<<

-Based Physics I

Jeffrey W. Schnick

d

Chapter 1 Mathematical Prelude

cbPhysicsIa18.doc CalculusBasedPhysicsI byJeffreyW.Schnick Copyright20052008,JeffreyW.Schnick,CreativeCommonsAttributionShareAlikeLicense3.0.Youcancopy,modify,andre releasethisworkunderthesamelicenseprovidedyougiveattributiontotheauthor.Seehttp://creativecommons.org/ ThisbookisdedicatedtoMarie,Sara,andNatalie. Table of Contents 1MathematicalPrelude...... 2 2ConservationofMechanicalEnergyI:KineticEnergy&GravitationalPotentialEnergy ...... 10 3ConservationofMechanicalEnergyII:Springs,RotationalKineticEnergy ...... 18 4ConservationofMomentum...... 20 5ConservationofAngularMomentum ...... 25 6OneDimensionalMotion(MotionAlongaLine):DefinitionsandMathematics ...... 30 7OneDimensionalMotion:TheConstantAccelerationEquations ...... 39 8OneDimensionalMotion:CollisionTypeII ...... 43 9OneDimensionalMotionGraphs...... 48 10ConstantAccelerationProblemsinTwoDimensions ...... 52 11Relative...... 62 12GravitationalNeartheSurfaceofthe,FirstBrushwith’s2ndLaw...... 69 13Freefall,a.k.a.ProjectileMotion ...... 74 14Newton’sLaws#1:UsingFreeBodyDiagrams ...... 79 15Newton’sLaws#2:Kindsof,CreatingFreeBodyDiagrams...... 86 16Newton’sLaws#3:Components,Friction,Ramps,Pulleys,andStrings...... 95 17TheUniversalLawof ...... 104 18CircularMotion:CentripetalAcceleration...... 111 19RotationalMotionVariables,TangentialAcceleration,ConstantAngularAcceleration.....117 20Torque&CircularMotion...... 124 21Vectors:TheCrossProduct&Torque...... 132 22Centerof,Momentof...... 142 23Statics ...... 155 24WorkandEnergy ...... 162 25PotentialEnergy,ConservationofEnergy,Power ...... 171 26ImpulseandMomentum...... 180 27Oscillations:Introduction,MassonaSpring ...... 185 28Oscillations:TheSimplePendulum,EnergyinSimpleHarmonicMotion ...... 197 29Waves:Characteristics,Types,Energy...... 202 30WaveFunction,Interference,StandingWaves ...... 218 31Strings,AirColumns...... 225 32Beats,TheDopplerEffect ...... 233 33Fluids:Pressure,Density,Archimedes’Principle ...... 239 34Pascal’sPrinciple,theContinuityEquation,andBernoulli’sPrinciple...... 247 35Temperature,InternalEnergy,Heat,andSpecificHeatCapacity...... 257 36Heat:PhaseChanges ...... 262 37TheFirstLawofThermodynamics...... 266

1 Chapter 1 Mathematical Prelude

1 Mathematical Prelude JustbelowthetitleofeachchapterisatiponwhatIperceivetobethemost commonmistakemadebystudentsinapplyingmaterialfromthechapter.I includethesetipssothatyoucanavoidmakingthemistakes.Here’sthefirstone: 1 1 Thereciprocalof + isnotx + y.Tryitinthecaseofsomesimplenumbers. x y 1 1 1 1 2 1 3 Supposex=2andy=4.Then + = + = + = andthereciprocal x y 2 4 4 4 4 3 4 of is whichisclearlynot6(whichiswhatyouobtainifyoutakethe 4 3 1 1 1 1 reciprocalof + tobe2+4).Sowhatisthereciprocalof + ?The 2 4 x y 1 1 1 reciprocalof + is . x y 1 1 + x y Thisbookisaphysicsbook,notamathematicsbook.Oneofyourgoalsintaking aphysicscourseistobecomemoreproficientatsolvingphysicsproblems,both conceptualproblemsinvolvinglittletonomath,andproblemsinvolvingsome mathematics.Inatypicalphysicsproblemyouaregivenadescriptionabout somethingthatistakingplaceintheuniverseandyouaresupposedtofigureout andwritesomethingveryspecificaboutwhathappensasaresultofwhatis takingplace.Moreimportantly,youaresupposedtocommunicateclearly, completely,andeffectively,how,basedonthedescriptionandbasicprinciplesof physics,youarrivedatyourconclusion.Tosolveatypicalphysicsproblemyou haveto:(1)formapicturebasedonthegivendescription,quiteoftenamoving picture,inyourmind,(2)concoctanappropriatemathematicalproblembasedon thepicture,(3)solvethemathematicalproblem,and(4)interpretthesolutionof themathematicalproblem.Thephysicsoccursinsteps1,2,and4.The mathematicsoccursinstep3.Itonlyrepresentsabout25%ofthesolutiontoa typicalphysicsproblem. Youmightwellwonderwhywestartoffaphysicsbookwithachapteronmathematics.The thingis,themathematicscoveredinthischapterismathematicsyouaresupposedtoalready know.Theproblemisthatyoumightbealittlebitrustywithit.Wedon’twantthatrusttoget inthewayofyourlearningofthephysics.So,wetrytoknocktherustoffofthemathematics thatyouaresupposedtoalreadyknow,sothatyoucanconcentrateonthephysics. Asmuchasweemphasizethatthisisaphysicscourseratherthanamathematicscourse,thereis nodoubtthatyouwilladvanceyourmathematicalknowledgeifyoutakethiscourseseriously. Youwillusemathematicsasatool,andaswithanytool,themoreyouuseitthebetteryougetat usingit.Someofthemathematicsinthisbookisexpectedtobenewtoyou.Themathematics thatisexpectedtobenewtoyouwillbeintroducedinrecitationonanasneededbasis.Itis anticipatedthatyouwilllearnandusesomecalculusinthiscoursebeforeyoueverseeitina mathematicscourse.(Thisbookisaddressedmostspecificallytostudentswhohaveneverhada

2 Chapter 1 Mathematical Prelude physicscoursebeforeandhaveneverhadacalculuscoursebeforebutarecurrentlyenrolledina calculuscourse.Ifyouhavealreadytakencalculus,physics,orboth,thenyouhaveawell earnedadvantage.) Twopointsofemphasisregardingthemathematicalcomponentofyoursolutionstophysics problemsthathaveamathematicalcomponentareinorder: (1)Youarerequiredtopresentaclearandcompleteanalyticalsolutiontoeachproblem.This meansthatyouwillbemanipulatingsymbols(letters)ratherthannumbers. (2)Foranyphysicalquantity,youarerequiredtousethesymbolwhichisconventionallyused byphysicists,and/orasymbolchosentoaddclaritytoyoursolution.Inotherwords,itis notokaytousethesymbol xtorepresenteveryunknown. Asidefromthecalculus,herearesomeofthekindsofmathematicalproblemsyouhavetobe abletosolve:

Problems Involving Percent Change Acartistravelingalongatrack.Asitpassesthrougha photogate 1itsspeedismeasuredtobe 3.40m/s.Later,ataphotogate,thespeedofthecartismeasuredtobe3 .52m/s.Findthe percentchangeinthespeedofthecart. Thepercentchangeinanythingisthechangedividedbythe original ,alltimes100%.(I’ve emphasizedtheword“original”becausethemostcommonmistakeinthesekindsof problemsisdividingthechangebythewrongthing.) Thechangeinaquantityis thenewvalueminustheoriginalvalue .(Themostcommon mistakehereisreversingtheorder.Ifyouforgetwhichwayitgoes,thinkofasimple problemforwhichyouknowtheanswerandseehowyoumustarrangethenewand originalvaluestomakeitcomeoutright.Forinstance,supposeyougained2kgoverthe summer.Youknowthatthechangeinyourmassis+2kg.Youcancalculatethe differencebothways—we’retalkingtrialanderrorwithatmosttwotrials.You’llquickly findoutthatitis“thenewvalueminustheoriginalvalue”a.k.a.“finalminusinitial”that yieldsthecorrectvalueforthechange.) Okay,nowlet’ssolvethegivenproblem change % Change === 100 % (11) original Recallingthatthechangeisthenewvalueminustheoriginalvaluewehave

1Aphotogateisadevicethatproducesabeamoflight,senseswhetherthebeamisblocked,andtypicallysendsa signaltoacomputerindicatingwhetherthebeamisblockedornot.Whenacartpassesthroughaphotogate,it temporarilyblocksthebeam.Thecomputercanmeasuretheamountoftimethatthebeamisblockedandusethat andtheknownlengthofthecarttodeterminethespeedofthecartasitpassesthroughthephotogate.

3 Chapter 1 Mathematical Prelude

new −−− original %Change === 100% (12) original Whileit’scertainlyokaytomemorizethisbyaccidentbecauseoffamiliaritywithit,you shouldconcentrateonbeingabletoderiveitusingcommonsense(ratherthanworkingat memorizingit). Substitutingthegivenvaluesforthecaseathandweobtain m m 3.52 −−− 3.40 %Change === s s 100% m 3.40 s %Change === 3.5%

Problems Involving Right Triangles Example 1-1: Thelengthoftheshortersideofarighttriangleis xandthelengthofthe hypotenuseis r.Findthelengthofthelongersideandfindbothoftheangles,aside fromtherightangle,inthetriangle. Solution: ϕ r Drawthetrianglesuchthatitisobvious x whichsideistheshorterside θ y PythagoreanTheorem r 2 = x 2 + y 2 2 2 2 2 Subtract x frombothsidesoftheequation r − x = y Swapsides y 2 = r 2 − x2 Takethesquarerootofboth 2 2 sidesoftheequation y = r − x Bydefinition,thesineof θistheside x sinθ = opposite θdividedbythehypotenuse r Takethearcsineofbothsidesofthe x θ = sin −1 equationinordertoget θbyitself r Bydefinition,thecosineof ϕistheside x cosϕ = adjacentto ϕdividedbythehypotenuse r Takethearccosineofbothsidesofthe x ϕ = cos −1 equationinordertoget ϕbyitself r

4 Chapter 1 Mathematical Prelude

Tosolveaproblemliketheoneabove,youneed Hypotenuse tomemorizetherelationsbetweenthesidesand Opposite theanglesofarighttriangle.Aconvenient mnemonic 2fordoingsois“SOHCAHTOA” θ pronouncedasasingleword. Adjacent Referringtothediagramaboveright: Opposite SOHremindsusthat: sinθ = (13) Hypotenuse Adjacent CAHremindsusthat: cosθ = (14) Hypotenuse Opposite TOAremindsusthat: tanθ = (15) Adjacent Points to remember : 1.Theangle θisneverthe90degreeangle. 2.Thewords“opposite”and“adjacent”designatesidesrelativetotheangle.Forinstance, thecosineof θisthelengthofthesideadjacentto θdividedbythelengthofthe hypotenuse. Youalsoneedtoknowaboutthearcsineandthearccosinefunctionstosolvetheexample problemabove.Thearcsinefunctionistheinverseofthesinefunction.Theanswertothe question,“Whatisthearcsineof0 .44?”is,“thatanglewhosesineis0 .44.”Thereisanarcsine buttononyourcalculator.Itistypicallylabeledsin 1,toberead,“arcsine.”Touseityou probablyhavetohittheinversebuttonorthesecondfunctionbuttononyourcalculatorfirst. Theinversefunctionofafunctionundoeswhatthefunctiondoes.Thus: sin −1 sinθ = θ (16) Furthermore,thesinefunctionistheinversefunctiontothearcsinefunctionandthecosine functionistheinversefunctiontothearccosinefunction.Fortheformer,thismeansthat: sin(sin −1 x) = x (17) 2Amnemonicissomethingeasytorememberthathelpsyouremembersomethingthatishardertoremember.

5 Chapter 1 Mathematical Prelude

Problems Involving the Quadratic Formula Firstcomesthequadraticequation,thencomesthequadraticformula.Thequadraticformulais thesolutiontothe quadraticequation : ax2+++ bx +++ c === 0 (18) inwhich: xisthevariablewhosevalueissought,and a, b,and careconstants Thegoalistofindthevalueof xthatmakestheleftside0.Thatvalueisgivenbythe quadratic formula : − b ± b 2 − 4ac x = (19) 2a toberead/said: ‘x’equalsminus‘b’,plusorminusthesquarerootof‘b’squared minusfour‘a’‘c’, all overtwo‘a’. So,howdoyouknowwhenyouhavetousethequadraticformula?Thereisagoodchancethat youneeditwhenthesquareofthevariableforwhichyouaresolving,appearsintheequation youaresolving.Whenthatisthecase,carryoutthealgebraicstepsneededtoarrangetheterms astheyarearrangedinequation18above.Ifthisisimpossible,thenthequadraticformulais nottobeused.Notethatinthequadraticequationyouhaveatermwiththevariabletothe secondpower,atermwiththevariabletothefirstpower,andatermwiththevariabletothe zerothpower(theconstantterm).Ifadditionalpowersalsoappear,suchastheonehalfpower (thesquareroot),orthethirdpower,thenthequadraticformuladoesnotapply.Iftheequation includesadditionaltermsinwhichthevariablewhosevalueissoughtappearsastheargumentof aspecialfunctionsuchasthesinefunctionortheexponentialfunction,thenthequadratic formuladoesnotapply.Nowsupposethatthereisasquaretermandyoucangettheequation thatyouaresolvingintheformofequation18abovebutthateither bor ciszero.Insucha

case,youcanusethequadraticformula,butitisoverkill.If binequation18aboveiszerothen theequationreducesto ax2+++ bx === 0 Theeasywaytosolvethisproblemistorecognizethatthereisatleastone xineachterm,andto factorthe xout.Thisyields: (a x +++ b)x === 0 Thenyouhavetorealizethataproductoftwomultiplicandsisequaltozeroifeither multiplicandisequaltozero.Thus,settingeithermultiplicandequaltozeroandsolvingfor x yieldsasolution.Wehavetwomultiplicandsinvolving x,so,therearetwosolutionstothe

6 Chapter 1 Mathematical Prelude

equation.Thesecondmultiplicandintheexpression(a x +++ b)x === 0 is xitself,so x=0 isasolutiontotheequation.Settingthefirsttermequaltozerogives: a x +++ b === 0 a x === −−−b b x = − a Nowsupposethe binthequadraticequationax2+++ bx +++ c === 0 ,equation18,iszero.Inthatcase, thequadraticequationreducesto: ax2 +++ c === 0 whichcaneasilybesolvedwithoutthequadraticformulaasfollows: ax2 === −−−c c x 2 = − a c x = ± − a wherewehaveemphasizedthefactthattherearetwosquarerootstoeveryvaluebyplacinga plusorminussigninfrontoftheradical. Now,ifuponarrangingthegivenequationintheformofthe quadraticequation (equation18): ax2+++ bx +++ c === 0 youfindthat a, b,and careallnonzero,thenyoushouldusethequadraticformula.Herewe presentanexampleofaproblemwhosesolutioninvolvesthequadraticformula:

7 Chapter 1 Mathematical Prelude

Example 1-2: Quadratic Formula Example Problem Given 24 3 + x = (110) x +1 find x. Atfirstglance,thisonedoesn’tlooklikeaquadraticequation,butaswebeginisolating x,aswe alwaysstrivetodoinsolvingfor x,(hey,oncewehave xallbyitselfontheleftsideofthe equation,withno xontherightsideoftheequation,wehaveindeedsolvedfor x—that’swhatit meanstosolvefor x)wequicklyfindthatitisaquadraticequation. Wheneverwehavetheunknowninthedenominatorofafraction,thefirststepinisolatingthat unknownistomultiplybothsidesoftheequationbythedenominator.Inthecaseathand,this yields (x + 3()1 + x) = 24 Multiplyingthroughontheleftwefind 3x + 3 + x 2 + x = 24 Atthispointitisprettyclearthatwearedealingwithaquadraticequationsoourgoalbecomes gettingitintothestandardformofthequadraticequation,theformofequation18,namely: ax2 + bx + c = 0 .Combiningthetermsinvolving xontheleftandrearrangingweobtain x 2 + 4x + 3 = 24 Subtracting24frombothsidesyields x 2 + 4x − 21 = 0 whichisindeedinthestandardquadraticequationform.Nowwejusthavetouseinspectionto identifywhichvaluesinourgivenequationarethe a, b,and cthatappearinthestandard quadraticequation(equation18)ax2 + bx + c = 0 .Althoughitisnotwritten,theconstant multiplyingthe x2,inthecaseathand,isjust1.Sowehave a=1, b=4,and c= −21. Substitutingthesevaluesintothequadraticformula(equation19): − b ± b 2 − 4ac x = 2a yields − 4 ± 4 2 − 1(4 )(−21) x = )1(2 whichresultsin x = 3 , x = −7

8 Chapter 1 Mathematical Prelude asthesolutionstotheproblem.Asaquickcheckwesubstituteeachofthesevaluesbackinto theoriginalequation,equation110: 24 3 + x = x +1 andfindthateachsubstitutionleadstoanidentity.(Anidentityisanequationwhosevalidityis triviallyobvious,suchas6=6.) Thischapterdoesnotcoverallthenoncalculusmathematicsyouwillencounterinthiscourse. I’vekeptthechaptershortsothatyouwillhavetimetoreaditall.Ifyoumastertheconceptsin thischapter(orremasterthemifyoualreadymasteredtheminhighschool)youwillbeonyour waytomasteringallthenoncalculusmathematicsyouneedforthiscourse.Regardingreading itall:Bythetimeyoucompleteyourphysicscourse,youaresupposedtohavereadthisbook fromcovertocover.Readingphysicsmaterialthatisnewtoyouissupposedtobeslowgoing. Bytheword reading inthiscontext,wereallymean readingwithunderstanding .Readinga physicstextinvolvesnotonlyreadingbuttakingthetimetomakesenseofdiagrams,takingthe timetomakesenseofmathematicaldevelopments,andtakingthetimetomakesenseofthe wordsthemselves.Itinvolvesrereading.ThemethodIuseistopushmywaythroughachapter once,allthewaythroughatanovelreadingpace,pickingupasmuchasIcanonthewaybutnot allowingmyselftoslowdown.Then,Ireallyreadit.OnthesecondtimethroughIpauseand ponder,studydiagrams,andponderoverphrases,lookingupwordsinthedictionaryand workingthroughexampleswithpencilandpaperasIgo.Itrynottogoontothenextparagraph untilIreallyunderstandwhatisbeingsaidintheparagraphathand.Thatfirstread,whileof littlevalueallbyitself,isofgreatbenefitinansweringthequestion,“Whereistheauthorgoing withthis?”,whileIamcarryingoutthesecondread.

9 Chapter 2 Conservation of Mechanical Energy I: Kinetic Energy & Gravitational

2 Conservation of Mechanical Energy I: Kinetic Energy & Energy Physicsprofessorsoftenassignconservationofenergyproblemsthat,intermsof mathematicalcomplexity,areveryeasy,tomakesurethatstudentscan demonstratethattheyknowwhatisgoingonandcanreasonthroughtheproblem inacorrectmanner,withouthavingtospendmuchtimeonthemathematics.A goodbeforeandafterpicturecorrectlydepictingtheconfigurationandstateof motionateachoftwowellchoseninstantsintimeiscrucialinshowingthe appropriateunderstanding.Apresentationoftheremainderoftheconceptual plusmathematicalsolutionoftheproblemstartingwithastatementinequation formthattheenergyinthebeforepictureisequaltotheenergyintheafterpicture, continuingthroughtoananalyticalsolutionand,ifnumericalvaluesareprovided, onlyaftertheanalyticalsolutionhasbeenarrivedat,substitutingvalueswithunits, evaluating,andrecordingtheresultisalmostasimportantasthepicture.The problemisthat,atthisstageofthecourse,studentsoftenthinkthatitisthefinal answerthatmattersratherthanthecommunicationofthereasoningthatleadsto theanswer.Furthermore,thechosenproblemsareoftensoeasythatstudentscan arriveatthecorrectfinalanswerwithoutfullyunderstandingorcommunicatingthe reasoningthatleadstoit.Studentsareunpleasantlysurprisedtofindthatcorrect finalanswersearnlittletonocreditintheabsenceofagoodcorrectbeforeand afterpictureandawellwrittenremainderofthesolutionthatstartsfromfirst principles,isconsistentwiththebeforeandafterpicture,andleadslogically,with nostepsomitted,tothecorrectanswer.Notethatstudentswhofocusoncorrectly communicatingtheentiresolution,ontheirown,oneveryhomeworkproblemthey do,standamuchbetterchanceofsuccessfullydoingsoonatestthanthosethat “justtrytogettherightnumericalanswer”onhomeworkproblems.

