert Fallon, Stillwater Yes Pershing, Lyon North Las Vegas, 13 217 80 51,200 Hidden Valley Clark No Moapa Boulder City, 10 167 530 339,200 Eldorado Valley Clark Yes Searchlight Las Vegas, 13 212 1,564 1,000,960 Las Vegas Valley Clark Yes Henderson 13 223 533 341,120 Gold Butte Area Clark Overton, Logandale No 10 165 96 61,440 Jean Lake Valley Clark Jean, Goodsprings Yes Three Lakes Valley-Southern 13 211 311 199,040 Clark Indian Springs Yes Part Bunkerville, 13 224
    [Show full text]
  • Us Department of the Interior
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY FIELD TRIP GUIDE TO THE SOUTHERN EAST HUMBOLDT RANGE AND NORTHERN CURRIE HILLS, NORTHEAST NEVADA: AGE AND STYLE OF ATTENUATION FAULTS IN PERMIAN AND TRIASSIC ROCKS by Charles H. Thorman1 and William E. Brooks1 Open-File Report 94-439 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Denver, Colorado 1994 FIELD TRIP GUIDE TO THE SOUTHERN EAST HUMBOLDT RANGE AND NORTHERN CURRIE HILLS, NORTHEAST NEVADA: AGE AND STYLE OF ATTENUATION FAULTS IN PERMIAN AND TRIASSIC ROCKS by Charles H. Thorman and William E. Brooks U.S. Geological Survey, Box 25046, MS 905, Denver, CO 80225 INTRODUCTION One of the most difficult aspects in unraveling Basin and Range geology is dating attenuation faults, which are low-angle younger-over-older faults that can be interpreted as contractional or extensional in origin. Units are typically thinned or eliminated, commonly with little discordance between juxtaposed beds. Hintze (1978) documented this style of faulting in western Utah and attributed it to the Sevier orogeny. Attenuation faults abound in the region, but are commonly difficult to date because of a lack of crosscutting or overlapping features (Nutt and others, 1992; Nutt and Thorman, 1994). Being unable to date an attenuation fault makes it difficult to relate the fault to extensional or contractional tectonics. In the case of the southern East Humboldt Range, we consider the attenuation faulting to be related to Jurassic (Elko) or Cretaceous (Sevier) contractional tectonics; on this field trip we will see some of the field evidence on which this conclusion is based.
    [Show full text]
  • Ground Water in Utah's Densely Populated Wasatch Front Area the Challenge and the Choices
    Ground Water in Utah's Densely Populated Wasatch Front Area the Challenge and the Choices United States Geological Survey Water-Supply Paper 2232 Ground Water in Utah's Densely Populated Wasatch Front Area the Challenge and the Choices By DON PRICE U.S. GEOLOGICAL SURVEY WATER-SUPPLY PAPER 2232 UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL MODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1985 For sale by the Branch of Distribution U.S. Geological Survey 604 South Pickett Street Alexandria, VA 22304 Library of Congress Cataloging in Publication Data Price, Don, 1929- Ground water in Utah's densely populated Wasatch Front area. (U.S. Geological Survey water-supply paper ; 2232) viii, 71 p. Bibliography: p. 70-71 Supt. of Docs. No.: I 19.13:2232 1. Water, Underground Utah. 2. Water, Underground Wasatch Range (Utah and Idaho) I. Title. II. Series. GB1025.U8P74 1985 553.7'9'097922 83-600281 PREFACE TIME WAS Time was when just the Red Man roamed this lonely land, Hunted its snowcapped mountains, its sun-baked desert sand; Time was when the White Man entered upon the scene, Tilled the fertile soil, turned the valleys green. Yes, he settled this lonely region, with the precious water he found In the sparkling mountain streams and hidden in the ground; He built his homes and cities; and temples toward the sun; But without the precious water, his work might not be done. .**- ste'iA CONTENTS Page Preface ..................................................... Ill Abstract ................................................... 1 Significance Ground water in perspective ................................ 1 The Wasatch Front area Utah's urban corridor ....................................
    [Show full text]
  • Relationship Between Fault Zone Architecture and Groundwater Compartmentalization in the East Tintic Mining District, Utah
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2005-11-16 Relationship Between Fault Zone Architecture and Groundwater Compartmentalization in the East Tintic Mining District, Utah Sandra Myrtle Conrad Hamaker Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Geology Commons BYU ScholarsArchive Citation Hamaker, Sandra Myrtle Conrad, "Relationship Between Fault Zone Architecture and Groundwater Compartmentalization in the East Tintic Mining District, Utah" (2005). Theses and Dissertations. 708. https://scholarsarchive.byu.edu/etd/708 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. RELATIONSHIP BETWEEN FAULT ZONE ARCHITECTURE AND GROUNDWATER COMPARTMENTALIZATION IN THE EAST TINTIC MINING DISTRICT, UTAH by Sandra M. Hamaker A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Department of Geology Brigham Young University December 2005 BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a dissertation submitted by Sandra M. Hamaker This dissertation has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. _______________________________ ______________________________
    [Show full text]
  • Valleys of Utah Lake and Jordan River, Utah
    Water-Supply and Irrigation Paper No. 157 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DlKKCTOK UNDERGROUND WATER IN THE VALLEYS OF UTAH LAKE AND JORDAN RIVER, UTAH BY G. B. RICHARDSON WASHINGTON GOVERNMENT PRINTING OFFICE 1906 CONTENTS. Page. Introduction.......................... 5 Topography and drainage.............. 5 Geology.............................. 7 Literature........................ Descriptive geology of the highlands Late geologic history.............. 11 Tertiary..................... 11 Quaternary.................... 11 Climate.............................. 13 Precipitation.. 14 Temperature.. 15 Wind velocity. 16 Humidity..... 16 Evaporation-.. 17 Summary..... 17 Hydrography...... 18 Streams tributary to Utah Lake and Jorc an River. 18 Utah Lake.................... 23 Jordan River.................. 24 Great Salt Lake................ 25 Underground water.................. 27 General conditions............. 27 Source.................... 27 Distribution............... 29 Quality................... 30 Recovery................. 35 Suggestions................. 38 Occurrence.................... 38 West of Jordan .River........ 38 Divisions of area....... 38 Upland area............ 39 Lowland area.......... 41 East of Jordan River........ 43 Salt Lake City......... 43 South of Salt Lake City. 45 Utah Lake Valley........... 48 Lehi and vicinity. 48 American Fork, Pleasant Grove, and vicinity. 49 Provo and vicinity....... i- 51 Springville and vicinity... 52 Spanish Fork, Payson, and vicinity.
    [Show full text]