Mechanical Energy Energyisatransferablephysicalquantitythatanobjectcanbesaidtohave.Ifonetransfers energytoamaterialparticlethatisinitiallyatrest,thespeedofthatparticlechangestoavalue whichisanindicatorofhowmuchenergywastransferred.Energyhasunitsofjoules, abbreviatedJ.Energycan’tbemeasureddirectlybutwhenenergyistransferredtoorfroman object,somemeasurablecharacteristic(orcharacteristics)ofthatobjectchanges(change)such that,measuredvaluesofthatcharacteristicorthosecharacteristics(incombinationwithoneor morecharacteristicssuchasmassthatdonotchangebyanymeasurableamount)canbeusedto determinehowmuchenergywastransferred.Energyisoftencategorizedaccordingtowhich measurablecharacteristicchangeswhenenergyistransferred.Inotherwords,wecategorize energyinaccordwiththewayitrevealsitselftous.Forinstance,whenthemeasurable characteristicistemperature,wecalltheenergythermalenergy;whenthemeasurablequantityis speed,wecalltheenergykineticenergy.Whileitcanbearguedthatthereisonlyoneformor kindofenergy,inthejargonofphysicswecalltheenergythatrevealsitselfonewayonekindor formofenergy(suchasthermalenergy)andtheenergythatrevealsitselfanotherwayanother kindorformofenergy(suchaskineticenergy).Inphysicalprocessesitoftenoccursthatthe

10 Chapter 2 Conservation of Mechanical Energy I: Kinetic Energy & Gravitational Potential Energy wayinwhichenergyisrevealingitselfchanges.Whenthathappenswesaythatenergyis transformedfromonekindofenergytoanother. KineticEnergy isenergyofmotion.Anobjectatresthasnomotion;hence,ithasnokinetic energy.Thekineticenergy Kofanonrotatingrigidobjectinmotiondependsonthemass mand 1 speed voftheobject asfollows : 1 2 K = 2 mv (21) Themass mofanobjectisameasureoftheobject’sinertia,theobject’sinherenttendencyto maintainaconstantvelocity.Theinertiaofanobjectiswhatmakesithardtogetthatobject moving.Thewords“mass”and“inertia”bothmeanthesamething.Physiciststypicallyusethe word“inertia”whentalkingaboutthepropertyingeneralconceptualterms,andtheword“mass” whentheyareassigningavaluetoit,orusingitinanequation.Masshasunitsof, abbreviatedkg.Thespeed vhasunitsofmeterspersecond,abbreviatedm/s.Checkoutthe unitsinequation21: 1 2 K = 2 mv Ontheleftwehavethekineticenergywhichhasunitsofjoules.Ontherightwehavethe m 2 productofamassandthesquareofavelocity.Thustheunitsontherightare kg andwe s2 m 2 candeducethatajouleisa kg . s2 Potential Energy isenergythatdependsonthearrangementofmatter.Here,weconsiderone typeofpotentialenergy: The GravitationalPotentialEnergy ofanobject 2nearthesurfaceoftheearthistheenergy (relativetothegravitationalpotentialenergythattheobjecthaswhenitisatthereferencelevel abouttomementioned)thattheobjecthasbecauseitis"uphigh"aboveareferencelevelsuchas theground,thefloor,oratabletop.Incharacterizingtherelativegravitationalpotentialenergy ofanobjectitisimportanttospecifywhatyouareusingforareferencelevel.Inusingthe conceptofnearearthgravitationalpotentialenergytosolveaphysicsproblem,althoughyouare freetochoosewhateveryouwanttoasareferencelevel,itisimportanttostickwithoneandthe samereferencelevelthroughouttheproblem.Therelativegravitationalpotentialenergy Ugof 1 8 Inclassicalphysicswedealwithspeedsmuchsmallerthanthespeedoflightc =3.00 ×10 m/s.Theclassical 1 2 physicsexpression K = 2 mv isanapproximation(afantasticapproximationatspeedsmuchsmallerthanthespeed oflight—thesmallerthebetter)totherelativisticexpression K = /1( 1−v 2 / c2 − )1 mc2 whichisvalidforallspeeds. 2Wecallthepotentialenergydiscussedherethegravitationalpotentialenergy“oftheobject.”Actually,itisthe gravitationalpotentialenergyoftheobjectplusearthsystemtakenasawhole.Itwouldbemoreaccuratetoascribe thepotentialenergytothegravitationalfieldoftheobjectandthegravitationalfieldoftheearth.Inliftingan object,itisasifyouarestretchingaweirdinvisiblespring—weirdinthatitdoesn’tpullharderthemoreyoustretch itasanordinaryspringdoes—andtheenergyisbeingstoredinthatinvisiblespring.Forenergyaccountingpurposes however,itiseasiertoascribethegravitationalpotentialenergyofanobjectnearthesurfaceoftheearth,tothe object,andthatiswhatwedointhisbook.Thisissimilartocallingthegravitationalforceexertedonanobjectby theearth’sgravitationalfieldthe“weightoftheobject”asifitwereapropertyoftheobject,ratherthanwhatit reallyis,anexternalinfluenceactingontheobject.

11 Chapter 2 Conservation of Mechanical Energy I: Kinetic Energy & Gravitational Potential Energy

anobjectnearthesurfaceoftheearthdependsontheobject'sheight yabovethechosen referencelevel,theobject'smass m,andthemagnitude goftheearth’sgravitationalfield,which N toagoodapproximationhasthesamevalue g = 9.80 everywherenearthesurfaceofthe kg earth,asfollows:

Ug === mgy (22) N TheNin g = .9 80 standsfornewtons,theunitofforce.(Forceisanongoingpushorpull.) kg

Sinceitisanenergy,theunitsof Ugarejoules,andtheunitsontherightsideofequation22, withtheheight ybeinginmeters,workouttobenewtonstimesmeters.Thusajoulemustbea m 2 newtonmeter,andindeeditis.Justaboveweshowedthatajouleisa kg .Ifajouleisalso s2 m anewtonmeterthenanewtonmustbea kg . s 2

A Special Case of the Conservation of Mechanical Energy Energyisveryusefulformakingpredictionsaboutphysicalprocessesbecauseitisnevercreated ordestroyed.Toborrowexpressionsfromeconomics,thatmeanswecanusesimple bookkeepingoraccountingtomakepredictionsaboutphysicalprocesses.Forinstance,suppose wecreate,forpurposesofmakingsuchaprediction,animaginaryboundaryenclosingpartofthe universe.Thenanychangeinthetotalamountofenergyinsidetheboundarywillcorrespond exactlytoenergytransferthroughtheboundary.Ifthetotalenergyinsidetheboundaryincreases by E,thenexactlythatsameamountofenergy Emusthavebeentransferredthroughthe boundaryintotheregionenclosedbytheboundaryfromoutsidethatregion.Andifthetotal energyinsidetheboundarydecreasesby E,thenexactlythatamountofenergy Emusthave beentransferredthroughtheboundaryoutoftheregionenclosedbytheboundaryfrominside thatregion.Oddlyenough,inkeepingbookontheenergyinsuchanenclosedpartofthe universe,werarelyifeverknoworcarewhattheoveralltotalamountofenergyis.Itis sufficienttokeeptrackofchanges.Whatcanmaketheaccountingdifficultisthatthereareso manydifferentwaysinwhichenergycanmanifestitself(whatwecallthedifferent“forms”of energy),andthereisnosimpleenergymeterthattellsushowmuchenergythereisinour enclosedregion.Still,thereareprocessesforwhichtheenergyaccountingisrelativelysimple. Forinstance,itisrelativelysimplewhenthereisno(ornegligible)transferofenergyintoorout ofthepartoftheuniversethatisofinteresttous,andwhentherearefewformsofenergyfor whichtheamountofenergychanges. Thetwokindsofenergydiscussedabove(thekineticenergyofarigidnonrotatingobjectand gravitationalpotentialenergy)arebothexamplesofmechanicalenergy,tobecontrastedwith, forexample,thermalenergy.Undercertainconditionsthetotalmechanicalenergyofasystem ofobjectsdoesnotchangeeventhoughtheconfigurationoftheobjectsdoes.Thisrepresentsa specialcaseofthemoregeneralprincipleoftheconservationenergy.Theconditionsunder whichthetotalmechanicalenergyofasystemdoesn’tchangeare:

12 Chapter 2 Conservation of Mechanical Energy I: Kinetic Energy & Gravitational Potential Energy

(1)Noenergyistransferredtoorfromthesurroundings. (2)Noenergyisconvertedtoorfromotherformsofenergy(suchasthermalenergy). Consideracoupleofprocessesinwhichthetotalmechanicalenergyofasystemdoesnot remain thesame: Case #1 Arockisdroppedfromshoulderheight.Ithitsthegroundandcomestoacompletestop. The"systemofobjects"inthiscaseisjusttherock.Astherockfalls,thegravitationalpotential energyiscontinuallydecreasing.Assuch,thekineticenergyoftherockmustbecontinually increasinginorderforthetotalenergytobestayingthesame.Onthecollisionwiththeground, someofthekineticenergygainedbytherockasitfallsthroughspaceistransferredtothe groundandtherestisconvertedtothermalenergyandtheenergyassociatedwithsound. Neithercondition(notransferandnotransformationofenergy)requiredforthetotalmechanical energyofthesystemtoremainthesameismet;hence,itwouldbeincorrecttowriteanequation settingtheinitialmechanicalenergyoftherock(uponrelease)equaltothefinalmechanical energyoftherock(afterlanding). Cantheideaofanunchangingtotalamountofmechanicalenergybeusedinthecaseofafalling object?Theansweris yes .Thedifficultiesassociatedwiththepreviousprocessoccurredupon collisionwiththeground.Youcanusetheideaofanunchangingtotalamountofmechanical energytosaysomethingabouttherock if youendyourconsiderationoftherockbeforeithits theground.Forinstance,giventheheightfromwhichitisdropped,youcanusetheideaofan unchangingtotalamountofmechanicalenergytodeterminethespeedoftherockatthelast instantbeforeitstrikestheground.The"lastinstantbefore"ithitsthegroundcorrespondstothe situationinwhichtherockhasnotyettouchedthegroundbutwilltouchthegroundinan amountoftimethatistoosmalltomeasureandhencecanbeneglected.Itissoclosetothe groundthatthedistancebetweenitandthegroundistoosmalltomeasureandhencecanbe neglected.Itissoclosetothegroundthattheadditionalspeedthatitwouldpickupin continuingtofalltothegroundistoosmalltobemeasuredandhencecanbeneglected.The totalamountofmechanicalenergydoesnotchangeduringthis process.It would becorrectto writeanequationsettingtheinitialmechanicalenergyoftherock(uponrelease)equaltothe finalmechanicalenergyoftherock(atthelastinstantbeforecollision). Case #2 Ablock,incontactwithnothingbutasidewalk,slidesacrossthesidewalk. Thetotalamountofmechanicalenergydoesnotremainthesamebecausethereisfriction betweentheblockandthesidewalk.Inanycaseinvolvingfriction,mechanicalenergyis convertedintothermalenergy;hence,thetotalamountofmechanicalenergyafterthesliding,is notequaltothetotalamountofmechanicalenergypriortothesliding.

13 Chapter 2 Conservation of Mechanical Energy I: Kinetic Energy & Gravitational Potential Energy

Applying the Principle of the Conservation of Energy for the Special Case in which the Mechanical Energy of a System does not Change Inapplyingtheprincipleofconservationofmechanicalenergyforthespecialcaseinwhichthe mechanicalenergyofasystemdoesnotchange,youwriteanequationwhichsetsthetotal mechanicalenergyofanobjectorsystemobjectsatoneinstantintimeequaltothetotal mechanicalenergyatanotherinstantintime.Successhangsontheappropriatechoiceofthetwo instants.Theprincipalappliestoallpairsofinstantsofthetimeintervalduringwhichenergyis neithertransferredintooroutofthesystemnortransformedintononmechanicalforms.You characterizetheconditionsatthefirstinstantbymeansofa"BeforePicture"andtheconditions atthesecondinstantbymeansofan"AfterPicture.”Inapplyingtheprincipleofconservationof mechanicalenergyforthespecialcaseinwhichthemechanicalenergyofasystemdoesnot change,youwriteanequationwhichsetsthetotalmechanicalenergyintheBeforePictureequal tothetotalmechanicalenergyintheAfterPicture.(Inbothcases,the“total”mechanicalenergy inquestionistheamountthesystemhasrelativetothemechanicalenergyitwouldhaveifall objectswereatrestatthereferencelevel.)Todosoeffectively,itisnecessarytosketcha BeforePictureandaseparateAfterPicture.Afterdoingso,thefirstlineinone'ssolutiontoa probleminvolvinganunchangingtotalofmechanicalenergyalwaysreads EnergyBefore=EnergyAfter (23) Wecanwritethisfirstlinemoresymbolicallyinseveraldifferentmanners:

E1 = E2 or Ei = E f or E = E′ (24) Thefirsttwoversionsusesubscriptstodistinguishbetween"beforepicture"and"afterpicture" energiesandaretoberead" EsuboneequalsEsubtwo "and" EsubiequalsEsubf. "Inthe lattercasethesymbols iand fstandforinitialandfinal.Inthefinalversion,theprimesymbolis addedtothe Etodistinguish"afterpicture"energyfrom"beforepicture"energy.Thelast equationistoberead" EequalsEprime ."(Theprimesymbolissometimesusedinmathematics todistinguishonevariablefromanotheranditissometimesusedinmathematicstosignifythe derivativewithrespectto x.Itisneverusedittosignifythederivativeinthisbook.)The unprimed/primenotationisthenotationthatwillbeusedinthefollowingexample:

14 Chapter 2 Conservation of Mechanical Energy I: Kinetic Energy & Gravitational Potential Energy

Example 2-1: Arockisdroppedfromaheightof1 .6meters.Howfastistherock fallingjustbeforeithitstheground? Solution :Choosethe"beforepicture"tocorrespondtotheinstantatwhichtherockis released,sincetheconditionsatthisinstantarespecified("dropped"indicatesthattherockwas releasedfromrest—itsspeedisinitiallyzero,theinitialheightoftherockisgiven).Choosethe "afterpicture"tocorrespondtothelastinstantbeforetherockmakescontactwiththeground sincethequestionpertainstoacondition(speed)atthisinstant. BEFORE AFTER Rockof mass m v=0 y =1 .6m ReferenceLevel v ′=? E === E′′′ 0(sinceatrest) 0(sinceatgroundlevel) K +++ U === K′′′ +++ U′′′ Notethatwehaveomitted 1 thesubscript g(for mgy === mv ′′′2 “gravitational”)fromboth U 2 ′ and U .Whenyouare 2 dealingwithonlyonekind v ′′′ === 2gy ofpotentialenergy,you don’tneedtousea v ′′′ === 2gy subscripttodistinguishit fromotherkinds. v ′′′ === 9(2 .80 m s/ 2 1) .6 m m v ′′′ === 5.6 s kg ⋅ m Notethattheunit,1newton,abbreviatedas1N,is 1 .Hence,themagnitudeoftheearth’s s2 N m nearsurfacegravitationalfield g === 9.80 canalsobeexpressedas g === 9.80 aswehave kg s2 doneintheexampleforpurposesofworkingouttheunits.

15 Chapter 2 Conservation of Mechanical Energy I: Kinetic Energy & Gravitational Potential Energy

Thesolutionpresentedintheexampleprovidesyouwithanexampleofwhatisrequiredof studentsinsolvingphysicsproblems.Incaseswherestudentworkisevaluated,itisthesolution whichisevaluated,notjustthefinalanswer.Inthefollowinglist,generalrequirementsfor solutionsarediscussed,withreferencetothesolutionoftheexampleproblem: 1.Sketch(thebeforeandafterpicturesintheexample). Starteachsolutionwithasketchorsketchesappropriatetotheproblemathand.Usethe sketchtodefinesymbolsand,asappropriate,toassignvaluestosymbols.Thesketchaids youinsolvingtheproblemandisimportantincommunicatingyoursolutiontothereader. Notethateachsketchdepictsaconfigurationataparticular instant intimeratherthana processwhichextendsoveratimeinterval. 2.Writethe"ConceptEquation"( E = E′intheexample). 3.Replacequantitiesinthe"ConceptEquation"withmorespecificrepresentationsofthesame quantities.Repeatasappropriate. Intheexamplegiven,thesymbol Erepresentingtotalmechanicalenergyinthebeforepicture isreplacedwith"whatitis,”namely,thesumofthekineticenergyandthepotentialenergy K +U oftherockinthebeforepicture.Onthesameline E′ hasbeenreplacedwithwhatit is,namely,thesumofthekineticenergyandthepotentialenergy K′ +U ′ intheafterpicture. Quantitiesthatareobviouslyzerohaveslashesdrawnthroughthemandareomittedfrom subsequentsteps. 1 2 Thisstepisrepeatedinthenextline( mgy = 2 mv ′ )inwhichthegravitationalpotential

energyinthebeforepicture, U, hasbeenreplacedwithwhatitis,namely mgy,andonthe 1 2 right,thekineticenergyintheafterpicturehasbeenreplacedwithwhatitis,namely, 2 mv ′ . Thesymbol mthatappearsinthisstepisdefinedinthediagram. 4.Solvetheproblemalgebraically.Thestudentisrequiredtosolvetheproblembyalgebraically manipulatingthesymbolsratherthansubstitutingvaluesandsimultaneouslyevaluatingand manipulatingthem. Thereasonsthatphysicsteachersrequirestudentstakingcollegelevelphysicscoursesto solvetheproblemsalgebraicallyintermsofthesymbolsratherthanworkingwiththe numbersare: (a)Collegephysicsteachersareexpectedtoprovidethestudentwithexperiencein"the nextlevel"inabstractreasoningbeyondworkingwiththenumbers.Togainthis experience,thestudentsmustsolvetheproblemsalgebraicallyintermsofsymbols. (b)Studentsareexpectedtobeabletosolvethemoregeneralprobleminwhich,whereas certainquantitiesaretobetreatedasiftheyareknown,noactualvaluesaregiven. Solutionstosuchproblemsareoftenusedincomputerprogramswhichenabletheuser toobtainresultsformanydifferentvaluesofthe"knownquantities.”Actualvaluesare

16 Chapter 2 Conservation of Mechanical Energy I: Kinetic Energy & Gravitational Potential Energy

assignedtotheknownquantitiesonly after theuseroftheprogramprovidesthemtothe programasinput—longafterthealgebraicproblemissolved. (c)Manyproblemsmorecomplicatedthanthegivenexamplecanmoreeasilybesolved algebraicallyintermsofthesymbols.Experiencehasshownthatstudentsaccustomed tosubstitutingnumericalvaluesforsymbolsattheearliestpossiblestageinaproblem areunabletosolvethemorecomplicatedproblems. 1 2 Intheexample,thealgebraicsolutionbeginswiththeline mgy === 2 mv ′′′ .The m'sappearing onbothsidesoftheequationhavebeencanceledout(thisisthealgebraicstep)inthesolution provided.Notethatintheexample,hadthe m's not canceledout,anumericalanswertothe problemcould not havebeendeterminedsincenovaluefor mwasgiven.Thenexttwolines representtheadditionalstepsnecessaryinsolvingalgebraicallyforthefinalspeedv ′ .The finallineinthealgebraicsolution( v ′′′ === 2gy intheexample)alwayshasthequantitybeing solvedforallbyitselfonthe left sideoftheequationbeingsetequaltoanexpression involvingonlyknownquantitiesontherightsideoftheequation.Thealgebraicsolutionis notcompleteifunknownquantities(especiallythequantitysought)appearintheexpression ontherighthandside.Writingthefinallineofthealgebraicsolutioninthereverseorder,e.g. 2gy ===v ′′′ ,isunconventionalandhenceunacceptable.Ifyouralgebraicsolutionnaturally leadstothat,youshouldwriteonemorelinewiththealgebraicanswerwritteninthecorrect order. 5)Replacesymbolswithnumericalvalueswithunits, v ′′′ === 9(2 .80 m 1) .6m intheexample;the s2 unitsaretheunitsofmeasurement: m andmintheexample). s2 Nocomputationsshouldbecarriedoutatthisstage.Justcopydownthealgebraicsolutionbut withsymbolsrepresentingknownquantitiesreplacedwithnumericalvalueswithunits.Use parenthesesandbracketsasnecessaryforclarity. m 6)Writethefinalanswer withunits (v ′′′ === 5.6 intheexample). s Numericalevaluationsaretobecarriedoutdirectlyonthecalculatorand/oronscratchpaper.It isunacceptabletoclutterthesolutionwitharithmeticandintermediatenumericalanswers betweenthepreviousstepandthisstep.Unitsshouldbeworkedoutandprovidedwiththefinal answer.It is goodtoshowsomestepsinworkingouttheunitsbutforsimplecases units (not algebraicsolutions)maybeworkedoutinyourhead.Intheexampleprovided,itiseasytosee thatupontakingthesquarerootoftheproductof m andm,oneobtains m hencenoadditional s2 s stepsweredepicted.

17 Chapter 3 Conservation of Mechanical Energy II: Springs, Rotational Kinetic Energy

3 Conservation of Mechanical Energy II: Springs, Rotational Kinetic Energy Acommonmistakeinvolvingspringsisusingthelengthofastretchedspringwhen theamountofstretchiscalledfor.Giventhelengthofastretchedspring,youhave tosubtractoffthelengthofthatsamespringwhenitisneitherstretchednor compressedtogettheamountofstretch. Spring Potential Energy isthepotentialenergystoredinaspringthatiscompressedor stretched.Thespringenergydependsonhowstiffthespringisandhowmuchitisstretchedor compressed.Thestiffnessofthespringischaracterizedbythe forceconstant ofthespring, k. kisalsoreferredtoasthe springconstant forthespring.Thestifferthespring,thebiggerits valueof k is.Thesymbol xistypicallyusedtocharacterizetheamountbywhichaspringis compressedorstretched.Itisimportanttonotethat xisnotthelengthofthestretchedor compressedspring.Instead,itisthedifferencebetweenthelengthofthestretchedor compressedspringandthelengthofthespringwhenitisneitherstretchednorcompressed.The amountofenergy USstoredinaspringwithaforceconstant(springconstant) kthathaseither beenstretchedbyanamount xorcompressedbyanamount xis: 1 2 Us === 2 k x (31) Rotational Kinetic Energy istheenergythataspinningobjecthasbecauseitisspinning.When anobjectisspinning,everybitofmattermakinguptheobjectismovinginacircle(exceptfor thosebitsontheaxisofrotation).Thus,everybitofmattermakinguptheobjecthassome 1 2 kineticenergy 2 mv wherethe visthespeedofthebitofmatterinquestionand misitsmass. Thethingis,inthecaseofanobjectthatisjustspinning,theobjectitselfisnotgoinganywhere, soithasnospeed,andthedifferentbitsofmassmakinguptheobjecthavedifferentspeeds,so thereisnoonespeed vthatwecanuseforthespeedoftheobjectinouroldexpressionfor 1 2 kineticenergy K = 2 mv .Theamountofkineticenergythatanobjecthasbecauseitisspinning canbeexpressedas: 1 2 K = 2 I w (32) wheretheGreekletteromega w(pleasedon’tcallitdoubleu)isusedtorepresentthemagnitude oftheangularvelocityoftheobjectandthesymbol I isusedtorepresentthemomentofinertia, a.k.a.rotationalinertia,oftheobject.Themagnitudeoftheangularvelocityoftheobjectishow fasttheobjectisspinningandthemomentofinertiaoftheobjectisameasureoftheobject’s naturaltendencytospinataconstantrate.Thegreaterthemomentofinertiaofanobject,the harderitistochangehowfastthatobjectisspinning. Themagnitudeoftheangularvelocity,thespinrate w,ismeasuredinunitsofpersecond wheretheisaunitofangle.Anangleisafractionofarotationandhenceaunitofangle 1 isafractionofarotation.Ifwedividearotationupinto360partstheneachpartis ofa 360 rotationandwecalleachpartadegree.Inthecaseofradianmeasure,wedividetherotationup

18 Chapter 3 Conservation of Mechanical Energy II: Springs, Rotational Kinetic Energy

1 into2 πpartsandcalleachpartaradian.Thusaradianis ofarotation.Thefactthatan 2π angleisafractionofarotationmeansthatanangleisreallyapurenumberandtheword “radian”abbreviatedrad,isareminderabouthowmanypartstherotationhasbeendividedup into,ratherthanatrueunit.Inworkingouttheunitsincasesinvolvingradians,onecansimply erasethewordradian.Thisisnotthecaseforactualunitssuchasmetersorjoules. 2 Themomentofinertia I hasunitsof kg ⋅ m .Theunitsoftherighthandsideofequation32, rad 2 K = 1 I w 2 ,thusworkouttobe kg ⋅ m 2 .Takingadvantageofthefactthataradianisnota 2 s 2 m 2 trueunit,wecansimplyerasetheunits rad2 leavinguswithunitsof kg ⋅ ,acombination s 2 thatwerecognizeasajoulewhichitmustbesincethequantityontheleftsideoftheequation 1 2 K = 2 I w (equation32)isanenergy.

Energy of Rolling Anobjectwhichisrollingisbothmovingthroughspaceandspinningsoithasbothkindsof 1 2 1 2 kineticenergy,the 2 mv andthe 2Iw .Themovementofanobjectthroughspaceiscalled 1 2 translation.Tocontrastitwithrotationalkineticenergy,theordinarykineticenergy K = 2 mv isreferredtoastranslationalkineticenergy.So,thetotalkineticenergyofanobjectthatis rollingcanbeexpressedas

K Rolling = KTranslation + K Rotation (33) 1 1 K = mv 2 + I w 2 (34) Rolling 2 2 Nowyouprobablyrecognizethatanobjectthatisrollingwithoutslippingisspinningatarate thatdependsonhowfastitisgoingforward.Thatistosaythatthevalueof wdependsonthe valueof v.Let’sseehow.Whenanobjectthatisrollingwithoutslippingcompletesone rotation,itmovesadistanceequaltoitscircumferencewhichis2 πtimestheradiusofthatpart oftheobjectonwhichtheobjectisrolling. Distancetraveledinonerotation=== 2πr (35) Nowifwedividebothsidesofthisequationbytheamountoftimethatittakesfortheobjectto completeonerotationweobtainontheleft,thespeedoftheobjectand,ontheright,wecan interpretthe2 πas2 πradiansand,since2 πradiansisonerotationthe2 πradiansdividedbythe timeittakesfortheobjecttocompleteonerotationisjustthemagnitudeoftheangularvelocity w.Hencewearriveat v = w r whichistypicallywritten: v = r w (36)

19 Chapter 4 Conservation of Momentum

4 Conservation of Momentum Acommonmistakeinvolvingconservationofmomentumcropsupinthecaseoftotally inelasticcollisionsoftwoobjects,thekindofcollisioninwhichthetwocollidingobjects sticktogetherandmoveoffasone.Themistakeistouseconservationofmechanical energyratherthanconservationofmomentum.Onewaytorecognizethatsome mechanicalenergyisconvertedtootherformsistoimagineaspringtobeinbetweenthe twocollidingobjectssuchthattheobjectscompressthespring.Thenimaginethat,just whenthespringisatmaximumcompression,thetwoobjectsbecomelatchedtogether. Thetwoobjectsmoveofftogetherasoneasinthecaseofatypicaltotallyinelastic collision.Afterthecollision,thereisenergystoredinthecompressedspringsoitisclear thatthetotalkineticenergyofthelatchedpairislessthanthetotalkineticenergyofthe pairpriortothecollision.Thereisnospringinatypicalinelasticcollision.The mechanicalenergythatwouldbestoredinthespring,iftherewasone,resultsin permanentdeformationandatemperatureincreaseoftheobjectsinvolvedinthe collision. Themomentumofanobjectisameasureofhowharditistostopthatobject.Themomentumof anobjectdependsonbothitsmassanditsvelocity.Considertwoobjectsofthe samemass ,e.g. twobaseballs.Oneofthemiscomingatyouat10mph,andtheotherat100mph.Whichone hasthegreatermomentum?Answer:The faster baseballis,ofcourse,hardertostop,soithas thegreatermomentum.Nowconsidertwoobjectsofdifferentmass withthe samevelocity ,e.g.a PingPongballandacannonball,bothcomingatyouat25mph.Whichonehasthegreater momentum?Thecannonballis,ofcourse,hardertostop,soithasthegreatermomentum. Themomentum pofanobjectisequaltotheproduct 1oftheobject’smass mandvelocity v: p = mv (41) Momentumhasdirection.Itsdirectionisthesameasthatofthevelocity.Inthischapterwewill limitourselvestomotionalongaline(motioninonedimension).Thenthereareonlytwo directions,forwardandbackward.Anobjectmovingforwardhasapositivevelocity/momentum andonemovingbackwardhasanegativevelocity/momentum.Insolvingphysicsproblems,the decisionastowhichwayisforwardistypicallylefttotheproblemsolver.Oncetheproblem solverdecideswhichdirectionisthepositivedirection,shemuststatewhatherchoiceis(this statement,oftenmadebymeansofnotationinasketch,isanimportantpartofthesolution),and stickwithitthroughouttheproblem. Theconceptofmomentumisimportantinphysicsbecausethetotalmomentumofanysystem remainsconstantunlessthereisanettransferofmomentumtothatsystem,andifthereisan ongoingmomentumtransfer,therateofchangeofthemomentumofthesystemisequaltothe rateatwhichmomentumisbeingtransferredintothesystem.Asinthecaseofenergy,this meansthatonecanmakepredictionsregardingtheoutcomeofphysicalprocessesbymeansof

1 8 Thisclassicalphysicsexpressionisvalidforspeedssmallcomparedtothespeedoflightc =3.00 ×10 m/s.The relativisticexpressionformomentumis p = mv 1−v 2 / c2 .Atspeedsthatareverysmallcomparedtothespeed oflight,theclassicalphysicsexpression p=mvisafantasticapproximationtotherelativisticexpression.

20 Chapter 4 Conservation of Momentum simpleaccounting(bookkeeping)procedures.Thecaseofmomentumiscomplicatedbythefact thatmomentumhasdirection,butinthisinitialencounterwiththeconservationofmomentum youwilldealwithcasesinvolvingmotionalongastraightline.Whenallthemotionisalongone andthesameline,thereareonlytwopossibledirectionsforthemomentumandwecanuse algebraicsigns(plusandminus)todistinguishbetweenthetwo.TheprincipleofConservation ofMomentumappliesingeneral.Atthisstageinthecoursehowever,wewillconsideronlythe specialcaseinwhichthereisnonettransferofmomentumto(orfrom)thesystemfromoutside thesystem.

Conservation of Momentum in One Dimension for the Special Case in which there is No Transfer of Momentum to or from the System from Outside the System Inanyprocessinvolvingasystemofobjectswhichallmovealongoneandthesameline,aslong asnoneoftheobjectsarepushedorpulledalongthelinebyanythingoutsidethesystemof objects(it’sokayiftheypushandpulloneachother),thetotalmomentumbefore,during,and aftertheprocessremainsthesame. Thetotalmomentumofasystemofobjectsisjustthealgebraicsumofthemomentaofthe individualobjects.Thatadjective"algebraic"meansyouhavetopaycarefulattentiontotheplus andminussigns.Ifyoudefine"totheright"asyourpositivedirectionandyoursystemof objectsconsistsoftwoobjects,onemovingtotherightwithamomentumof12kg ⋅m/sandthe othermovingtotheleftwithmomentum5kg ⋅m/s,thenthetotalmomentumis(+12kg ⋅m/s)+ (−5kg ⋅m/s)whichis+7kg ⋅m/s.Theplussigninthefinalanswermeansthatthetotal momentumisdirectedtotheright. Uponreadingthisselectionyou'llbeexpectedtobeabletoapplyconservationofmomentumto twodifferentkindsofprocesses.Ineachofthesetwoclassesofprocesses,thesystemofobjects willconsistofonlytwoobjects.Inoneclass,called collisions ,thetwoobjectsbumpintoeach other.Intheotherclass, anticollisions thetwoobjectsstartouttogether,andspringapart. Somefurtherbreakdownofthecollisionsclassispertinentbeforewegetintoexamples.The twoextremetypesofcollisionsarethe completely inelastic collision ,andthe completely elastic collision . Upona completely inelasticcollision ,thetwoobjectssticktogetherandmoveoffasone.Thisis theeasycasesincethereisonlyonefinalvelocity(becausetheyarestucktogether,thetwo objectsobviouslymoveoffatoneandthesamevelocity).Somemechanicalenergyisconverted tootherformsinthecaseofacompletelyinelasticcollision.Itwouldbeabigmistaketoapply theprincipleofconservationofmechanicalenergytoacompletelyinelasticcollision. Mechanicalenergyis not conserved .Thewords"completelyinelastic"tellyouthatbothobjects havethesamevelocity(aseachother)afterthecollision. Ina completely elastic collision (oftenreferredtosimplyasan elastic collision ),theobjects bounceoffeachotherinsuchamannerthatnomechanicalenergyisconvertedintootherforms inthecollision.Sincethetwoobjectsmoveoffindependentlyafterthecollisiontherearetwo final.Iftheandtheinitialvelocitiesaregiven,conservationofmomentum yieldsoneequationwithtwounknowns—namely,thetwofinalvelocities.Suchanequation

21 Chapter 4 Conservation of Momentum cannotbesolvedbyitself.Insuchacase,onemustapplytheprincipleofconservationof mechanicalenergy.Itdoesapplyhere.Theexpression"completelyelastic"tellsyouthat conservationofmechanicalenergydoesapply. Inapplyingconservationofmomentumonefirstsketchesabeforeandanafterpictureinwhich onedefinessymbolsbylabelingobjectsandarrows(indicatingvelocity),anddefineswhich directionischosenasthepositivedirection.Thefirstlineinthesolutionisalwaysastatement thatthetotalmomentuminthebeforepictureisthesameasthetotalmomentumintheafter picture.Thisistypicallywrittenbymeansanequationoftheform: ′ ∑ p→ = ∑ p→ (42) The ΣinthisexpressionistheuppercaseGreekletter“sigma”andistoberead“thesumof.” Hencetheequationreads:“Thesumofthemomentatotherightinthebeforepictureisequalto thesumofthemomentatotherightintheafterpicture.”Indoingthesum,aleftward momentumcountsasanegativerightwardmomentum.Thearrowsubscriptisbeingusedto definethepositivedirection.

Examples Nowlet'sgetdowntosomeexamples.We'llusetheexamplestoclarifywhatismeantby collisionsandanticollisions;tointroduceonemoreconcept,namely,relativevelocity (sometimesreferredtoasmuzzlevelocity);andofcourse,toshowthereaderhowtoapply conservationofmomentum.

22 Chapter 4 Conservation of Momentum

Example 4-1 Twoobjectsmoveonahorizontalfrictionlesssurfacealongthesamelineinthesame directionwhichweshallrefertoastheforwarddirection.Thetrailingobjectofmass 2.0kghasavelocityof15m/sforward.Theleadingobjectofmass3 .2kghasa velocityof11m/sforward.Thetrailingobjectcatchesupwiththeleadingobjectandthe twoobjectsexperienceacompletelyinelasticcollision.Whatisthefinalvelocityofeach ofthetwoobjects? BEFORE AFTER m m v = 11 v1 === 15 2 == v ′ 1 s 2 s 1 2 m =2 .0kg 1 m2=3 .2kg

Σp→ = Σp→′

p1 + p2 = p12′

m1v1 + m2v2 = (m1 + m2 )v ′ mv + mv v ′ = 1 1 2 2 m + m 1 2 2.0 kg (15m )s/ + 3.2 kg (11m )s/ v ′ = 2.0kg + 3.2 kg m v ′ =12.54 s m v ′ =13 s m Thefinalvelocityofeachoftheobjectsis 13 forward. s

23 Chapter 4 Conservation of Momentum

Example42:Acannonofmass mC ,restingonafrictionlesssurface,firesaballof mass mB .Theballisfiredhorizontally.Themuzzlevelocityis v M .Findthevelocityof theballandtherecoilvelocityofthecannon. NOTE:Thisisanexampleofananticollisionproblem.Italsoinvolvestheconceptofrelative velocity.Themuzzlevelocityistherelativevelocitybetweentheballandthecannon.Itisthe velocityatwhichthetwoseparate.Ifthevelocityoftheballrelativetothegroundis v B′′′ tothe right,andthevelocityofthecannonrelativetothegroundis vC′′′ totheleft,thenthevelocityof theballrelativetothecannon,alsoknownasthemuzzlevelocityoftheball,is vM === v B′′′ +++vC′′′ .In casesnotinvolvinggunsorcannonsonetypicallyusesthenotation v rel for"relativevelocity"or, relatingtotheexampleathand, v BC for"velocityoftheballrelativetothecannon." BEFORE AFTER v ′′′ v ′′′ C B mC m B

Σp→→→ === Σp→→→′′′

0 === −−−mCv C′′′ +++ mBv B′′′ (1) Also,fromthedefinitionofmuzzle velocity:

v M ===v B′′′ +++v C′′′

v C′′′ ===v M −−−v B′′′ (2) Substitutingthisresultintoequation(1) yields:

0 === −−−mC (v M −−−v B′′′ ) +++ mBv B′′′

0 === −−−mCv M +++ mCv B′′′ +++ mBv B′′′

m v ′′′ +++ m v ′′′ === m v mC C B B B C M v ′′′C ===v M −−− v M mC +++ mB

(mC +++ mB )v B′′′ === mCv M (mC +++ mB )vM −−− mCv M v ′′′C === mC m +++ m v ′′′ === v C B B M mC +++ mB mCv M +++ mBv M −−− mCv M v ′′′C === m +++ m Nowsubstitutethisresultintoequation(2)above.Thisyields: C B

mB v ′′′C === v M mC +++ mB

24 Chapter 5 Conservation of Angular Momentum

5 Conservation of Angular Momentum Muchasinthecaseoflinearmomentum,themistakethattendstobemadeinthe caseofangularmomentumisnotusingtheprincipleofconservationofangular momentumwhenitshouldbeused,thatis,applyingconservationofmechanical energyinacaseinwhichmechanicalenergyisnotconservedbutangular momentumis.Considerthecase,forinstance,inwhichonedropsadisk(froma negligibleheight)thatisnotspinning,ontoadiskthatisspinning,andafterthe drop,thetwodisksspintogetherasone.The“togetherasone”parttipsyouoff thatthisisacompletelyinelastic(rotational)collision.Somemechanicalenergy isconvertedintothermalenergy(andotherformsnotaccountedfor)inthe collision.It’seasytoseethatmechanicalenergyisconvertedintothermalenergy ifthetwodisksareCD’sandthebottomoneisinitiallyspinningquitefast(butis notbeingdriven).Whenyoudropthetoponeontothebottomone,therewillbe quiteabitofslippingbeforethetopdiskgetsuptospeedandthetwodisksspin asone.Duringtheslipping,itisfrictionthatincreasesthespinrateofthetop CDandslowsthebottomone.Frictionconvertsmechanicalenergyintothermal energy.Hence,themechanicalenergypriortothedropislessthanthe mechanicalenergyafterthedrop. Theangularmomentumofanobjectisameasureofhowdifficultitistostopthatobjectfrom spinning.Foranobjectrotatingaboutafixedaxis,theangularmomentumdependsonhowfast theobjectisspinning,andontheobject's rotationalinertia (alsoknownas momentofinertia ) withrespecttothataxis.

Rotational Inertia (a.k.a. Moment of Inertia) Therotationalinertiaofanobjectwithrespecttoagivenrotationaxisisameasureoftheobject's tendencytoresistachangeinitsangularvelocityaboutthataxis.Therotationalinertiadepends onthemassoftheobjectandhowthatmassisdistributed.Youhaveprobablynoticedthatitis easiertostartamerrygoroundspinningwhenithasnochildrenonit.Whenthekidsclimbon, themassofwhatyouaretryingtospinisgreater,andthismeanstherotationalinertiaofthe objectyouaretryingtospinisgreater.Haveyoualsonoticedthatifthekidsmoveintowardthe centerofthemerrygorounditiseasiertostartitspinningthanitiswhentheyallsitontheouter edgeofthemerrygoround?Itis.Thefarther,ontheaverage,themassofanobjectis distributedawayfromtheaxisofrotation,thegreatertheobject'smomentofinertiawithrespect tothataxisofrotation.Therotationalinertiaofanobjectisrepresentedbythesymbol I. Duringthisinitialcoverageofangularmomentum,youwillnotberequiredtocalculate Ifrom theshapeandmassoftheobject.Youwilleitherbegiven Iorexpectedtocalculateitby applyingconservationofangularmomentum(discussedbelow).

25 Chapter 5 Conservation of Angular Momentum

Angular Velocity Theangularvelocityofanobjectisameasureofhowfastitisspinning.Itisrepresentedbythe Greekletteromega,written w,(nottobeconfusedwiththeletterwwhich,unlikeomega,is pointedonthebottom).Themostconvenientmeasureofangleindiscussingrotationalmotionis 1 theradian.Likethedegree,aradianisafractionofarevolution.But,whileonedegreeis 360 of 1 arevolution,oneradianis 2π ofarevolution.Theunitsofangularvelocityarethen radiansper rad second or,innotationalform, .Angularvelocityhasdirectionorsenseofrotation s associatedwithit.Ifonedefinesarotationwhichisclockwisewhenviewedfromaboveasa positiverotation,thenanobjectwhichisrotatingcounterclockwiseasviewedfromaboveissaid tohaveanegativeangularvelocity.Inanyprobleminvolvingangularvelocity,oneisfreeto choosethepositivesenseofrotation,butthenonemuststickwiththatchoicethroughoutthe problem.

Angular Momentum Theangularmomentum Lofanobjectisgivenby: L = Iw (51) Notethatthisisconsistentwithouroriginaldefinitionofangularmomentumasameasureofthe degreeoftheobject'stendencytokeeponspinning,onceitisspinning.Thegreaterthe rotationalinertiaoftheobject,themoredifficultitistostoptheobjectfromspinning,andthe greatertheangularvelocityoftheobject,themoredifficultitistostoptheobjectfromspinning. Thedirectionofangularmomentumisthesameasthedirectionofthecorrespondingangular velocity.

Torque Wedefinetorquebyanalogywithforcewhichisanongoingpushorpullonanobject.When thereisasingleforceactingonaparticle,themomentumofthatparticleischanging.Atorque iswhatyouareexertingonthelidofajarwhenyouaretryingtoremovethelid.Whenthereis asingletorqueactingonarigidobject,theangularmomentumofthatobjectischanging.

Conservation of Angular Momentum AngularMomentumisanimportantconceptbecause,ifthereisnoangularmomentum transferredtoorfromasystem,thetotalangularmomentumofthatsystemdoesnotchange,and ifthereisangularmomentumbeingtransferredtoasystem,therateofchangeoftheangular momentumofthesystemisequaltotherateatwhichangularmomentumisbeingtransferredto thesystem.Asinthecaseofenergyandmomentum,thismeanswecanusesimpleaccounting (bookkeeping)proceduresformakingpredictionsontheoutcomesofphysicalprocesses.Inthis chapterwefocusonthespecialcaseinwhichtherearenoexternaltorqueswhichmeansthatno angularmomentumistransferredtoorfromthesystem.

26 Chapter 5 Conservation of Angular Momentum

Conservation of Angular Momentum for the Special Case in which no Angular Momentum is Transferred to or from the System from Outside the System Inanyphysicalprocessinvolvinganobjectorasystemofobjectsfreetorotateaboutanaxis,as longastherearenoexternaltorquesexertedonthesystemofobjects,thetotalangular momentumofthatsystemofobjectsremainsthesamethroughouttheprocess.

Examples Theapplicationoftheconservationofangularmomentuminsolvingphysicsproblemsforcases involvingnotransferofangularmomentumtoorfromthesystemfromoutsidethesystem(no externaltorque)isverysimilartotheapplicationoftheconservationofenergyandtothe applicationoftheconservationofmomentum.Oneselectstwoinstantsintime,definesthe earlieroneasthebeforeinstantandthelateroneastheafterinstant,andmakescorresponding sketchesoftheobjectorobjectsinthesystem.Thenonewrites L = L′ (52) meaning"theangularmomentuminthebeforepictureequalstheangularmomentumintheafter picture."Next,onereplaceseach Lwithwhatitisintermsofthemomentsofinertiaandangular velocitiesintheproblemandsolvestheresultingalgebraicequationforwhateverissought.

27 Chapter 5 Conservation of Angular Momentum

Example 5-1 Askaterisspinningat32 .0rad/swithherarmsandlegsextendedoutward.Inthis positionhermomentofinertiawithrespecttotheverticalaxisaboutwhichsheis spinningis 45.6 kg ⋅⋅⋅ m2 .Shepullsherarmsandlegsinclosetoherbodychanging hermomentofinertiato 17.5kg ⋅⋅⋅ m2 .Whatishernewangularvelocity? BEFORE AFTER rad w = 32.0 w′=? s 2 2 I′=17 .5kg ⋅m I=45 .6kg ⋅m L === L′′′

Iw === I′′′w′′′

I w′′′ === w I′′′

45.6 kg ⋅⋅⋅ m2 w′′′ === 32.0 rad s/ 17.5 kg ⋅⋅⋅ m2

rad w′′′ === 83.4 s

28 Chapter 5 Conservation of Angular Momentum

Example 5-2 Ahorizontaldiskofrotationalinertia 4.25kg ⋅⋅⋅ m2 withrespecttoitsaxisofsymmetryis spinningcounterclockwiseaboutitsaxisofsymmetry,asviewedfromabove,at 15 .5revolutionspersecondonafrictionlessmasslessbearing.Aseconddisk,ofrotational inertia 1.80 kg ⋅⋅⋅ m2 withrespecttoitsaxisofsymmetry,spinning clockwise asviewedfrom aboveaboutthesameaxis(whichisalsoitsaxisofsymmetry)at14 .2revolutionspersecond, isdroppedontopofthefirstdisk.Thetwodiskssticktogetherandrotateasoneabouttheir commonaxisofsymmetryatwhatnewangularvelocity(inunitsofradianspersecond)? 2 I2=1 .80kg ⋅m w 2

2 I1=4 .25kg ⋅m w1 w′ Somepreliminarywork(expressingthegivenangularvelocitiesinunitsofrad/s): rev  2π rad  rad rev  2π rad  rad w = 15.5   = 97.39 w 2 =14.2   = 89.22 1 s rev s s  rev  s   Nowweapplytheprincipleofconservationofangularmomentumforthespecialcaseinwhich thereisnotransferofangularmomentumtoorfromthesystemfromoutsidethesystem. Referringtothediagram: L === L′′′ Wedefinecounterclockwise,asviewedfrom above,tobethe“+”senseofrotation.

I1 w 1 −−− I2 w 2 === (I1 +++ I2 )w′′′

I1 w 1 −−− I2 w 2 w′′′ === I1 +++ I2 4( .25kg ⋅⋅⋅ m2 ) 97.39rad s/ −−− 1( .80kg ⋅⋅⋅ m2 ) 89.22 rad s/ w′′′ === 4.25kg ⋅⋅⋅ m2 +++ 1.80kg ⋅⋅⋅ m2

rad w′′′ === 41.9 (Counterclockwiseasviewedfromabove.) s

29 Chapter 6 One-Dimensional Motion (Motion Along a Line): Definitions and Mathematics

6 One-Dimensional Motion (Motion Along a Line): Definitions and Mathematics Amistakethatisoftenmadeinlinearmotionproblemsinvolvingacceleration,isusing thevelocityattheendofatimeintervalasifitwasvalidfortheentiretimeinterval.The mistakecropsupinconstantaccelerationproblemswhenfolkstrytousethedefinitionof x averagevelocity v = inthesolution.Unlessyouareaskedspecificallyabout t averagevelocity,youwillneverneedtousethisequationtosolveaphysicsproblem. Avoidusingthisequation—itwillonlygetyouintotrouble.Forconstantacceleration problems,usethesetofconstantaccelerationequationsprovidedyou. Hereweconsiderthemotionofaparticlealongastraightline.Theparticlecanspeedupand slowdownanditcanmoveforwardorbackwardbutitdoesnotleavetheline.Whilethe discussionisaboutaparticle(afictitiousobjectwhichatanyinstantintimeisatapointinspace buthasnoextentinspace—nowidth,height,length,ordiameter)italsoappliestoarigidbody thatmovesalongastraightlinepathwithoutrotating,becauseinsuchacase,everyparticleof thebodyundergoesoneandthesamemotion.Thismeansthatwecanpickoneparticleonthe bodyandwhenwehavedeterminedthemotionofthatparticle,wehavedeterminedthemotion oftheentirerigidbody. Sohowdowecharacterizethemotionofaparticle?Let’sstartbydefiningsomevariables: t Howmuchtime thaselapsedsincesomeinitialtime.Theinitialtimeisoftenreferredto as“thestartofobservations”andevenmoreoftenassignedthevalue0.Wewillreferto theamountoftime tthathaselapsedsincetimezeroasthestopwatchreading.Atime interval t(toberead“deltat”)canthenbereferredtoasthedifferencebetweentwo stopwatchreadings. x Wheretheobjectisalongthestraightline.Tospecifythepositionofanobjectonaline, onehastodefineareferenceposition(thestartline)andaforwarddirection.Having definedaforwarddirection,thebackwarddirectionisunderstoodtobetheopposite direction.Itisconventionaltousethesymbol xtorepresentthepositionofaparticle. Thevaluesthat xcanhave,haveunitsoflength.TheSIunitoflengthisthemeter.(SI standsfor“SystemeInternational,”theinternationalsystemofunits.)Thesymbolforthe meterism.Thephysicalquantity xcanbepositiveornegativewhereitisunderstood thataparticlewhichissaidtobeminusfivemetersforwardofthestartline(more conciselystatedas x=−5m)isactuallyfivemetersbehindthestartline.

30 Chapter 6 One-Dimensional Motion (Motion Along a Line): Definitions and Mathematics

v Howfastandwhichwaytheparticleisgoing—thevelocity 1oftheobject.Becausewe areconsideringanobjectthatismovingonlyalongaline,the“whichway”partiseither forwardorbackward.Sincethereareonlytwochoices,wecanuseanalgebraicsign (“+”or“−”)tocharacterizethedirectionofthevelocity.Byconvention,apositivevalue ofvelocityisusedforanobjectthatismovingforward,andanegativevalueisusedfor anobjectthatismovingbackward.Velocityhasbothmagnitudeanddirection.The magnitudeofaphysicalquantitythathasdirectionishowbigthatquantityis,regardless ofitsdirection.Sothemagnitudeofthevelocityofanobjectishowfastthatobjectis going,regardlessofwhichwayitisgoing.Consideranobjectthathasavelocityof 5m/s.Themagnitudeofthevelocityofthatobjectis5m/s.Nowconsideranobjectthat hasavelocityof−5m/s.(Itisgoingbackwardat5m/s.)Themagnitudeofitsvelocity isalso5m/s.Anothernameforthemagnitudeofthevelocityisthespeed.Inbothofthe casesjustconsidered,thespeedoftheobjectis5m/sdespitethefactthatinonecasethe velocitywas−5m/s.Tounderstandthe“howfast”part,justimaginethattheobject whosemotionisunderstudyhasabuiltinspeedometer.Themagnitudeofthevelocity, a.k.a.thespeedoftheobject,issimplythespeedometerreading. a Nextwehavethequestionofhowfastandwhichwaythevelocityoftheobjectis changing.Wecallthistheaccelerationoftheobject.Instrumentally,theaccelerationof acarisindicatedbyhowfastandwhichwaythetipofthespeedometerneedleis moving.Inacar,itisdeterminedbyhowfardownthegaspedalispressedor,inthe caseofcarthatisslowingdown,howhardthedriverispressingonthebrakepedal.In thecaseofanobjectthatismovingalongastraightline,iftheobjecthassome acceleration,thenthespeedoftheobjectischanging.

1Lookingahead:Thevelocityofanobjectintheonedimensionalworldofthischapteris,inthethreedimensional worldinwhichwelive,thexcomponentofthevelocityoftheobject.Forthecaseofanobjectwhosevelocityhas onlyanxcomponent,togetthevelocityoftheobjectthroughthreedimensionalspace,youjusthavetomultiplythe xcomponentofthevelocitybytheunitvector iii.Invectornotation,sayingthatanobjecthasavelocityof5m/s iii meanstheobjectismovingwithaspeedof5m/sinthe+xdirectionandsayingthatanobjecthasavelocityof −5m/s iiimeanstheobjectismovingwithaspeedof5m/sinthe−xdirection.

31 Chapter 6 One-Dimensional Motion (Motion Along a Line): Definitions and Mathematics

Okay,we’vegotthequantitiesusedtocharacterizemotion.Soon,we’regoingtodevelopsome usefulrelationsbetweenthosevariables.Whilewe’redoingthat,Iwantyoutokeepthesefour thingsinmind: 1.We’retalkingaboutanobjectmovingalongaline. 2.Beinginmotionmeanshavingyourpositionchangewithtime. 3.Youalreadyhaveanintuitiveunderstandingofwhatinstantaneousvelocityisbecause youhaveriddeninacar.Youknowthedifferencebetweengoing65mphand 15mphandyouknowverywellthatyouneitherhavetogo65milesnortravelforan hourtobegoing65mph.Infact,itisentirelypossibleforyoutohaveaspeedof 65mphforjustaninstant(notimeintervalatall)—it’showfastyouaregoing(what yourspeedometerreadingis)atthatinstant.Tobesure,thespeedometerneedlemay bejust“swingingthrough”thatreading,perhapsbecauseyouareintheprocessof speedingupto75mphfromsomespeedbelow65mph,butthe65mphspeedstill hasmeaningandstillappliestothatinstantwhenthespeedometerreadingis65mph. Takethisspeedconceptwithwhichyouaresofamiliar,tackonsomedirectional information,whichformotiononalinejustmeans,specify“forward”or“backward; andyouhavewhatisknownastheinstantaneousvelocityoftheobjectwhosemotion isunderconsideration. Alotofpeoplesaythatthespeedofanobjectishowfarthatobjecttravelsina certainamountoftime.No!That’sadistance.Speedisarate.Speedisneverhow far,itishowfast.Soifyouwanttorelateittoadistanceyoumightsaysomething like,“Speediswhatyoumultiplybyacertainamountoftimetodeterminehowfar anobjectwouldgointhatamountoftimeifthespeedstayedthesameforthatentire amountoftime.”Forinstance,foracarwithaspeedof25mph,youcouldsaythat 25mphiswhatyoumultiplybyanhourtodeterminehowfarthatcarwouldgoinan hourifitmaintainedaconstantspeedof25mphfortheentirehour.Butwhyexplain itintermsofposition?Itisarate.Itishowfastthepositionoftheobjectis changing.Ifyouarestandingonastreetcornerandacarpassesyougoing35mph,I betthatifIaskedyoutoestimatethespeedofthecarthatyouwouldgetitright within5mphonewayortheother.Butifwewerelookingoveralandscapeona withunlimitedvisibilityandIaskedyoutojudgethedistancetoamountainthatwas 35milesawayjustbylookingatit,Ithinktheoddswouldbeverymuchagainstyou gettingitrighttowithin5miles.Inacaselikethat,youhaveabetterfeelfor“how fast”thanyoudofor“howfar.”Sowhydefinespeedintermsofdistancewhenyou canjustsaythatthespeedofanobjectishowfastitisgoing? 4.Youalreadyhaveanintuitiveunderstandingofwhataccelerationis.Youhavebeen inacarwhenitwasspeedingup.Youknowwhatitfeelsliketospeedupgradually (smallacceleration)andyouknowwhatitfeelsliketospeeduprapidly(big,“pedal tothemetal,”acceleration).

32 Chapter 6 One-Dimensional Motion (Motion Along a Line): Definitions and Mathematics

Allright,herecomestheanalysis.Wehaveastartline( x=0)andapositivedirection(meaning theotherwayisthenegativedirection). x 0

Consideramovingparticlethatisatposition x1 whentheclockreads t1 andatposition x2 when theclockreads t2 . x x x 0 1 2

Thedisplacementoftheparticleis,bydefinition,thechangeinposition x === x2 −−− x1 ofthe particle.Theaveragevelocity v is,bydefinition, x v === (61) t where t === t2 −−− t1 isthechangeinclockreading.Nowtheaveragevelocityisnotsomething thatonewouldexpectyoutohaveanintuitiveunderstandingfor,asyoudointhecaseof instantaneousvelocity.Theaveragevelocityisnotsomethingthatyoucanreadoffthe speedometer,andfrankly,it’stypicallynotasinterestingastheactual(instantaneous)velocity, butitiseasytocalculateandwecanassignameaningtoit(albeitahypotheticalmeaning).Itis theconstantvelocityatwhichtheparticlewouldhavetotravelifitwastoundergothesame displacement x === x2 −−− x1 inthesametime t === t2 −−− t1 at constant velocity.Theimportanceof theaveragevelocityinthisdiscussionliesinthefactthatitfacilitatesthecalculationofthe instantaneousvelocity. Calculatingtheinstantaneousvelocityinthecaseofaconstantvelocityiseasy.Lookingatwhat wemeanbyaveragevelocity,itisobviousthatifthevelocityisn’tchanging,theinstantaneous velocityistheaveragevelocity.So,inthecaseofaconstantvelocity,tocalculatethe instantaneousvelocity,allwehavetodoiscalculatetheaveragevelocity,usingany displacementwithitscorrespondingtimeinterval,thatwewant.Supposewehave positionvs.timedataon,forinstance,acartravelingastraightpathat24m/s.

33 Chapter 6 One-Dimensional Motion (Motion Along a Line): Definitions and Mathematics

Here’ssomeidealizedfictitiousdataforjustsuchacase. DataReading Time[] Position[meters] Number 0 0 0 1 0 .100 2 .30 2 1 .00 23 .0 3 10 .0 230 4 100 .0 2300 Remember,thespeedometerofthecarisalwaysreading24m/s.(Itshouldbeclearthatthecar wasalreadymovingasitcrossedthestartlineattimezero—thinkoftimezeroastheinstanta stopwatchwasstartedandthetimesinthetableasstopwatchreadings.)Thepositionisthe distanceforwardofthestartline. Notethatforthisspecialcaseofconstantvelocity,yougetthesameaveragevelocity,theknown valueofconstantspeed,nomatterwhattimeintervalyouchoose.Forinstance,ifyouchoosethe timeintervalfrom1 .00secondsto10 .0seconds: x v = (Averagevelocity.) t x − x v = 3 2 t3 − t 2 230m −−− 23. 0 m v === 10. s0 −−−1.00 s m v === 23.0 s andifyouchoosethetimeinterval0 .100secondsto100 .0seconds: x v = t x − x v = 4 1 t4 − t1 2300m −−− 2.30m v === 100. s0 −−− 0.100 s m v === 23.0 s

34 Chapter 6 One-Dimensional Motion (Motion Along a Line): Definitions and Mathematics

Thepointsthatneedemphasizingherearethat,ifthevelocityisconstantthenthecalculationof theaveragespeedyieldstheinstantaneousspeed(thespeedometerreading,thespeedwehavean intuitivefeelfor),andwhenthevelocityisconstant,itdoesn’tmatterwhattimeintervalyouuse tocalculatetheaveragevelocity;inparticular,asmalltimeintervalworksjustaswellasabig timeinterval. Sohowdowecalculatetheinstantaneousvelocityofanobjectatsomeinstantwhenthe instantaneousvelocityiscontinuallychanging?Let’sconsideracaseinwhichthe velocityis continuallyincreasing .Hereweshowsomeidealizedfictitiousdata(consistentwiththewayan objectreallymoves)forjustsuchacase. Velocity (This is what Time since object was Position (distance we are trying to Data Reading Number at start line. ahead of start line) calculate. Here are the [s] [m] correct answers.) [m/s] 0 0 0 10 1 1 14 18 2 1.01 14 .1804 18 .08 3 1.1 15 .84 18 .8 4 2 36 26 5 5 150 50 WhatIwanttodowiththisfictitiousdataistocalculateanaveragevelocityduringatime intervalthatbeginswith t=1sandcomparetheresultwiththeactualvelocityattime t=1s. Theplanistodothisrepeatedly,witheachtimeintervalusedbeingsmallerthantheprevious one. Averagevelocityfrom t=1sto t=5s: x v = t x − x v = 5 1 t5 − t1 150m −14m v = 5s −1s m v = 34 s Notethatthisvalueisquiteabitlargerthanthecorrectvalueoftheinstantaneousvelocityat t=1s(namely18m/s).Itdoesfallbetweentheinstantaneousvelocityof18m/sat t=1 sand theinstantaneousvelocityof50m/sat t=5seconds.Thatmakessensesince,duringthetime interval,thevelocitytakesonvariousvalueswhichfor1 s<t<5sareallgreaterthan18m/sbut lessthan50m/s.

35 Chapter 6 One-Dimensional Motion (Motion Along a Line): Definitions and Mathematics

Forthenexttwotimeintervalsindecreasingtimeintervalorder(calculationsnotshown): Averagevelocityfrom t=1to t=2s:22m/s Averagevelocityfrom t=1to t=1 .1s:18 .4m/s Andforthelasttimeinterval,wedoshowthecalculation: x v = t x − x v = 2 1 t2 − t1 14.1804 m −−− 14 m v === 1.01s −−− s1 m v === 18.04 s HereIcopyalltheresultssothatyoucanseethetrend: Averagevelocityfrom t=1to t=5s:34m/s Averagevelocityfrom t=1to t=2s:22m/s Averagevelocityfrom t=1to t=1 .1s:18 .4m/s Averagevelocityfrom t=1to t=1 .01s:18 .04m/s Everyanswerisbiggerthantheinstantaneousvelocityat t=1s(namely18m/s).Why? Becausethedistancetraveledinthetimeintervalunderconsiderationisgreaterthanitwould havebeeniftheobjectmovedwithaconstantvelocityof18m/s.Why?Becausetheobjectis speedingup,so,formostofthetimeintervaltheobjectismovingfasterthan18m/s,so,the averagevalueduringthetimeintervalmustbegreaterthan18m/s.Butnoticethatasthetime interval(thatstartsat t=1s)getssmallerandsmaller,theaveragevelocityoverthetimeinterval getscloserandclosertotheactualinstantaneousvelocityat t=1s.Byinduction,weconclude thatifweweretouseevensmallertimeintervals,asthetimeintervalwechosetousewasmade smallerandsmaller,theaveragevelocityoverthattinytimeintervalwouldgetcloserandcloser totheinstantaneousvelocity,sothatwhenthetimeintervalgottobesosmallastobevirtually indistinguishablefromzero,thevalueoftheaveragevelocitywouldgettobeindistinguishable fromthevalueoftheinstantaneousvelocity.Wewritethat: x v = lim t→0 t (Notetheabsenceofthebaroverthe v.This vistheinstantaneousvelocity.)Thisexpression for vis,bydefinition,thederivativeof xwithrespectto t.Thederivativeof xwithrespectto tis dx writtenas whichmeansthat dt

36 Chapter 6 One-Dimensional Motion (Motion Along a Line): Definitions and Mathematics

dx v = (62) dt dx Notethat,asmentioned, isthederivativeof xwithrespectto t.Itisnotsomevariable d dt times xalldividedby dtimes t.Itistoberead“deeexbydeetee”or,betteryet,“thederivative of xwithrespectto t.”Conceptuallywhatitmeansis,startingatthatvalueoftime tatwhich youwishtofindthevelocity,let tchangebyaverysmallamount.Findthe(alsoverysmall) amountbywhich xchangesasaresultofthechangein tanddividethetinychangein xbythe tinychangein t.Fortunately,givenafunctionthatprovidesthepositionxforanytimet,we don’thavetogothroughallofthattoget v,becausethebranchofmathematicsknownas differentialcalculusgivesusamucheasierwayofdeterminingthederivativeofafunctionthat canbeexpressedinequationform.Afunction,inthiscontext,isanequationinvolvingtwo variables,oneofwhichiscompletelyaloneontheleftsideoftheequation,theotherofwhich,is inamathematicalexpressionontheright.Thevariableontheleftissaidtobeafunctionofthe variableontheright.Sincewearecurrentlydealingwithhowthepositionofaparticledepends ontime,weuse xand tasthevariablesinthefunctionsdiscussedintheremainderofthis chapter.Intheexampleofafunctionthatfollows,weusethesymbols xo,vo,and atorepresent constants: 1 x = x +v t + at 2 (63) o o 2 Thesymbol trepresentsthereadingofarunningstopwatch.Thatreadingchangesso tisa variable.Foreachdifferentvalueof t,wehaveadifferentvalueof x,so xisalsoavariable. Somefolksthinkthatanysymbolwhosevalueisnotspecifiedisavariable.Notso.Ifyou knowthatthevalueofasymbolisfixed,thenthatsymbolisaconstant.Youdon’thavetoknow thevalueofthesymbolforittobeaconstant;youjusthavetoknowthatitisfixed.Thisisthe casefor xo,vo,and ainequation63above.

Acceleration Atthispointyouknowhowtocalculatetherateofchangeofsomething.Let’sapplythat knowledgetoacceleration.Accelerationistherateofchangeofvelocity.Ifyouarespeeding up,thenyouraccelerationishowfastyouarespeedingup.Togetanaveragevalueof accelerationoveratimeinterval t,wedeterminehowmuchthevelocitychangesduringthat timeintervalanddividethechangeinvelocitybythechangeinstopwatchreading.Callingthe velocitychange v,wehave v a = (64) t Togettheaccelerationataparticulartime twestartthetimeintervalatthattime tandmakeit aninfinitesimaltimeinterval.Thatis:

37 Chapter 6 One-Dimensional Motion (Motion Along a Line): Definitions and Mathematics

v a = lim t→0 t Therightsideis,ofcourse,justthederivativeof vwithrespectto t: dv a = (65) dt

38 Chapter 7 One-Dimensional Motion: The Constant Acceleration Equations

7 One-Dimensional Motion: The Constant Acceleration Equations Theconstantaccelerationequationspresentedinthischapterareonlyapplicable tosituationsinwhichtheaccelerationisconstant.Themostcommonmistake involvingtheconstantaccelerationequationsisusingthemwhentheacceleration ischanging. Inchapter6weestablishedthat,bydefinition, dv a = dt (whichwecalledequation65)where aistheaccelerationofanobjectmovingalongastraight linepath, visthevelocityoftheobjectand t,whichstandsfortime,representsthereadingofa stopwatch. Thisequationiscalledadifferentialequationbecausethatisthenamethatwegivetoequations involvingderivatives.It’strueforanyfunctionthatgivesavalueofaforeachvalueoft.An importantspecialcaseisthecaseinwhich aissimplyaconstant.Herewederivesomerelations betweenthevariablesofmotionforjustthatspecialcase,thecaseinwhich aisconstant. dv Equation65, a = ,with astipulatedtobeaconstant,canbeconsideredtobearelationship dt between vand t.Solvingitisequivalenttofindinganexpressionforthefunctionthatgivesthe dv valueof vforeachvalueoft.Soourgoalistofindthefunctionwhosederivative isa dt constant.Thederivative,withrespectto t,ofaconstanttimes tisjusttheconstant.Recalling thatwewantthatconstanttobe a,let’stry: v = at dv We’llcallthisourtrialsolution.Let’splugitintoequation65, a = ,andseeifitworks. dt Equation65canbewritten: d a = v dt andwhenweplugourtrialsolution v = at intoitweget: d a === (at) dt d a = a t dt a = a ⋅1

39 Chapter 7 One-Dimensional Motion: The Constant Acceleration Equations

a = a Thatis,ourtrialsolution v = at leadstoanidentity.Thus,ourtrialsolutionisindeedasolution dv totheequation a = .Let’sseehowthissolutionfitsinwiththelinearmotionsituationunder dt study. Inthatsituation,wehaveanobjectmovingalongastraightlineandwehavedefinedaone dimensionalcoordinatesystemwhichcanbedepictedas x 0 andconsistsofnothingmorethananoriginandapositivedirectionforthepositionvariable x. Weimaginethatsomeonestartsastopwatchatatimethatwedefinetobe“timezero,”t=0,a timethatwealsorefertoas“thestartofobservations.”Ratherthanlimitourselvestothespecial caseofanobjectthatisatrestattheoriginattimezero,weassumethatitcouldbemovingwith anyvelocityandbeatanypositiononthelineattimezeroanddefinetheconstant xotobethe positionoftheobjectattimezeroandtheconstant votobethevelocityoftheobjectattimezero. dv Nowthesolution v = at tothedifferentialequation a = yieldsthevalue v =0when t=0 dt dv (justplug t=0into v === at toseethis).So,while v === at doessolve a = ,itdoesnotmeetthe dt conditionsattimezero,namelythat v=voattimezero.Wecanfixtheinitialcondition problemeasilyenoughbysimplyadding vototheoriginalsolutionyielding

v === vo +++ at (71) dv Thiscertainlymakesitsothat v evaluatesto vowhen t=0.Butisitstillasolutionto a = ? dt

Let’stryit.If v === vo +++ at ,then dv d d d d a ======((()(v +++ at ))) === v +++ (at) === 0 +++ a t === a . dt dt o dt o dt dt dv v === v +++ at ,whensubstitutedinto a = leadstoanidentityso v === v +++ at isasolutionto o dt o dv a = .Whatwehavedoneistotakeadvantageofthefactthatthederivativeofaconstantis dt zero,soifyouaddaconstanttoafunction,youdonotchangethederivativeofthatfunction. dv Thesolution v === v +++ at isnotonlyasolutiontotheequation a = (with astipulatedtobea o dt constant)butitisasolutiontothewholeproblemsinceitalsomeetstheinitialvaluecondition that v =voattimezero.Thesolution,equation71:

40 Chapter 7 One-Dimensional Motion: The Constant Acceleration Equations

v === vo +++ at isthefirstofasetoffourconstantaccelerationequationstobedevelopedinthischapter. Theotherdefinitionprovidedinthelastsectionwasequation62: dx v = dt whichinwordscanbereadas:Thevelocityofanobjectistherateofchangeofthepositionof theobject(sincethederivativeofthepositionwithrespecttotimeistherateofchangeofthe position).Substitutingourrecentlyfoundexpressionforvelocityyields dx v + at = o dt whichcanbewrittenas: dx =v + at (72) dt o dx Weseekafunctionthatgivesavalueof xforeveryvalueof t,whosederivative isthesum dt ofterms vo +++ at .Giventhefactthatthederivativeofasumwillyieldasumofterms,namely thesumofthederivatives,let’stryafunctionrepresentedbytheexpression x = x1 + x2 .This

dx1 dx2 worksif is voand is at .Let’sfocuson x first.Recallthat voisaconstant.Further dt dt 1 recallthatthederivativewithrespecttotofaconstanttimes t,yieldsthatconstant.Socheck

outx 1=vot.Sureenough,thederivativeof votwithrespectto tis vo,thefirstterminequation7 2above.Sofarwehave

x= vot+x 2(73) dx Nowlet’sworkonx .Weneed 2 tobe at .Knowingthatwhenwetakethederivativeof 2 dt 2 2 somethingwith t initwegetsomethingwith tinitwetry x2 = constant ⋅t .Thederivativeof 1 thatis 2⋅constant ⋅t whichisequalto atifwechoose a fortheconstant.Iftheconstantis 2

1 1 2 a thenourtrialsolutionforx is x = at .Pluggingthisinfor x inequation73, 2 2 2 2 2

x=vot+x2,yields: 1 x =v t + at 2 o 2

Nowweareinasituationsimilartotheonewewereinwithourfirstexpressionfor v (t).This expressionfor xdoes solve

41 Chapter 7 One-Dimensional Motion: The Constant Acceleration Equations

dx ===v +++ at (74) dt o butitdoes not give xowhenyouplug0infor t.Again,wetakeadvantageofthefactthatyou canaddaconstanttoafunctionwithoutchangingthederivativeofthatfunction.Thistimewe addtheconstant xoso 1 x = x + v t + ta 2 (75) o o 2 dx Thismeetsbothourcriteria:Itsolvesequation74, ===v +++ at ,anditevaluatesto xowhen dt o t=0.Wehavearrivedatthesecondequationinoursetoffourconstantaccelerationequations. Thetwothatwehavesofarare,equation75: 1 x = x + v t + ta 2 o o 2 andequation71:

v ===vo +++ ta Thesetwoareenough,buttosimplifythesolutionofconstantaccelerationproblems,weuse algebratocomeupwithtwomoreconstantaccelerationequations.Solvingequation71, v −−−v v ===v +++ ta ,for ayields a === o andifyousubstitutethatintoequation75youquickly o t arriveatthethirdconstantaccelerationequation v + v x = x + o t (76) o 2 v −v Solvingequation71, v ===v +++ ta ,for tyields t = o andifyousubstitutethatintoequation o a 75youquicklyarriveatthefinalconstantaccelerationequation: 22 2 2 v === vo +++ 2a(x −−− xo )(77) Foryourconvenience,wecopydowntheentiresetofconstantaccelerationequationsthatyou areexpectedtouseinyoursolutionstoproblemsinvolvingconstantacceleration: 1 x = x + v t + ta 2 o o 2 v + v Constant x = x + o t o 2 Acceleration Equations

v ===vo +++ ta 22 2 2 v === vo +++ 2a(x −−− xo )

42 Chapter 8 One-Dimensional Motion: Collision Type II

8 One-Dimensional Motion: Collision Type II Acommonmistakeoneoftenseesinincorrectsolutionstocollisiontypetwo problemsisusingadifferentcoordinatesystemforeachofthetwoobjects.Itis temptingtousethepositionofobject1attime0astheoriginforthecoordinate systemforobject1andthepositionofobject2attime0astheoriginforthe coordinatesystemforobject2.Thisisamistake.Oneshouldchooseasingle originanduseitforbothparticles.(Oneshouldalsochooseasinglepositive direction.) Wedefinea CollisionTypeIIproblem 1tobeoneinwhichtwoobjectsaremovingalongone andthesamestraightlineandthequestionsare,“Whenandwherearethetwoobjectsatoneand thesameposition?”In some problemsinthisclassofproblems,theword“collision”canbe takenliterally,buttheobjectsdon’thavetoactuallycrashintoeachotherfortheproblemtofall intothe“CollisionTypeII”category.Furthermore,therestrictionthatbothobjectstravelalong oneandthesamelinecanberelaxedtocoverforinstance,acaseinwhichtwocarsaretraveling inadjacentlanesofastraightflathighway.Theeasiestwaytomakeitclearwhatwemeanhere istogiveyouanexampleofaCollisionTypeIIproblem. Example 8-1: A Collision Type II Problem Acartravelingalongastraightflathighwayismovingalongat41 .0m/swhenit passesapolicecarstandingonthesideofthehighway.3 .00safterthespeeder passesit,thepolicecarbeginstoaccelerateatasteady5 .00m/s 2.Thespeeder continuestotravelatasteady41 .0m/s.(a)Howlongdoesittakeforthepolice cartocatchupwiththespeeder?(b)Howfardoesthepolicecarhavetotravel tocatchupwiththespeeder?(c)Howfastisthepolicecargoingwhenit catchesupwiththespeeder? Wearegoingtousethisexampletoillustratehow,ingeneral,onesolvesa“CollisionTypeII Problem.” Thefirststepinany“CollisionTypeII”problemistoestablishoneandthesamecoordinate systemforbothobjects.Sincewearetalkingaboutonedimensionalmotion,thecoordinate systemisjustasingleaxis,sowhatwearereallysayingisthatwehavetoestablishastartline (thezerovalueforthepositionvariable x)andapositivedirection,andwehavetousethesame startlineandpositivedirectionforbothobjects. Aconvenientstartlineinthecaseathandistheinitialpositionofthepolicecar.Sincebothcars gointhesamedirection,theobviouschoiceforthepositivedirectionisthedirectioninwhich bothcarsgo. 1Wedidn’tnameitthatatthetimesinceitwastheonlycollisionproblemyouwerefacedwiththen,butwedefine the“CollisionTypeIProblem”tobethekindyousolvedinyourstudyofmomentum,thekindofproblem(and variationsonsame)inwhichtwoobjectscollide,andgiventheinitialvelocityandthemassofeachobject,youare supposedtofindthefinalvelocityofeachobject.

43 Chapter 8 One-Dimensional Motion: Collision Type II

Next,weestablishoneandthesametimevariable tforbothobjects.Morespecifically,we establishwhatwemeanbytimezero,atimezerothatappliestobothobjects.Tochoosetime zerowisely,weactuallyhavetothinkaheadtothenextstepintheproblem,astepinwhichwe usetheconstantaccelerationequationstowriteanexpressionforthepositionofeachobjectin termsofthetime t.Wewanttochooseatimezero, t=0,suchthatforallpositivevaluesof t, thatisforallfuturetimes,theaccelerationofeachobjectisindeedconstant.Inthecaseathand, thefirstchoicethatsuggestsitselftomeistheinstantatwhichthespeederfirstpassesthepolice car.Butifwe“startthestopwatch”atthatinstant,wefindthatastimepasses,theacceleration ofthepolicecarisnotconstant;rather,thepolicecarhasanaccelerationofzeroforthree secondsandthen,fromthenon,ithasanaccelerationof5 .00m/s 2.Sowewouldn’tbeableto useasingleconstantaccelerationequationtowritedownanexpressionforthepositionofthe policecarthatwouldbevalidforalltimes t≥0.Nowthenextinstantthatsuggestsitselftome asacandidatefortimezeroistheinstantatwhichthepolicecarstartsaccelerating.Thisturns outtobetherightchoice.Fromthatinstanton,bothcarshaveconstantacceleration(whichis0 inthecaseofthespeederand5 .00m/s 2inthecaseofthepolicecar).Furthermore,wehave informationontheconditionsatthatinstant.Forinstance,basedonourstartline,weknowthat thepositionofthepolicecariszero,thevelocityofthepolicecariszero,andtheaccelerationof thepolicecaris5 .00m/s 2atthatinstant.Thesebecomeour“initialvalues”whenwechoose timezerotobetheinstantatwhichthepolicecarstartsaccelerating.Theonethingwedon’t knowatthatinstantisthepositionofthespeeder.Butwedohaveenoughinformationto determinethepositionofthespeederattheinstantthatwechoosetocalltimezero.Ourchoice oftimezeroactuallycausesthegivenproblemtobreakupintotwoproblems:(1)Findthe positionofthespeederattime0,and(2)Solvethe“CollisionTypeII”problem. Thesolutionofthepreliminaryproblem,findingthepositionofthespeederattime0,isquite easyinthiscasebecausethespeedofthespeederisconstant.Thusthedistancetraveledisjust thespeedtimesthetime.

d ===vs t′′′

 m  d ===  41.0  3( .00s)  s 

d === 123m

Iusedthesymbol t' heretodistinguishthistimefromthetime tthatwewilluseinthe“Collision TypeII”partoftheproblem.Wecanthinkoftheproblemasonethatrequirestwostopwatches: Onestopwatch,westartattheinstantthespeederpassesthepolicecar.Thisoneisusedforthe preliminaryproblemandweusethesymbol t' torepresentthevalueofitsreading.Thesecond oneisusedforthe“CollisionTypeII”problem.Itisstartedattheinstantthepolicecarstarts acceleratingandwewillusethesymbol ttorepresentthevalueofitsreading.Notethat d=123misthepositionofthespeeder,relativetoourestablishedstartline,att=0.

Nowweareinapositiontosolvethe“CollisionTypeII ”problem.Webeginbymakinga sketchofthesituation.Thesketchisacriticalpartofoursolution.Sketchesareusedtodefine

44 Chapter 8 One-Dimensional Motion: Collision Type II constantsandvariables.Therequiredsketchfora“CollisionTypeII”problemisonethat depictstheinitialconditions. a =0(constant) 1 v =41 .0m/s( v isconstantat41 .0m/s) 10 1 v =0 x =123m x 20 10 a =5 .00m/s 2(constant) 2 x20 =0 Wehavedefinedthespeeder’scartobecar1andthepolicecartobecar2.Fromtheconstant accelerationequation(theonethatgivesthepositionofanobjectasafunctionoftime)wehave forthespeeder: 0 1 x === x +++ v t +++ a t 2 1 10 10 2 1

x1 === x10 +++ v10 t (81) wherewehaveincorporatedthefactthat a1iszero.Forthepolicecar: 0 0 1 x === x +++ v t +++ a t 2 2 20 20 2 2 1 x === a t 2 (82) 2 2 2 wherewehaveincorporatedthefactthat x20 =0andthefactthat v20 =0.Notethatboth equations(81and82)havethesametimevariable t. Theexpressionfor x1(equation81), givesthepositionofthespeeder’scarforanytime t.Youtellmethetime t,andIcantellyou wherethespeeder’scarisatthattime tjustbypluggingitintoequation81.Similarly,equation

82for x2givesthepositionofthepolicecarforanytimet.Nowthereisonespecialtime t,let’s callit t*whenbothcarsareatthesameposition.Theessentialpartofsolvinga“Collision TypeII”problemisfindingthatthatspecialtimet*whichwerefertoasthe“collisiontime.” Okay,nowherecomesthebigcentralpointforthe“CollisionTypeII”problem.Atthespecial time t*,

x1 = x2 (83) Thissmallsimpleequationisthekeytosolvingevery“CollisionTypeII”problem.Substituting ourexpressionsfor x1and x2inequations1and2above,anddesignatingthetimeasthecollision time t*wehave 1 x +++v t* === a t*2 10 10 2 2 Thisyieldsasingleequationinasingleunknown,namely,thecollisiontime t*.Wenotethat t* appearstothesecondpower.Thismeansthattheequationisaquadraticequationsowewill probably(andinthiscaseitturnsoutthatwedo)needthequadraticformulatosolveit.Thus,

45 Chapter 8 One-Dimensional Motion: Collision Type II weneedtorearrangethetermsasnecessarytogettheequationintheformofthestandard quadraticequationax2 + bx + c = 0 (recognizingthatourvariableis t*ratherthan x).

Subtractingx10 +v 10 t *frombothsides,swappingsides,andreorderingthetermsyields

1 2 a t* − v t* − x = 0 2 2 10 10 whichisthestandardformforthequadraticequation. − b ± b 2 − 4ac Thequadraticformula x = thenyields 2a

2  1  −−− (−−−v10 ) ±±± (−−−v10 ) −−− 4 a2 (−−−x10 )  2  t* ===  1  2 a2   2  whichsimplifieseversoslightlyto v ±±± v 2 +++ 2 a x t* === 10 10 2 10 a2 Substitutingvalueswithunitsyields:

m m 2  m  41.0 ±±± (41.0 ) +++ 2 5.00 123 m s s  s2  t* === m 5.00 s2 Evaluationgivestworesultsfor t*,namely t*=19 .0sand t*= −2.59s.Whilethenegative valueisavalidsolutiontothemathematicalequation,itcorrespondstoatimeinthepastandour expressionsforthephysicalpositionsofthecarswerewrittentobevalidfromtime0on.Prior m totime0,thepolicecarhadadifferentaccelerationthanthe 5.00 thatweusedinthe s2 expressionforthepositionofthepolicecar.Becauseweknowthatourequationisnotvalidfor timesearlierthat t=0wemustdiscardthenegativesolution.Weareleftwith t*=19 .0sforthe timewhenthepolicecarcatchesupwiththespeeder.Onceyoufindthe“collision”timeina “CollisionTypeII”problem,therestiseasy.Referringbacktotheproblemstatement,wenote thatthecollisiontimeitself t*=19 .0sistheanswertoparta,“Howlongdoesittakeforthe policecartocatchupwiththespeeder?”Partbasks,“Howfarmustthepolicecartravelto catchupwiththespeeder?”Atthispoint,toanswerthat,allwehavetodoistosubstitutethe

46 Chapter 8 One-Dimensional Motion: Collision Type II collisiontime t*intoequation82,theequationthatgivesthepositionofthepolicecaratany time: 1 x === a t*2 2 2 2

1  m  2 x2 === 5.00  (19.0 )s 2  s 2 

x2 === 902 m Finally,inpartcoftheproblemstatementweareaskedtofindthevelocityofthepolicecar whenitcatchesupwiththespeeder.Firstweturntotheconstantaccelerationequationstoget anexpressionforthevelocityofthepolicecaratasafunctionoftime:

v 2 === v02 +++ a 2 t Thevelocityofthepolicecarattimezerois0yielding:

v 2 === a2 t Togetthevelocityofthepolicecaratthe“collision”time,wejusthavetoevaluatethisat t=t*=19 .0s.Thisyields:  m  v 2 === 5.00 19.0 s  s2  m v === 95.0 2 s forthevelocityofthepolicecarwhenitcatchesupwiththespeeder.

47 Chapter 9 One-Dimensional Motion Graphs

9 One-Dimensional Motion Graphs Consideranobjectundergoingmotionalongastraightlinepath,wherethe motionischaracterizedbyafewconsecutivetimeintervalsduringeachofwhich theaccelerationisconstantbuttypicallyatadifferentconstantvaluethanitisfor theadjacentspecifiedtimeintervals.Theaccelerationundergoesabruptchanges invalueattheendofeachspecifiedtimeinterval.Theabruptchangeleadstoa jumpdiscontinuityintheAccelerationvs.TimeGraphandadiscontinuityinthe slope(butnotinthevalue)oftheVelocityvs.TimeGraph(thus,thereisa “corner”ora“kink”inthetraceoftheVelocityvs.Timegraph).Thethingis, thetraceofthePositionvs.Timegraphextendssmoothlythroughthoseinstants oftimeatwhichtheaccelerationchanges.Evenfolksthatgetquiteproficientat generatingthegraphshaveatendencytoerroneouslyincludeakinkinthe Positionvs.Timegraphatapointonthegraphcorrespondingtoaninstantwhen theaccelerationundergoesanabruptchange. Yourgoalshereallpertaintothemotionofanobjectthatmovesalongastraightlinepathata constantaccelerationduringeachofseveraltimeintervalsbutwithanabruptchangeinthevalue oftheaccelerationattheendofeachtimeinterval(exceptforthelastone)tothenewvalueof accelerationthatpertainstothenexttimeinterval.Yourgoalsforsuchmotionare: (1)Givenadescription(inwords)ofthemotionoftheobject;produceagraphofpositionvs. time,agraphofvelocityvs.time,andagraphofaccelerationvs.time,forthatmotion. (2)Givenagraphofvelocityvs.time,andtheinitialpositionoftheobject;produceadescription ofthemotion,produceagraphofpositionvs.time,andproduceagraphofaccelerationvs. time. (3)Givenagraphofaccelerationvs.time,theinitialpositionoftheobject,andtheinitial velocityoftheobject;produceadescriptionofthemotion,produceagraphofpositionvs. time,andproduceagraphofvelocityvs.time. Thefollowingexampleisprovidedtomoreclearlycommunicatewhatisexpectedofyouand whatyouhavetodotomeetthoseexpectations: Example 9-1 Acarmovesalongastraightstretchofroaduponwhichastartlinehasbeen painted.Atthestartofobservations,thecarisalready225maheadofthestartline andismovingforwardatasteady15m/s.Thecarcontinuestomoveforwardat 15m/sfor5 .0seconds.Thenitbeginstospeedup.Itspeedsupsteadily,obtaining aspeedof35m/safteranother5 .0seconds.Assoonasitsspeedgetsupto 35m/s,thecarbeginstoslowdown.Itslowssteadily,comingtorestafteranother 10 .0seconds.Sketchthegraphsofpositionvs.time,velocityvs.time,and accelerationvs.timepertainingtothemotionofthecarduringtheperiodoftime addressedinthedescriptionofthemotion.Labelthekeyvaluesonyourgraphsof velocityvs.timeandaccelerationvs.time.

48 Chapter 9 One-Dimensional Motion Graphs

Okay,weareaskedtodrawthreegraphs,eachofwhichhasthetime,thesame“stopwatch readings”plottedalongthe horizontal 1axis.ThefirstthingIdoistoaskmyselfwhetherthe plottedlines/curvesaregoingtoextendbothaboveandbelowthetimeaxis.Thishelpsto determinehowlongtodrawtheaxes.Readingthedescriptionofmotioninthecaseathand,itis evidentthat: (1)Thecargoesforwardofthestartlinebutitnevergoesbehindthestartline.So,the xvs.tgraphwillextendabovethetimeaxis(positivevaluesof x)butnotbelowit (negativevaluesofx). (2)Thecardoestakeonpositivevaluesofvelocity,butitneverbacksup,thatis,itnever

takesonnegativevaluesofvelocity.So,the v vs. tgraphwillextendabovethetime axisbutnotbelowit. (3)Thecarspeedsupwhileitismovingforward(positiveacceleration),anditslowsdown whileitismovingforward(negativeacceleration).So,the avs. tgraphwillextendboth aboveandbelowthetimeaxis.

Next,Idrawtheaxes,firstfor xvs. t,thendirectlybelowthatsetofaxes,theaxesfor v vs. t, andfinally,directlybelowthat,theaxesfor avs. t.ThenIlabeltheaxes,bothwiththesymbol usedtorepresentthephysicalquantitybeingplottedalongtheaxisand,inbrackets,theunitsfor thatquantity. NowIneedtoputsometickmarksonthetimeaxis.Todoso,Ihavetogobacktothequestion tofindtherelevanttimeintervals.I’vealreadyreadthequestiontwiceandI’mgettingtiredof readingitoverandoveragain.ThistimeI’lltakesomenotes: At t = 0: x = 225 m v = 15 m/s 0-5 s: v = 15 m/s (constant) 5-10 s: v increases steadily from 15 m/s to 35 m/s 10-20 s: v decreases steadily from 35 m/s to 0 m/s Frommynotesitisevidentthatthetimesrunfrom0to20secondsandthatlabelingevery 5secondswouldbeconvenient.SoIputfourtickmarksonthetimeaxisof xvs. t.Ilabelthe origin0,0andlabelthetickmarksonthetimeaxis5,10,15,and20respectively.ThenIdraw verticaldottedlines,extendingmytimeaxistickmarksupanddownthepagethroughallthe graphs.Theyallsharethesametimesandthishelpsmeensurethatthegraphsrelateproperlyto eachother.Inthefollowingdiagramwehavetheaxesandthegraph.Exceptforthelabelingof keyvaluesIhavedescribedmyworkinaseriesofnotes.Tofollowmywork,pleasereadthe numberednotes,inorder,from1to10. 1Howdoesonerememberwhatgoesonwhichaxis?Here’samnemonicthatappliestoall“ yvs. x”graphs.See that“v”in“vs.”?Yes,itisreallythefirstletteroftheword“versus”,butyoushouldthinkofitasstandingfor “vertical .”Thephysicalquantitythatisclosertothe“v”in“vs.”getsplottedalongthe vertical axis.Forinstance, inagraphof Positionvs.Time ,thePositionisplottedalongtheverticalaxis(a.k.a.theyaxis)leavingtheTimefor thehorizontalaxis(a.k.a.thexaxis).Incidentally,thewordmnemonicmeans“memorydevice”,atrick,word, jingle,orimagethatonecanusetohelpremembersomething.Onemorething:Youprobablyknowthis,butjustin case:“a.k.a.”standsfor“alsoknownas.”

49 Chapter 9 One-Dimensional Motion Graphs

(12 ) x vs. t just 600 becomes horizontal here, like the top of x a hill. Must be 500 (11 ) Value of v is horizontal here [m] decreasing meaning slope since v = 0 at t = 20 s. of x vs. t is decreasing meaning 400 it is “curved down”. Note that values of v are still “+” so x is increasing. (8) Put point here since 300 x = 225 m at t = 0. (10 ) v (below) is increasing 200 (9) v is slope meaning slope

of x vs. t, so, v of x vs. t is being constant increasing and “+” means 100 meaning x vs. t is a “curved up” straight line with “+” slope. 0 0 5 10 15 20 t[s] v 35m/s 35 (1) Put point m 30 s here since [] 25 v = 15 m/s at t = 0. 20 15m/s 15 (3) Steady increase in v 10 (2) Draw hori - means straight (4) Steady decrease zontal line here line from value in v means straight 5 since v is con- at 5 s to value at line from value at

stant at 15 m/s. 10 s. 10 s to value at 20 s. 0 0 5 10 15 20 t[s] 4m/s 2 a m []s2 (6) a is slope of v vs. t above; v vs. t is straight line with “+” slope, so, a is 0 constant “+” 0 5 value meaning 10 15 20 t[s] a vs. t is (7) Above, v vs. t is a straight line with ( ) Constant v 5 horizontal. “−“ slope, so, a is constant and “ −“. When means 0 a is constant, a vs. t is horizontal. acceleration. −3.5m/s 2

Thekeyvaluesonthe v vs. tgrapharegivenssotheonly“mystery,”aboutthediagramabove, thatremainsis,“Howwerethekeyvalueson avs. tobtained?”Herearetheanswers:

50 Chapter 9 One-Dimensional Motion Graphs

m Onthetimeintervalfrom t=5secondsto t=10seconds,thevelocitychangesfrom 15 s m to 35 .Thus,onthattimeintervaltheaccelerationisgivenby: s m m 35 −−−15 v vf −−− v i s s m a ======4 2 t tf −−− ti 10s −−− s5 s m Onthetimeintervalfrom t=10secondsto t=20seconds,thevelocitychangesfrom 35 s m to 0 .Thus,onthattimeintervaltheaccelerationisgivenby: s m m 0 −−− 35 v vf −−− vi s s m a ======−−−3.5 2 t tf −−− ti 20s −−−10s s

51 Chapter 10 Constant Acceleration Problems in Two Dimensions

10 Constant Acceleration Problems in Two Dimensions Insolvingproblemsinvolvingconstantaccelerationintwodimensions,themost commonmistakeisprobablymixingthexandymotion.Oneshoulddoan analysisofthexmotionandaseparateanalysisoftheymotion.Theonly variablecommontoboththexandtheymotionisthetime.Notethatiftheinitial velocityisinadirectionthatisalongneitheraxis,onemustfirstbreakupthe initialvelocityintoitscomponents. Inthelastfewchapterswehaveconsideredthemotionofaparticlethatmovesalongastraight linewithconstantacceleration.Insuchacase,thevelocityandtheaccelerationarealways directedalongoneandthesameline,thelineonwhichtheparticlemoves.Herewecontinueto restrictourselvestocasesinvolvingconstantacceleration(constantinbothmagnitudeand direction)butlifttherestrictionthatthevelocityandtheaccelerationbedirectedalongoneand thesameline.Ifthevelocityoftheparticleattimezeroisnotcollinearwiththeacceleration, thenthevelocitywillneverbecollinearwiththeaccelerationandtheparticlewillmovealonga curvedpath.Thecurvedpathwillbeconfinedtotheplanethatcontainsboththeinitialvelocity vectorandtheaccelerationvector,andinthatplane,thetrajectorywillbeaparabola.(The trajectoryisjustthepathoftheparticle.) Youaregoingtoberesponsiblefordealingwithtwoclassesofproblemsinvolvingconstant accelerationintwodimensions: (1)Problemsinvolvingthemotionofasingleparticle. (2)CollisionTypeIIproblemsintwodimensions Weusesampleproblemstoillustratetheconceptsthatyoumustunderstandinordertosolve twodimensionalconstantaccelerationproblems. Example 10-1

Ahorizontalsquareofedgelength1 .20missituatedonaCartesiancoordinate systemsuchthatonecornerofthesquareisattheoriginandthecorneropposite thatcornerisat(1 .20m,1 .20m).Aparticleisattheorigin.Theparticlehasan initialvelocityof2 .20m/sdirectedtowardthecornerofthesquareat (1 .20m,1.20m)andhasaconstantaccelerationof4 .87m/s 2inthe+xdirection. Wheredoestheparticlehittheperimeterofthesquare?

52 Chapter 10 Constant Acceleration Problems in Two Dimensions

Solution and Discussion Let’sstartwithadiagram. y (1 .20m,1 .20m) v o a x Nowlet’smakesomeconceptualobservationsonthemotionoftheparticle.Recallthatthe squareishorizontalsowearelookingdownonitfromabove.Itisclearthattheparticlehitsthe rightsideofthesquarebecause:Itstartsoutwithavelocitydirectedtowardthefarrightcorner. Thatinitialvelocityhasanxcomponentandaycomponent.Theycomponentneverchanges becausethereisnoaccelerationintheydirection.Thexcomponent,however,continually increases.Theparticleisgoingrightwardfasterandfaster.Thus,itwilltakelesstimetogetto therightsideofthesquarethenitwouldwithouttheaccelerationandtheparticlewillgettothe rightsideofthesquarebeforeithastimetogettothefarside. Animportantasideonthetrajectory(path)oftheparticle:Consideranordinarychecker onahugesquarecheckerboardwithsquaresofordinary(justalotmoreofthemthen youfindonastandardcheckerboard).Supposeyoustartwiththecheckerontheextreme leftsquareoftheendoftheboardnearestyou(square1)andeverysecond,youmovethe checkerrightonesquareandforwardonesquare.Thiswouldcorrespondtothechecker movingtowardthefarrightcorneratconstantvelocity.Indeedyouwouldbemovingthe checkeralongthediagonal.Nowlet’sthrowinsomeacceleration.Returnthecheckerto square1andstartmovingitagain.Thistime,eachtimeyoumovethecheckerforward, youmoveitrightwardonemoresquarethanyoudidonthepreviousmove.Sofirstyou moveitforwardonesquareandrightwardonesquare.Thenyoumoveitforwardanother squarebutrightwardtwomoresquares.Thenforwardonesquareandrightwardthree squares.Andsoon.Witheachpassingsecond,therightwardmovegetsbigger.(That’s whatwemeanwhenwesaytherightwardvelocityiscontinuallyincreasing.)Sowhat wouldthepathofthecheckerlooklike?Let’sdrawapicture.

53 Chapter 10 Constant Acceleration Problems in Two Dimensions

Asyoucansee,thecheckermovesonacurvedpath.Similarly,thepathoftheparticlein theproblemathandiscurved. Nowbacktotheproblemathand.Thewaytoattackthesetwodimensionalconstant accelerationproblemsistotreatthexmotionandtheymotionseparately.Thedifficultywith that,inthecaseathand,isthattheinitialvelocityisneitheralongxnoralongybutisindeeda mixtureofbothxmotionandymotion.Whatwehavetodoistoseparateitoutintoitsxandy components.Let’sproceedwiththat.Notethat,byinspection,theanglethatthevelocityvector makeswiththexaxisis45 .0°.

54 Chapter 10 Constant Acceleration Problems in Two Dimensions

y vo = 2.20m/s voy θ =45 ° vox x v Byinspection(becausetheangleis45.0 °): cosθ === ox vo voy === vox vox === vo cosθ So: m m o v v === 2.20 cos 45 0. oy === 1.556 ox s s m v === 1.556 ox s Nowwearereadytoattackthexmotionandtheymotionseparately.Beforewedo,let’s considerourplanofattack.Wehaveestablished,bymeansofconceptualreasoning,thatthe particlewillhittherightsideofthesquare.Thismeansthatwealreadyhavetheanswertohalf ofthequestion“Wheredoestheparticlehittheperimeterofthesquare?”Ithitsitat x=1 .20m and y=?.Allwehavetodoistofindoutthevalueof y.Wehaveestablishedthatitisthe xmotionthatdeterminesthetimeittakesfortheparticletohittheperimeterofthesquare.It hitstheperimeterofthesquareatthatinstantintimewhen xachievesthevalueof1 .20m.So ourplanofattackistouseoneormoreofthexmotionconstantaccelerationequationsto determinethetimeatwhichtheparticlehitstheperimeterofthesquareandtoplugthattimeinto theappropriateymotionconstantaccelerationequationtogetthevalueof yatwhichtheparticle hitsthesideofthesquare.Let’sgoforit.

55 Chapter 10 Constant Acceleration Problems in Two Dimensions x motion

Westartwiththeequationthatrelatespositionandtime:

0 1 x === x +++ v t +++ a t 2 (Weneedtofindthetimethatmakes x=1 .20m.) o ox 2 x Thexcomponentoftheaccelerationisthetotalacceleration,thatis ax= a.Thus, 1 x === v t +++ ta 2 ox 2 Recognizingthatwearedealingwithaquadraticequationwegetitinthestandardformofthe quadraticequation. 1 ta 2 +++ v t −−− x === 0 2 ox Nowweapplythequadraticformula:

2  1  −−−vox ±±± vox −−− 4 a(−−−x)  2  t ===  1  2 ax   2  −−−v ±±± v 2 +++ 2a x t === ox ox ax Substitutingvalueswithunits(and,inthisstep,doingnoevaluation)weobtain: 2 m  m   m  −−−1.556 ±±± 1.556  +++ 2 4.87  1.20m s  s   s2  t === m 4.87 s2 Evaluatingthisexpressionyields: t=0 .4518s,and t=−1 .091s. Wearesolvingforafuturetimesoweeliminatethenegativeresultonthegroundsthatitisa timeinthepast.Wehavefoundthattheparticlearrivesattherightsideofthesquareattime t=0.4518s.Nowthequestionis,“Whatisthevalueof yatthattime?”

56 Chapter 10 Constant Acceleration Problems in Two Dimensions y-motion Againweturntotheconstantaccelerationequationrelatingpositiontotime,thistimewritingit intermsoftheyvariables: 0 0 1 y === y +++v t +++ a t 2 o oy 2 y Wenotethat y0iszerobecausetheparticleisattheoriginattime0and ayiszerobecausethe accelerationisinthe+xdirectionmeaningithasnoycomponent.Rewritingthis:

y ===voy t Substitutingvalueswithunits, m y === 1.556 0( .4518 )s s evaluating,androundingtothreesignificantfiguresyields: y=0 .703m. Thus,theparticlehitstheperimeterofthesquareat (1 .20m,0 .703m) Next,let’sconsidera2DCollisionTypeIIproblem.Solvingatypical2DCollisionTypeII probleminvolvesfindingthetrajectoryofoneoftheparticles,findingwhentheotherparticle crossesthattrajectory,andestablishingwherethefirstparticleiswhenthesecondparticle crossesthattrajectory.Ifthefirstparticleisatthepointonitsowntrajectorywherethesecond particlecrossesthattrajectorythenthereisacollision.Inthecaseofobjectsratherthan particles,oneoftenhastodosomefurtherreasoningtosolvea2DCollisionTypeIIproblem. Suchreasoningisillustratedinthefollowingexampleinvolvingarocket.

57 Chapter 10 Constant Acceleration Problems in Two Dimensions

Example 10-2 Thepositionsofaparticleandathin(treatitasbeingasthinasaline)rocketof length0 .280marespecifiedbymeansofCartesiancoordinates.Attime0the particleisattheoriginandismovingonahorizontalsurfaceat23 .0m/sat51 .0°.It hasaconstantaccelerationof2 .43m/s 2inthe+ydirection.Attime0therocketisat restanditextendsfrom(−.280m,50 .0m)to(0,50 .0m),butithasaconstant accelerationinthe+xdirection.Whatmusttheaccelerationoftherocketbeinorder fortheparticletohittherocket? Solution Basedonthedescriptionofthemotion,therockettravelsonthehorizontalsurfacealongtheline y=50 .0m.Let’sfigureoutwhereandwhentheparticlecrossesthisline.Thenwe’llcalculate theaccelerationthattherocketmusthaveinorderforthenoseoftherockettobeatthatpointat thattimeandrepeatforthetailoftherocket.Finally,we’llquoteouranswerasbeingany accelerationinbetweenthosetwovalues. Whenandwheredoestheparticlecrosstheliney=50 .0m? Weneedtotreattheparticle’sxmotionandtheymotionseparately.Let’sstartbybreakingup theinitialvelocityoftheparticleintoitsxandycomponents. y vo = 23 .0m/s

voy θ =51 .0° vox x v v cosθ === ox sinθ === oy v o vo v === v cosθ ox o voy === vo sinθ m o m o vox === 23.0 cos51.0 v === 23.0 sin 51.0 s oy s m m vox === 14.47 v === 17.87 s oy s

58 Chapter 10 Constant Acceleration Problems in Two Dimensions

Nowinthiscase,itistheymotionthatdetermineswhentheparticlecrossesthetrajectoryofthe rocketbecauseitdoessowheny=50 .0m.Solet’saddresstheymotionfirst. y motion of the particle 0 1 y === y +++v t +++ a t 2 o oy 2 y

Notethatwecan’tjustassumethatwecancrossout yobutinthiscasethetimezeropositionof theparticlewasgivenas(0,0)meaningthat yoisindeedzeroforthecaseathand.Nowwe solvefor t: 1 y ===v t +++ a t 2 oy 2 y 1 a t 2 +++v t −−− y === 0 2 y oy

2  1  −−−voy ±±± voy −−− 4 ay (−−− y)  2  t ===  1  2  ay   2  −−−v ±±± v 2 +++ 2 a y t === oy oy y ay 2 m  m   m  −−−17.87 ±±± 17.87  +++ 2 2.43  50 0. m s  s   s2  t === m 2.43 s2 t=2 .405s,and t=−17 .11s. Again,wethrowoutthenegativesolutionbecauseitrepresentsaninstantinthepastandwe wantafutureinstant. Nowweturntothexmotiontodeterminewheretheparticlecrossesthetrajectoryoftherocket.

59 Chapter 10 Constant Acceleration Problems in Two Dimensions x motion of the particle Againweturntotheconstantaccelerationequationrelatingpositiontotime,thistimewritingit intermsofthexvariables: 0(becausethe particlestarts attheorigin ) 0(becausetheaccelerationisintheydirection) 1 x === x +++v t +++ a t 2 o ox 2 x

x ===vox t m x = 14.47 2( .405 )s s x=34 .80m. Sotheparticlecrossestherocket’spathat(34 .80m,50 .0m)attimet=2 .450s.Let’scalculate theaccelerationthattherocketwouldhavetohaveinorderforthenoseoftherockettobethere atthatinstant.Therockethasxmotiononly.Itisalwaysontheline y=50 .0m. Motion of the Nose of the Rocket 0 0 1 x′′′ === x′′′ +++v ′′′ t +++ a′′′t 2 n on oxn 2 n whereweusethesubscriptnfor“nose”andaprimetoindicate“rocket.”Wehavecrossedout

xon′ becausethenoseoftherocketisat(0,50 .0m)attimezero,andwehavecrossedout voxn′′′ becausetherocketisatrestattimezero. 1 x′′′ === a′′′t 2 n 2 n

Solvingfor an′′′ yields: 2x′′′ a′′′ === n n t 2 Nowwejusthavetoevaluatethisexpressionatt=2.405s,theinstantwhentheparticlecrosses thetrajectoryoftherocket,andat xn′′′ = x=34 .80m,thevalueof xatwhichtheparticlecrosses thetrajectoryoftherocket. (2 34.80 m) a′′′ === n 2( .405 )s 2 m a′′′ === 12.0 n s2 Itshouldbeemphasizedthatthenfor“nose”isnottheretoimplythatthenoseoftherockethas adifferentaccelerationthanthetail;rather;thewholerocketmusthavetheacceleration

60 Chapter 10 Constant Acceleration Problems in Two Dimensions

m a′′′ === 12.0 inorderfortheparticletohittherocketinthenose.Nowlet’sfindtheacceleration n s2

at′′′ thattheentirerocketmusthaveinorderfortheparticletohittherocketinthetail. Motion of the Tail of the Rocket 0 1 x′′′ === x′′′ +++v ′′′ t +++ a′′′ t 2 t ot oxt 2 t whereweusethesubscript tfor“tail”andaprimetoindicate“rocket.”Wehavecrossedout v ′oxt becausetherocketisatrestattimezero,but xot′ isnotzerobecausethetailoftherocketis at(−.280,50.0m)attimezero. 1 x′′′ === x′′′ +++ a′′′ t 2 t ot 2 t

Solvingfor at′ yields: [2 x′′′ −−− x′′′ ] a′′′ === t ot t t 2

Evaluatingatt=2.405sand xt′ = x=34 .80myields [2 34.80 m −−− (−−−0.280 m)] a′′′ === t 2( .405 )s 2 m a′′′ === 12.1 t s2 astheaccelerationthattherocketmusthaveinorderfortheparticletohitthetailoftherocket. Thus: m m Theaccelerationoftherocketmustbesomewherebetween 12.0 and 12.1 ,inclusive,in s2 s2 orderfortherockettobehitbytheparticle.

61 Chapter 11 Relative Velocity

11 Relative Velocity Vectorsaddlikevectors,notlikenumbers.Exceptinthatveryspecialcasein whichthevectorsyouareaddingliealongoneandthesameline,youcan’tjust addthemagnitudesofthevectors. Imaginethatyouhaveadartgunwitha muzzle velocity 1of45mph.Furtherimaginethatyou areonabustravelingalongastraighthighwayat55mphandthatyoupointthegunsothatthe barrelislevelandpointingdirectlyforward,towardthefrontofthebus.Assumingnorecoil,as itleavesthemuzzleofthegun,howfastisthedarttravelingrelativetotheroad?That’sright! 100mph.Thedartisalreadytravelingforwardat55mphrelativetotheroadjustbecauseitis onabusthatismovingat55mphrelativetotheroad.Addtothatthevelocityof45mphthatit acquiresasaresultofthefiringofthegunandyougetthetotalvelocityofthedartrelativetothe road.Thisproblemisanexampleofaclassofvectoradditionproblemsthatcomeunderthe headingof“RelativeVelocity.”Itisaparticularlyeasyvectoradditionproblembecauseboth velocityvectorsareinthesamedirection.Theonlychallengeisthevectoradditiondiagram, sincetheresultantisrightontopoftheothertwo.Wedisplaceittoonesidealittlebitinthe diagrambelowsothatyoucanseeallthevectors.Defining vvv tobethevelocityofthebusrelativetotheroad, BR vvv tobethevelocityofthedartrelativetothebus,and DB vvvDR tobethevelocityofthedartrelativetotheroad;wehave v BR v DB v FORWARD DR Thevectoradditionproblemthisillustratesis vvvDR = vvvBR + vvvDB Ifwedefinetheforwarddirectiontobethepositivedirection, v v BR DB FORWARD v DR PositiveDirection then,becausethevectorsweareaddingarebothinthesamedirection,weareindeeddealing withthatveryspecialcaseinwhichthemagnitudeoftheresultantisjustthesumofthe magnitudesofthevectorsweareadding: 1Themuzzlevelocityofanygunisthevelocity,relativetothegun,withwhichthebullet,BB,ordartexitsthe barrelofthegun.Thebarrelexit,theopeningatthefrontendofthegun,iscalledthemuzzleofthegun,hencethe name,“muzzlevelocity.”

62 Chapter 11 Relative Velocity

vvvDR = vvvBR + vvvDB v = v + v DR BR DB v =55mph+45mph DR v =100mph DR vvvDR =100mphinthedirectioninwhichthebusistraveling Youalreadyknowalltheconceptsyouneedtoknowtosolverelativevelocityproblems(you knowwhatvelocityisandyouknowhowtodovectoraddition)sothebestwecandohereisto provideyouwithsomemoreworkedexamples.We’vejustaddressedtheeasiestkindofrelative velocityproblem,thekindinwhichallthevelocitiesareinoneandthesamedirection.The secondeasiestkindisthekindinwhichthetwovelocitiestobeaddedareinoppositedirections. Example 11-1 Abusistravelingalongastraighthighwayataconstant55mph.Apersonsittingat restonthebusfiresadartgunthathasamuzzlevelocityof45mphstraight backward,(towardthebackofthebus).Findthevelocityofthedart,relativetothe road,asitleavesthegun. Againdefining: vvv tobethevelocityofthebusrelativetotheroad, BR vvv tobethevelocityofthedartrelativetothebus,and DB vvvDR tobethevelocityofthedartrelativetotheroad,and definingtheforwarddirectiontobethepositivedirection;wehave v BR FORWARD v DR |v | PositiveDirection DB vvvDR = vvvBR + vvvDB v = v −| v | DR BR DB v =55mph −45mph DR v =10mph DR vvvDR =10mphinthedirectioninwhichthebusistraveling

63 Chapter 11 Relative Velocity

Itwouldbeoddlookingatthatdartfromthesideoftheroad.Relativetoyouitwouldstillbe movinginthedirectionthatthebusistraveling,tailfirst,at10mph. Thenexteasiestkindofvectoradditionproblemisthekindinwhichthevectorstobeaddedare atrightanglestoeachother.Let’sconsiderarelativevelocityprobleminvolvingthatkindof vectoradditionproblem. Example 11-2 Aboysittinginacarthatistravelingduenorthat65mphaimsaBBgun(agun whichusesacompressedgastofireasmallmetalorplasticballcalledaBB),witha muzzlevelocityof185mph,dueeast,andpullsthetrigger. Recoil(thebackward movementofthegunresultingfromthefiringofthegun)isnegligible.Inwhat compassdirectiondoestheBBgo? Defining vvv tobethevelocityofthecarrelativetotheroad, CR vvv tobethevelocityoftheBBrelativetothecar,and BC vvv BR tobethevelocityoftheBBrelativetotheroad;wehave NORTH v =185mph BC EAST v =65mph CR v BR θ v tanθ === BC vCR v θ === tan−−−1 BC vCR 185mph θ = tan −1 65mph θ=70 .6° TheBBtravelsinthedirectionforwhichthecompassheadingis70 .6°.

64 Chapter 11 Relative Velocity

Example 11-3 Aboatistravelingacrossariverthatflowsdueeastat8 .50m/s.Thecompass headingoftheboatis15 .0°.Relativetothewater,theboatistravelingstraight forward(inthedirectioninwhichtheboatispointing)at11 .2m/s.Howfastand whichwayistheboatmovingrelativetothebanksoftheriver? Okay,herewehaveasituationinwhichtheboatisbeingcarrieddownstreambythemovement ofthewateratthesametimethatitismovingrelativetothewater.Notethegiveninformation meansthatifthewaterwasdeadstill,theboatwouldbegoing11 .2m/sat15 .0°EastofNorth. Thewater,however,isnotstill.Defining

vvv tobethevelocityofthewaterrelativetotheground, WG

vvv tobethevelocityoftheboatrelativetothewater,and BW vvv BG tobethevelocityoftheboatrelativetotheground;wehave NORTH v =11.2m/s BW v φ= BG 15 .0° EAST θ v =8 .50m/s WG Solvingthisproblemisjustamatteroffollowingthevectoradditionrecipe.Firstwedefine+x tobeeastwardand+ytobenorthward.Thenwedrawthevectoradditiondiagramfor vWG . Breakingitupintocomponentsistrivialsinceitliesalongthe xaxis:

65 Chapter 11 Relative Velocity

y,North v =8 .50m/s x,East WG Byinspection: v =8 .50m/s WGx v =0 W Gy Breaking vvv BW doesinvolvealittlebitofwork: y,North v BWx v sinθ === BWx v BW v === v sinθ v BWx BW BWy v =11 .2m/s BW m φ= v === 11.2 sin(15 0. o ) BWx s 15 .0° m vBWx === 2.899 s v cosθ === BWy v BW x,East vBWy === vBW cosθ m o vBWy === 11.2 cos(15.0 ) s m vBWy === 10.82 s Nowweaddthexcomponentstogetthexcomponentoftheresultant

66 Chapter 11 Relative Velocity

vBGx === vWGx +++ v BWx

m m v === 8.50 +++ 2.899 BGx s s

m v === 11.299 BGx s andweaddtheycomponentstogettheycomponentoftheresultant:

vBGy === vWGy +++ vBWy

m m v === 0 +++ 10.82 BGy s s

m v === 10.82 BGy s Nowwehavebothcomponentsofthevelocityoftheboatrelativetotheground.Weneedto drawthevectorcomponentdiagramfor vBG todeterminethedirectionandmagnitudeofthe velocityoftheboatrelativetotheground. y,North v BG m v === 10.82 BGy s θ m x,East v === 11.299 BGx s WethenusethePythagoreanTheoremtogetthemagnitudeofthevelocityoftheboatrelativeto theground,

67 Chapter 11 Relative Velocity

2 2 v BG === vBGx +++ vBGy

2 2 v BG === (11.299m/s) +++ (10.82m/s)

v BG === 15.64m/s andthedefinitionofthetangenttodeterminethedirectionof vvv BG : v tanθ === BGy vBGx

v θ === tan −−−1 BGy vBGx

10.82m/s θ === tan −−−1 11.299m/s

θ === 43.8o Hence, vvv BG = 15 .6m/sat43 .8°NorthofEast.

68 Chapter 12 Gravitational Force Near the Surface of the Earth, First Brush with Newton’s 2nd Law

12 Gravitational Force Near the Surface of the Earth, First Brush with Newton’s 2 nd Law Somefolksthinkthateveryobjectnearthesurfaceoftheearthhasan accelerationof9 .8m/s2downwardrelativetothesurfaceoftheearth.Thatjust isn’tso.Infact,asIlookaroundtheroominwhichIwritethissentence,allthe objectsIseehavezeroaccelerationrelativetothesurfaceoftheearth.Only whenitisinfreefall,thatis,onlywhennothingistouchingorpushingorpulling

ontheobjectexcept forthegravitationalfieldoftheearth,willanobject experienceanaccelerationof9 .8m/s 2downwardrelativetothesurfaceofthe earth.

Gravitational Force near the Surface of the Earth Weallliveintheinvisiblegravitationalfieldoftheearth.Massisalwaysaccompaniedbya surroundinggravitationalfield.Anyobjectthathasmass,includingtheearth,issurroundedbya gravitationalfield.Thegreaterthemassoftheobject,thestrongerthefieldis.Theearthhasa hugemass;hence,itcreatesastronggravitationalfieldintheregionofspacearoundit.The gravitationalfieldisaforcepermassateachandeverypointintheregionaroundtheobject, alwaysreadyandabletoexertaforceonanyparticlethatfindsitselfinthegravitationalfield. Theearth’sgravitationalfieldexistseverywherearoundtheearth,notonlyeverywhereintheair, butoutbeyondtheatmosphereinouterspace,andinsidetheearthaswell.Theeffectofthe gravitationalfieldistoexertaforceonanyparticle,any“victim,”thatfindsitselfinthefield. Theforceonthevictimdependsonbothapropertyofthevictimitself,namelyitsmass,andona propertyofthepointinspaceatwhichtheparticlefindsitself,theforcepermassofthe gravitationalfieldatthatpoint.Theforceexertedonthevictimbythegravitationalfieldisjust themassofthevictimtimestheforcepermassvalueofthegravitationalfieldatthelocationof thevictim. Holdarockinthepalmofyourhand.Youcanfeelthatsomethingispullingtherock downward.Itcausestherocktomakeatemporaryindentationinthepalmofyourhandandyou cantellthatyouhavetopressupwardonthebottomoftherocktoholditupagainstthat downwardpull.The“something”isthefieldthatwehavebeentalkingabout.Itiscalledthe gravitationalfieldoftheearth .Ithasbothmagnitudeanddirectionsoweuseavectorvariable, thesymbol ggg torepresentit.Ingeneral,themagnitudeandthedirectionofagravitationalfield bothvaryfrompointtopointintheregionofspacewherethegravitationalfieldexists.The gravitationalfieldoftheearth,nearthesurfaceoftheearthishowever,toaverygood approximation,muchsimplerthanthat.Toaverygoodapproximation,thegravitationalfieldof theearthhasthesamevalueatallpointsnearthesurfaceoftheearth,anditalwayspoints towardthecenteroftheearth,adirectionthatwenormallythinkofasdownward.Toavery goodapproximation, N ggg = 9.80 downward (121) kg atallpointsnearthesurfaceoftheearth.Thefactthatthegravitationalfieldisaforcepermass ateverypointinspacemeansthatitmusthaveunitsofforcepermass.Indeed,theN(newton)

69 Chapter 12 Gravitational Force Near the Surface of the Earth, First Brush with Newton’s 2nd Law

N appearinginthevalue 9.80 istheSIunitofforce(howstrongthepushorpullontheobject kg is)andthekg()istheSIunitofmass,sotheN/kgisindeedaunitofforcepermass. Thegravitationalforceexertedonanobjectbytheearth’sgravitationalfield(orthatofanother whentheobjectisnearthesurfaceofthatotherplanet)issometimescalledtheweightof theobject.Tostressthatthegravitationalforceisaforcethatisbeingexertedontheobject, ratherthanapropertyoftheobjectitself,wewil lrefertoitasthegravitationalforce.The gravitationalforce Fg exertedonanobjectofmass mbythegravitationalfieldoftheearthis givenby Fg = mggg (122) Theproductofascalarandavectorisanewvectorinthesamedirectionastheoriginalvector. Hencetheearth’sgravitationalforceisinthesamedirectionasthegravitationalfield,namely downward,towardthecenteroftheearth.Themagnitudeoftheproductofascalarandavector istheproductoftheabsolutevalueofthescalarandthemagnitudeofthevector.[Recallthatthe magnitudeofavectorishowbigitis.Avectorhasbothmagnitude(howbig)anddirection (whichway).Soforinstance,themagnitudeoftheforcevector F =15 Ndownward,is F=15newtons.]Hence,

Fg = mg (123) relatesthemagnitudeofthegravitationalforcetothemagnitudeofthegravitationalfield.The bottomlineisthateveryobject nearthesurface oftheearthexperiencesadownwarddirected gravitationalforcewhosemagnitudeisgivenby Fg = mg where misthemassoftheobjectand N gis 9.80 . kg

When the Gravitational Force is the Only Force on an Object Ifthereisanonzeronetforceonanobject,thatobjectisexperiencingaccelerationinthesame directionasthatnetforce.Howmuchaccelerationdependsonhowbigthenetforceisandon themassoftheobjectwhoseaccelerationwearetalkingabout,theobjectuponwhichthenet forceacts.Infact,theaccelerationisdirectlyproportionaltotheforce.Theconstantof proportionalityisthereciprocalofthemassoftheobject. 1 a = F (124)1 m ∑ dp 1Equation124isknownasNewton’s2 nd Law.Newton’s2 nd Lawcanalsobewritten ∑ F = where p isthe dt momentumoftheobject.Thislatterequationisvalidatallpossiblespeeds,evenatspeedsclosetothespeedof light.Toderiveequation124fromit,weuse p = mvvv whichisonlyvalidforspeedssmallcomparedtothespeed 8 oflight.Hence,equation124isonlyvalidforspeedssmallcomparedtothespeedoflight(3 .00 ×10 m/s).Also,

70 Chapter 12 Gravitational Force Near the Surface of the Earth, First Brush with Newton’s 2nd Law

Theexpression ∑ F means“thesumoftheforcesactingontheobject.”Itisavectorsum.It isthenetforceactingontheobject.Themass mistheinertiaoftheobject,theobject’sinherent 1 resistancetoachangeinitsvelocity.(Inherentmeans“ofitself.”)Notethatthefactor in m equation124: 1 a = F m ∑ meansthatthebiggerthemassoftheobject,thesmalleritsaccelerationwillbe,foragivennet force.Equation124isaconcisestatementofamultitudeofexperimentalresults.Itisreferred toas“Newton’s2 nd Law.”Here,wewanttoapplyittofindtheaccelerationofanobjectin freefallnearthesurfaceoftheearth. WheneveryouapplyNewton’s2 nd Law,youarerequiredtodrawafreebodydiagramofthe objectwhoseaccelerationisunderinvestigation.Inafreebodydiagram,youdepicttheobject (inourcaseitisanarbitraryobject,let’sthinkofitasarock)freefromallitssurroundings,and thendrawanarrowonitforeachforceactingontheobject.Drawthearrowwiththetail touchingtheobject,andthearrowpointinginthedirectionoftheforce.Labelthearrowwiththe symbolusedtorepresentthemagnitudeoftheforce.Finally,drawanarrownear,butnot touching,theobject.Drawthearrowsothatitpointsinthedirectionoftheaccelerationofthe objectandlabelitwithasymbolchosentorepresentthemagnitudeoftheacceleration.Herewe usethesymbol a fortheaccelerationtoremindusthatitistheaccelerationduetotheearth’s g gravitationalfield ggg. Free Body Diagram for an Object in Freefall near the Surface of the Earth m a g Fg ThenextstepinapplyingNewton’s2 nd Lawistowriteitdown. 1 a === F (125) ↓↓↓ m ∑∑∑ ↓↓↓

9 theconceptofforceprovesimpracticalontheatomicscaleandsmaller(distanceslessthanabout1 ×10 m).Such smallscalesaretherealmofquantummechanicswhereenergyandmomentumstillplayamajorrole.

71 Chapter 12 Gravitational Force Near the Surface of the Earth, First Brush with Newton’s 2nd Law

Notethatequation124: 1 a = F m ∑ isavectorequation.Assuchitcanbeconsideredtobethreeequationsinone—oneequationfor eachofatotalofthreepossiblemutuallyorthogonal(meaningperpendiculartoeachother) coordinatedirectionsinspace.Inthecaseathand,allthevectors,(hey,thereareonlytwo,the gravitationalforcevectorandtheaccelerationvector)areparalleltooneandthesameline, namelythevertical,soweonlyneedoneoftheequations.Inequation125, 1 a === F ↓↓↓ m ∑∑∑ ↓↓↓ weusearrowsassubscripts—thearrowshaftalignmentspecifiesthelinealongwhichweare summingtheforcesandthearrowheadspecifiesthedirectionalongthatlinethatwechooseto callthepositivedirection.Inthecaseathand,referringtoequation125,wenotethattheshafts ofthearrowsarevertical,meaningthatwearesummingforcesalongtheverticalandthatweare dealingwithanaccelerationalongthevertical.Alsoinequation125,wenotethatthe arrowheadsarepointingdownwardmeaningthatIhavechosentocalldownwardthepositive direction,which,bydefault,meansthatupwardisthenegativedirection.(Ichosetocall downwardpositivebecausebothofthevectorsinthefreebodydiagramaredownward.)

Nextwereplace a↓ withwhatitisinthefreebodydiagram, m a g Fg namely a ,andwereplace F withthesumoftheverticalforcesinthefreebodydiagram, g ∑∑∑ ↓↓↓ countingdownwardforcesaspositivecontributionstothesum,andupwardforcesasnegative contributionstothesum.Thisisaneasysubstitutioninthecaseathandbecausethereisonly oneforceonthefreebodydiagram,namelythegravitationalforce,thedownwardforceof magnitude Fg .Theresultofoursubstitutionsis: 1 a = F (126) g m g

The Fg inequation126isthemagnitudeofthegravitationalforce,thatforcewhichyoualready readaboutatthestartofthischapter.Itisgivenintermsofthemassoftheobjectandthe magnitudeoftheearth’sgravitationalfield gbyequation123, Fg = mg .Replacingthe Fg in 1 equation126, a = F ,withthe m towhichitisequivalentwehave g m g g

72 Chapter 12 Gravitational Force Near the Surface of the Earth, First Brush with Newton’s 2nd Law

1 a === m (127) g m g 1 Nowthe mthatappearsinthefraction istheinertiaoftheobject.Itistheamountofinherent m resistancethattheobjecthastoachangeinitsvelocityandisameasureofthetotalamountof materialmakinguptheobject.The mappearinginthe mgpartoftheexpression(equation127) isthegravitationalmassoftheobject,thequantitythat,inconcertwiththegravitationalfieldat thelocationoftheobjectdeterminestheforceontheobject.Itisalsoameasureofthetotal amountofmaterialmakinguptheobject.Asitturnsout,theinertialmassandthegravitational massofthesameobjectareidentical(whichiswhyweuseoneandthesamesymbol mforeach) and,inequation127,theycancel.Thus,

ag = g (128)

Now gisthemagnitudeoftheearth’sgravitationalfieldvectoratthelocationoftheobject. 2 g=9.80N/kgand ag,beinganaccelerationhastohaveunitsofacceleration,namely,m/s . kg ⋅ m m Fortunatelyanewtonisa sotheunitsof g,namelyN/kg,doindeedworkouttobe . s 2 s2 Thus m a === 9.80 (129) g s2 Nowthisis“wild”!Theaccelerationofanobjectinfreefalldoesnotdependonitsmass.You sawthemassescancel.Thesamethingthatmakesanobjectheavymakesit“sluggish.”

One-Dimensional Free-Fall, a.k.a., One-Dimensional Projectile Motion Ifyouthrowanobjectstraightup,orsimplyreleaseitfromrest,orthrowitstraightdown; assumingthattheforceofairresistanceisnegligiblysmallcomparedtothegravitationalforce: theobjectwillbeinfreefallfromtheinstantitlosescontactwithyourhanduntilthelastinstant beforeithitstheground(orwhateveritdoeseventuallyhit),andtheobjectwilltravelalonga m straightlinepathwithaconstantaccelerationof 9.80 downward. s2 Considerthecaseinwhichtheobjectisthrownstraightup.Thewholetimeitisinfreefall,the m objectexperiencesanaccelerationof 9.80 downward.Whiletheobjectisonthewayup,the s2 downwardaccelerationmeansthattheobjectisslowingdown.Atthetopofitsmotion,when thevelocitychangesfrombeinganupwardvelocitytobeingadownwardvelocity,andhence, foraninstantiszero,thedownwardaccelerationmeansthatthevelocityischangingfromzeroto anonzerodownwardvelocity.Andonthewaydown,thedownwardaccelerationmeansthat thevelocityisincreasinginthedownwarddirection.

73 Chapter 13 Freefall, a.k.a. Projectile Motion

13 Freefall, a.k.a. Projectile Motion Theconstantaccelerationequationsapplyfromthefirstinstantintimeafterthe projectileleavesthelaunchertothelastinstantintimebeforetheprojectilehits something,suchastheground.Oncetheprojectilemakescontactwiththe ground,thegroundexertsahugeforceontheprojectilecausingadrasticchange intheaccelerationoftheprojectileoveraveryshortperiodoftimeuntil,inthe caseofaprojectilethatdoesn’tbounce,boththeaccelerationandthevelocity becomezero.Totakethiszerovalueofvelocityandplugitintoconstant accelerationequationsthataredevoidofpostgroundcontactacceleration informationisabigmistake.Infact,atthatlastinstantintimeduringwhichthe constantaccelerationequationsstillapply,whentheprojectileisatgroundlevel buthasnotyetmadecontactwiththeground,(assumingthatgroundlevelisthe lowestelevationachievedbytheprojectile)themagnitudeofthevelocityofthe projectileisatits biggest value,asfarfromzeroasitevergets! Consideranobjectinfreefallwithanonzeroinitialvelocitydirectedeitherhorizontally forward;orbothforwardandvertically(eitherupwardordownward).Theobjectwillmove forward,andupwardordownward—perhapsupwardandthendownward—whilecontinuingto moveforward.Inallcasesoffreefall,themotionoftheobject(typicallyreferredtoasthe projectile whenfreefallisunderconsideration)alltakesplacewithinasingleverticalplane.We candefinethatplanetobethexyplanebydefiningtheforwarddirectiontobethexdirection andtheupwarddirectiontobethey direction. Oneoftheinterestingthingsaboutprojectilemotionisthatthehorizontalmotionisindependent oftheverticalmotion.Recallthatinfreefall,anobjectcontinuallyexperiencesadownward m accelerationof 9.80 buthasnohorizontalacceleration.Thismeansthatifyoufirea s2 projectilesothatitisapproachingawallatacertainspeed,itwillcontinuetogetclosertothe wallatthatspeed,independentlyofwhetheritisalsomovingupwardand/ordownwardasit approachesthewall.Aninterestingconsequenceoftheindependenceoftheverticaland horizontalmotionisthefactthat,neglectingairresistance,ifyoufireabullethorizontallyfrom, say,shoulderheight,overflatlevelground,andattheinstantthebulletemergesfromthegun, youdropasecondbulletfromthesameheight,thetwobulletswillhitthegroundatthesame time.Theforwardmotionofthefiredbullethasnoeffectonitsverticalmotion. Themostcommonmistakethatfolksmakeinsolvingprojectilemotionproblems iscombiningthexandymotioninonestandardconstantaccelerationequation. Don’tdothat.Treatthexmotionandtheymotionseparately. Insolvingprojectilemotionproblems,wetakeadvantageoftheindependenceofthehorizontal (x)motionandthevertical(y)motionbytreatingthemseparately.Theonethingthatiscommon toboththexmotionandtheymotionisthetime.Thekeytothesolutionofmanyprojectile motionproblemsisfindingthetotaltimeof“flight.”Forexample,considerthefollowing sampleproblem:

74 Chapter 13 Freefall, a.k.a. Projectile Motion

Example 13-1:Aprojectileislaunchedwithavelocityof11m/satanangleof 28 °abovethehorizontaloverflatlevelgroundfromaheightof2 .0mabove groundlevel.Howfarforwarddoesitgobeforehittingtheground?(Assume thatairresistanceisnegligible.) Beforegettingstarted,webetterclearlyestablishwhatwearebeingaskedtofind.Wedefinethe forwarddirectionasthexdirectionsowhatwearelookingforisavalueofx.Morespecifically, wearelookingforthedistance,measuredalongtheground,fromthatpointontheground directlybelowthepointatwhichtheprojectileleavesthelauncher,tothepointontheground wheretheprojectilehits.Thisdistanceisknownastherangeoftheprojectile.Itisalsoknown astherangeofthelauncherforthegivenangleoflaunchandthedownrangedistancetraveledby theprojectile. Okay,nowthatweknowwhatwe’resolvingfor,let’sgetstarted.Aninitialvelocityof11 m/sat 28 °abovethehorizontal,eh?Uhoh!We’vegotadilemma.Thekeytosolvingprojectile motionproblemsistotreatthexmotionandtheymotionseparately.Butwearegivenaninitial velocity vvvo whichisamixofthetwoofthem.Wehavenochoicebuttobreakuptheinitial velocityintoitsxandycomponents. y v=11m/s vy θ=25 ° vx x v v x === cosθ y === sinθ v v v = v cosθ x == vy === v sinθ m o m o vx === 11 cos25 v === 11 sin 25 s y s m m vx === 9.97 v === 4.65 s y s Nowwe’rereadytogetstarted.We’llbeginwithasketchwhichdefinesourcoordinatesystem, thusestablishingtheoriginandthepositivedirectionsfor xand y.

75 Chapter 13 Freefall, a.k.a. Projectile Motion

y [m]

3

vo

2 vox=9 .97m/s voy=4 .65m/s 1

0 0 2 4 6 8 10 12 x [m] Recallthatinprojectilemotionproblems,wetreatthexandymotionseparately.Let’sstartwith thexmotion.Itistheeasierpartbecausethereisnoacceleration. x motion 0 0 1 x = x +v t + a t 2 o ox 2 x

x =vox t (131) Notethatforthe xmotion,westartwiththeconstantaccelerationequationthatgivestheposition asafunctionoftime.(Imaginehavingstartedastopwatchattheinstanttheprojectilelost contactwiththelauncher.Thetimevariable trepresentsthestopwatchreading.)Asyoucan see,becausetheaccelerationinthe xdirectioniszero,theequationquicklysimplifiesto

x ===vox t .Weare“stuck”herebecausewehave two unknowns, xand t,andonlyone equation. It'stimetoturntotheymotion. Itshouldbeevidentthatitistheymotionthatyieldsthetime,theprojectilestartsoffataknown elevation( y =2.0m)andtheprojectilemotionendswhentheprojectilereachesanotherknown elevation,namely, y =0. y-motion

1 2 y === yo +++ voy t +++ ay t (132) 2

Thisequationtellsusthatthe yvalueatanytime tistheinitial yvalueplussomeotherterms thatdependon t.It’svalidforanytime t,startingatthelaunchtime t=0,whiletheobjectisin projectilemotion.Inparticular,itisapplicabletothatspecialtime t,thelastinstantbeforethe objectmakescontactwiththeground,thatinstantthatwearemostinterestedin,thetimewhen y =0.Whatwecando,istoplug0infor y,andsolveforthatspecialtime tthat,whenplugged intoequation132,makes ybe0.Whenwerewriteequation132with ysetto0,thesymbol t takesonanewmeaning.Insteadofbeingavariable,itbecomesaspecialtime,thetimethat

1 2 makesthe yintheactualequation132( y === yo +++ voy t +++ ay t )zero. 2

76 Chapter 13 Freefall, a.k.a. Projectile Motion

1 2 0 === yo +++voy t +++ ay t (133) * 2 * Toemphasizethatthetimeinequation133isaparticularinstantintimeratherthanthevariable timesincelaunch,Ihavewrittenitas t toberead“ tstar.”Everythinginequation133isa * givenexcept t sowecansolveequation133for t .Recognizingthatequation133isa * * quadraticequationin t wefirstrewriteitintheformofthestandardquadraticequation * ax +++ bx2 +++ c === 0 .Thisyields:

1 2 ay t +++ voy t +++ yo === 0 2 * * − b ± b 2 − 4ac Thenweusethequadraticformula x = whichforthecaseathandappearsas: 2a

2  1  −−−voy ±±± voy −−− 4 ay  yo  2  t === *  1  2 ay   2  whichsimplifiesto 2 −−−voy ±±± voy −−− 2ay yo t === * ay Substitutingvalueswithunitsyields: 2 m  m   m  −−− 4.65 ±±±  4.65  −−− 2 −−− 9.80  2.0 m s  s   s2  t === * m −−− 9.80 s2 whichevaluatesto t === −−− 0.321s andt === 1.27 s * * Wediscardthenegativeanswerbecauseweknowthattheprojectilehitsthegroundafterthe launch,notbeforethelaunch. Recallthat t isthestopwatchreadingwhentheprojectilehitstheground.Notethatthewhole * timeithasbeenmovingupanddown,theprojectilehasbeenmovingforwardinaccordwith

77 Chapter 13 Freefall, a.k.a. Projectile Motion equation131, x =v t .Atthispoint,allwehavetodoisplugt === 1.27 s intoequation131 ox * andevaluate: x =v t ox * m x === 9.97 1( .27s) s x=13 m Thisistheanswer.Theprojectiletravels13mforwardbeforeithitstheground.

78 Chapter 14 Newton’s Laws #1: Using Free Body Diagrams

14 Newton’s Laws #1: Using Free Body Diagrams Ifyouthrowarockupwardinthepresenceofanotherperson,andyouaskthat otherpersonwhatkeepstherockgoingupward,afteritleavesyourhandbutbefore itreachesitsgreatestheight,thatpersonmayincorrectlytellyouthattheforceof theperson’shandkeepsitgoing.Thisillustratesthecommonmisconceptionthat forceissomethingthatisgiventotherockbythehandandthattherock“has” whileitisintheair.Itisnot.Aforceisallaboutsomethingthatisbeingdoneto anobject.Wehavedefinedaforcetobeanongoingpushorapull.Itissomething thatanobjectcanbeavictimto,itisneversomethingthatanobjecthas.Whilethe forceisactingontheobject,themotionoftheobjectisconsistentwiththefactthat theforceisactingontheobject.Oncetheforceisnolongeractingontheobject, thereisnosuchforce,andthemotionoftheobjectisconsistentwiththefactthat theforceisabsent.(Asrevealedinthischapter,thecorrectanswertothequestion aboutwhatkeepstherockgoingupward,is,“Nothing.”Continuingtogoupward iswhatitdoesallbyitselfifitisalreadygoingupward.Youdon’tneedanythingto makeitkeepdoingthat.Infact,theonlyreasontherockdoesnotcontinuetogo upwardforeverisbecausethereisadownwardforceonit.Whenthereisa downwardforceandonlyadownwardforceonanobject,thatobjectis experiencingadownwardacceleration.Thismeansthattheupwardmovingrock slowsdown,thenreversesitsdirectionofmotionandmovesdownwardeverfaster.) Imaginethatthestarsarefixedinspacesothatthedistancebetweenonestarandanothernever changes.(Theyarenotfixed.Thestarsaremovingrelativetoeachother.)Nowimaginethat youcreateaCartesiancoordinatesystem;asetofthreemutuallyorthogonalaxesthatyoulabel x,y,andz.YourCartesiancoordinatesystemisareferenceframe.Nowaslongasyour referenceframeisnotrotatingandiseitherfixedormovingataconstantvelocityrelativetothe (fictitious)fixedstars,thenyourreferenceframeisan inertialreferenceframe .Notethat velocityhasbothmagnitudeanddirectionandwhenwestipulatethatthevelocityofyour referenceframemustbeconstantinorderforittobeaninertialreferenceframe,wearen’tjust sayingthatthemagnitudehastobeconstantbutthatthedirectionhastobeconstantaswell.The magnitudeofthevelocityisthespeed.So,forthemagnitudeofthevelocitytobeconstant,the speedmustbeconstant.Forthedirectiontobeconstant,thereferenceframemustmovealonga straightlinepath.Soaninertialreferenceframeisonethatiseitherfixedormovingata constantspeedalongastraightlinepath,relativetothe(fictitious)fixedstars. Theconceptofaninertialreferenceframeisimportantinthestudyofphysicsbecauseitisin inertialreferenceframesthatthelawsofmotionknownasNewton’sLawsofMotionapply. HereareNewton’sthreelawsofmotion,observedtobeadheredtobyanyparticleofmatterin aninertialreferenceframe: I.Ifthereisnonetforceactingonaparticle,thenthevelocityofthatparticleisnot changing. II.Ifthereisanetforceonaparticle,thenthatparticleisexperiencinganacceleration thatisdirectlyproportionaltotheforce,withtheconstantofproportionalitybeing thereciprocalofthemassoftheparticle.

79 Chapter 14 Newton’s Laws #1: Using Free Body Diagrams

III.Anytimeoneobjectisexertingaforceonasecondobject,thesecondobjectis exertinganequalbutoppositeforcebackonthefirstobject.

Discussion of Newton’s 1 st Law Despitethename,itwasactuallyGalileothatcameupwiththefirstlaw.Heletaballrolldown arampwithanotherrampfacingtheotherwayinfrontofitsothat,afteritrolleddownone ramp,theballwouldrolluptheother.Henotedthattheballrolledupthesecondramp,slowing steadilyuntilitreachedthesameelevationastheonefromwhichtheballwasoriginallyreleased fromrest.Hethenrepeatedlyreducedtheanglethatthesecondrampmadewiththehorizontal andreleasedtheballfromrestfromtheoriginalpositionforeachnewinclinationofthesecond ramp.Thesmallertheangle,themoreslowlythespeedoftheballwasreducedonthewayup thesecondrampandthefartherithadtotravelalongthesurfaceofthesecondrampbefore arrivingatitsstartingelevation.Whenhefinallysettheangletozero,theballdidnotappearto slowdownatallonthesecondramp.Hedidn’thaveaninfinitelylongramp,butheinducedthat ifhedid,withthesecondramphorizontal,theballwouldkeeponrollingforever,neverslowing downbecausenomatterhowfaritrolled,itwouldnevergainanyelevation,soitwouldnever getuptothestartingelevation.Hisconclusionwasthatifanobjectwasmoving,thenifnothing interferedwithitsmotionitwouldkeeponmovingatthesamespeedinthesamedirection.So whatkeepsitgoing?Theansweris“nothing.”Thatisthewholepoint.Anobjectdoesn’tneed anythingtokeepitgoing.Ifitisalreadymoving,goingataconstantvelocityiswhatitdoesas longasthereisnonetforceactingonit.Infact,ittakesa force to change thevelocityofan object. It’snothardtoseewhyittookahugechunkofhumanhistoryforsomeonetorealizethatifthere isnonetforceonamovingobject,itwillkeepmovingataconstantvelocity,becausethething is,wherewelive,onthesurfaceoftheEarth,thereisinevitablyanetforceonamovingobject. YouthrowsomethingupandtheEarthpullsdownwardonitthewholetimetheobjectisin flight.It’snotgoingtokeeptravelinginastraightlineupward,notwiththeEarthpullingonit. Evenifyoutryslidingsomethingacrossthesmoothsurfaceofafrozenpondwherethe downwardpulloftheEarth’sgravitationalfieldiscancelledbytheicepressingupontheobject, youfindthattheobjectslowsdownbecauseofafrictionalforcepushingontheobjectinthe directionoppositethatoftheobject’svelocityandindeedaforceofairresistancedoingthesame thing.Inthepresenceoftheseubiquitousforces,ittookhumankindalongtimetorealizethatif therewerenoforces,anobjectinmotionwouldstayinmotionalongastraightlinepath,at constantspeed,andthatanobjectatrestwouldstayatrest.

Discussion of Newton’s 2 nd Law Galileoinducedsomethingelseofinterestfromhisballontherampexperimentsbyfocusinghis attentiononthefirstrampdiscussedabove.Observationofaballreleasedfromrestrevealedto himthattheballsteadilyspeduponthewaydowntheramp.Tryit.Aslongasyoudon’tmake theramptoosteep,youcan see thattheballdoesn’tjustrolldowntherampatsomefixedspeed,

80 Chapter 14 Newton’s Laws #1: Using Free Body Diagrams itacceleratesthewholewaydown.Galileofurthernotedthatthesteepertherampwas,thefaster theballwouldspeeduponthewaydown.Hedidtrialaftertrial,startingwithaslightlyinclined planeandgraduallymakingitsteeperandsteeper.Eachtimehemadeitsteeper,theballwould, onthewaydowntheramp,speedupfasterthanitdidbefore,untiltherampgotsosteepthathe couldnolongerseethatitwasspeedinguponthewaydowntheramp—itwassimplyhappening toofasttobeobserved.ButGalileoinducedthat,ashecontinuedtomaketherampsteeper,the samethingwashappening.Thatisthattheball’sspeedwasstillincreasingonitswaydownthe rampandthegreatertheangle,thefastertheballwouldspeedup.Infact,heinducedthatifhe increasedthesteepnesstotheultimateangle,90°,thattheballwouldspeedupthewholeway downtherampfasterthanitwouldatanysmalleranglebutthatitwouldstillspeeduponthe waydown.Now,whentherampistiltedat90°,theballisactuallyfallingasopposedtorolling downtheramp,soGalileo’sconclusionwasthatwhenyoudropanobject(forwhichair resistanceisnegligible),whathappensisthattheobjectspeedsupthewholewaydown,untilit hitstheEarth. GalileothusdidquiteabittosetthestageforSirIsaacNewton,whowasbornthesameyearthat Galileodied. ItwasNewtonwhorecognizedtherelationshipbetweenforceandmotion.Heistheonethat realizedthatthelinkwasbetweenforceandacceleration,morespecifically,thatwheneveran objectisexperiencinganetforce,thatobjectisexperiencinganaccelerationinthesame directionastheforce.Now,someobjectsaremoresensitivetoforcethanotherobjects—wecan saythateveryobjectcomeswithitsownsensitivityfactorsuchthatthegreaterthesensitivity factor,thegreatertheaccelerationoftheobjectforagivenforce.Thesensitivityfactoristhe reciprocalofthemassoftheobject,sowecanwritethat 1 a = F (141) m ∑ where a istheaccelerationoftheobject, misthemassoftheobject,and ∑F isthevectorsum ofalltheforcesactingontheobject,thatistosaythat ∑F isthenetforceactingontheobject.

Discussion of Newton’s Third Law Inrealizingthatwheneveroneobjectisintheactofexertingaforceonasecondobject,the secondobjectisalwaysintheactofexertinganequalandoppositeforcebackonthefirstobject, Newtonwasrecognizinganaspectofnaturethat,onthesurface,seemsquitesimpleand straightforward,butquicklyleadstoconclusionsthat,howevercorrecttheymaybe,andindeed theyarecorrect,arequitecounterintuitive.Newton’s3 rd lawisastatementofthefactthatany forcewhatsoeverisjustonehalfofaninteractionwherean interaction inthissenseisthemutual pushingorpullingthatquiteoftenoccurswhenoneobjectisinthevicinityofanother.

81 Chapter 14 Newton’s Laws #1: Using Free Body Diagrams

Insomecases,wheretheeffectisobvious,thevalidityofNewton’sthirdlawisfairlyevident. Forinstanceiftwopeoplewhohavethesamemassareonrollerskatesandarefacingeachother andonepushestheother,weseethatbothskatersgorollingbackward,awayfromeachother.It mightatfirstbehardtoacceptthefactthatthesecondskaterispushingbackonthehandsofthe firstskater,butwecantellthattheskaterthatwethinkofasthepusher,mustalsobea“pushee,” becausewecanseethatsheexperiencesabackwardacceleration.Infact,whilethepushingis takingplace,theforceexertedonhermustbejustasgreatastheforcesheexertsontheother skaterbecauseweseethatherfinalbackwardspeedisjustasgreatasthatoftheother(same mass)skater. Buthowaboutthosecaseswheretheeffectofatleastoneoftheforcesintheinteractionpairis notatallevident?Supposeforinstancethatyouhaveabroomleaningupagainstaslippery wall.AsidefromourknowledgeofNewton’slaws,howcanweconvinceourselvesthatthe broomispressingagainstthewall,thatis,thatthebroomiscontinuallyexertingaforceonthe wall;and;howcanweconvinceourselvesthatthewallisexertingaforcebackonthebroom? Onewaytoconvinceyourselfistoletyourhandplaytheroleofthewall.Movethebroomand putyourhandintheplaceofthewallsothatthebroomisleaningagainstthepalmofyourhand atthesameanglethatitwasagainstthewallwiththepalmofyourhandfacingdirectlytoward thetipofthehandle.Youcanfeelthetipofthehandlepressingagainstthepalmofyourhand. Infact,youcanseetheindentationthatthetipofthebroomhandlemakesinyourhand.You canfeeltheforceofthebroomhandleonyourhandandyoucaninducethatwhenthewallis whereyourhandis,relativetothebroom,thebroomhandlemustbepressingonthewallwith thesameforce. Howaboutthisbusinessofthewallexertingaforceon(pushingon)thetipofthebroomhandle? Again,withyourhandplayingtheroleofthewall,quicklymoveyourhandoutoftheway.The broom,ofcourse,fallsdown.Beforemovingyourhand,youmusthavebeenapplyingaforce onthebroomorelsethebroomwouldhavefallendownthen.Youmightarguethatyourhand wasn’tnecessarilyapplyingaforcebutratherthatyourhandwasjust“intheway.”WellI’m heretotellyouthat“beingintheway”isallaboutapplyingaforce.Whenthebroomisleaning upagainstthewall,thefactthatthebroomdoesnotfallovermeansthatthewallisexertinga forceonthebroomthatcancelstheotherforcessothattheydon’tmakethebroomfallover.In fact,ifthewallwasnotstrongenoughtoexertsuchaforce,thewallwouldbreak.Still,itwould benicetogetavisceralsenseoftheforceexertedonthebroombythewall.Letyourhandplay theroleofthewall,butthistime,letthebroomleanagainstyourpinky,nearthetipofyour finger.Tokeepthebroominthesameorientationasitwaswhenitwasleaningagainstthewall, youcanfeelthatyouhavetoexertaforceonthetipofthebroomhandle.Infact,ifyouincrease thisforcealittlebit,thebroomhandletiltsmoreupward,andifyoudecreaseit,ittiltsmore downward.Again,youcanfeelthatyouarepushingonthetipofthebroomhandlewhenyou arecausingthebroomhandletoremainstationaryatthesameorientationithadwhenitwas leaningagainstthewall,andyoucaninducethatwhenthewalliswhereyourhandis,relativeto thebroom,thewallmustbepressingonthebroomhandlewiththesameforce.Notethatthe directioninwhichthewallispushingonthebroomisawayfromthewallatrightanglestothe wall.Suchaforceisexertedonanyobjectthatisincontactwithasolidsurface.Thiscontact forceexertedbyasolidsurfaceonanobjectincontactwiththatsurfaceiscalleda“normal

82 Chapter 14 Newton’s Laws #1: Using Free Body Diagrams force”becausetheforceisperpendiculartothesurfaceandtheword“normal”means perpendicular.

Using Free Body Diagrams ThekeytothesuccessfulsolutionofaNewton’s2 nd Lawproblemistodrawagoodfreebody diagramoftheobjectwhosemotionisunderstudyandthentousethatfreebodydiagramto expandNewton’s2 nd Law,thatis,toreplacethe ∑ F withantheactualtermbytermsumof 1 theforces.NotethatNewton’s2 nd Law a = F isavectorequationandhence,inthemost m ∑ generalcase(3dimensions)isactuallythreescalarequationsinone,oneforeachofthethree possiblemutuallyorthogonaldirectionsinspace.(Ascalarisanumber.Somethingthathas magnitudeonly,asopposedtoavectorwhichhasmagnitudeanddirection.)Inyourphysics course,youwilltypicallybedealingwithforcesthatalllieinthesameplane,andhence,you 1 willtypicallygettwoequationsfrom a = F . m ∑ RegardingtheFreeBodyDiagrams:Thehardpartiscreatingthemfromadescriptionofthe physicalprocessunderconsideration;theeasypartisusingthem.Inwhatlittleremainsofthis chapter,wewillfocusontheeasypart:GivenaFreeBodyDiagram,useittofindanunknown forceorunknownforces,and/oruseittofindtheaccelerationoftheobject.

83 Chapter 14 Newton’s Laws #1: Using Free Body Diagrams

Forexample,giventhefreebodydiagram Upward a FN Leftward Rightward F =13newtons kf FP=31newtons F =19 .6newtons g Downward foranobjectofmass2 .00kg,findthemagnitudeofthenormalforce FN andfindthemagnitude oftheacceleration a.(Notethatwedefinethesymbolsthatweusetorepresentthecomponents offorcesandthecomponentoftheacceleration, inthefreebodydiagram .Wedothisby drawinganarrowwhoseshaftrepresentsalinealongwhichtheforcelies,andwhosearrowhead wedefinetobethepositivedirectionforthatforcecomponent,andthenlabelingthearrowwith ourchosensymbol.Anegativevalueforasymbolthusdefined,simplymeansthatthe correspondingforceoraccelerationisinthedirectionoppositetothedirectioninwhichthe arrowispointing. Solution:Notethattheaccelerationandalloftheforcesliealongoneortheotheroftwo imaginarylines(oneofwhichishorizontalandtheotherofwhichisvertical)thatare perpendiculartoeachother.Theaccelerationalongonelineisindependentofanyforces perpendiculartothatlinesowecanconsideronelineatatime.Let’sdealwiththehorizontal linefirst.WewriteNewton’s2 nd Lawforthehorizontallineas 1 a === F (142) →→→ m ∑∑∑ →→→ inwhichtheshaftsofthearrowsindicatethelinealongwhichwearesummingforces(theshafts inequation142arehorizontalsowemustbesummingforcesalongthehorizontal)andthe arrowheadindicateswhichdirectionweconsidertobethepositivedirection(anyforceinthe oppositedirectionentersthesumwithaminussign).

Thenextstepistoreplace a→ withthesymbolthatwehaveusedinthediagramtorepresentthe rightwardaccelerationandthe ∑∑∑ F→→→ withanactualtermbytermsumoftheforceswhich includesonlyhorizontalforcesandinwhichrightwardforcesenterwitha“+”andleftward forcesenterwitha“ −”.Thisyields: 1 a = (F − F ) m P kf Substitutingvalueswithunitsandevaluatinggives: 1 m a === (31 N −−−13 N) === 9.0 2.00 kg s2

84 Chapter 14 Newton’s Laws #1: Using Free Body Diagrams

Nowweturnourattentiontotheverticaldirection.Foryourconvenience,thefreebodydiagram isreplicatedhere: Upward a

FN Leftward Rightward F =13newtons F =31newtons kf P F =19 .6newtons g Downward AgainwestartwithNewton’s2 nd Law,thistimewrittenfortheverticaldirection: 1 a === F ↓↓↓ m ∑∑∑ ↓↓↓

Wereplace a withwhatitisandwereplace F withthetermbytermsumoftheforces ↓ ∑∑∑ ↓↓↓ witha“+”fordownwardforcesanda“ −“forupwardforces.Notethattheonly ainthefree bodydiagramishorizontal.Whoevercameupwiththatfreebodydiagramistellingusthatthere isnoaccelerationintheverticaldirection,thatis,that a =0.Thus: ↓↓↓ 1 0 = (F − F ) m g N

Solvingthisfor FNyields

FN= Fg Substitutingvalueswithunitsresultsinafinalanswerof:

FN=19 .6newtons.

85 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams Thereisno“forceofmotion”actingonanobject.Onceyouhavetheforceorforces exertedontheobjectbyeverything(includinganyforcepermassfieldatthelocationof theobject)thatistouchingtheobject,youhavealltheforces.Donotaddabogus“force ofmotion”toyourfreebodydiagram.Itisespeciallytemptingtoaddabogusforce whentherearenoactualforcesinthedirectioninwhichanobjectisgoing.Keepin mind,however,thatanobjectdoesnotneedaforceonittokeepgoinginthedirectionin whichitisgoing;movingalongataconstantvelocityiswhatanobjectdoeswhenthere isnonetforceonit . Nowthatyou’vehadsomepracticeusingfreebodydiagramsitistimetodiscusshowtocreate them.Asyoudrawafreebodydiagram,thereareacoupleofthingsyouneedtokeepinmind: (1)IncludeonlythoseforcesactingONtheobjectwhosefreebodydiagramyouare drawing.AnyforceexertedBYtheobjectonsomeotherobjectbelongsonthefreebody diagramofthe other object. (2)Allforcesarecontactforces andeveryforcehasanagent.Theagentis“thatwhichis exertingtheforce.”Inotherwords,theagentisthelifeformorthingthatisdoingthe pushingorpullingontheobject.Noagentcanexertaforceonanobjectwithoutbeingin contactwiththeobject.(Weareusingthefieldpointofview,ratherthantheactionata distancepointofviewforthefundamentalforcesofnature.Thus,forinstance,itisthe earth’sgravitationalfieldatthelocationoftheobject,ratherthanthematerialearthitself, thatexertsthegravitationalforceonanobject.) Wearegoingtointroducethevariouskindsofforcesbymeansofexamples.Hereisthefirst example: Example 15-1 Arockisthrownupintotheairbyaperson.Drawthefreebodydiagramoftherock whileitisupintheair.(Yourfreebodydiagramisapplicableforanytimeafterthe rockleavesthethrower’shand,untilthelastinstantbeforetherockmakescontact withwhateveritisdestinedtohit.)Neglectanyforcesthatmightbeexertedonthe rockbytheair. Ifyouseetherockflyingthroughtheair,itmayverywelllooktoyoulikethereisnothing touchingtherock.Buttheearth’sgravitationalfieldiseverywhereinthevicinityoftheearth.It can’tbeblocked.Itcan’tbeshielded.Itisintheair,inthewater,eveninthedirt.Itisindirect contactwitheverythinginthevicinityoftheearth.Itexertsaforceoneveryobjectnearthe surfaceoftheearth.Wecallthatforcethegravitationalforce.Youhavealreadystudiedthe gravitationalforce.Wegiveabriefsynopsisofithere.

86 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

TheGravitationalForceExertedonObjectsNeartheSurfaceoftheEarth. Becauseithasmass,theearthhasagravitationalfield.Thegravitationalfieldisa forcepermassfield.Itisinvisible.Itisnotmatter.Itisaninfinitesetofforcepermass vectors,oneateverypointinspaceinthevicinityofthesurfaceoftheearth.Eachforce permassvectorisdirecteddownward,towardthecenteroftheearthand,nearthesurface N oftheearth,hasamagnitudeof 9.80 .Thesymbolusedtorepresenttheearth’s kg gravitationalfieldvectoratanypointwhereitexistsis ggg.Thus, N ggg=== 9.80 Downward.Theeffectoftheearth’sgravitationalfieldistoexertaforceon kg anyobjectthatisintheearth’sgravitationalfield.Theforceiscalledthegravitational forceandisequaltotheproductofthemassofth eobjectandtheearth’sgravitational fieldvector: Fg = mggg.Themagnitudeofthegravitationalforceisgivenby F= m (151) g g N where g === 9.80 isthemagnitudeoftheearth’sgravitationalfieldvector.The kg directionofthenearearth’ssurfacegravitationalforceisdownward,towardthecenterof theearth. HereisthefreebodydiagramandthecorrespondingtableofforcesforExample151: a m TableofForces Symbol = ? Name Agent Victim TheEarth’s F=m Gravitational The g g Gravitational F Force Rock g Field Note: 1)Theonlythingtouchingtheobjectwhileitisupintheair(neglectingtheairitself)isthe earth’sgravitationalfield.Sothereisonlyoneforceontheobject,namelythegravitational force.Thearrowrepresentingtheforcevectorisdrawnsothatthetailofthearrowis touchingtheobject,andthearrowextendsawayfromtheobjectinthedirectionoftheforce. 2)Unlessotherwisestipulatedandlabeledonthediagram,upwardistowardthetopofthepage anddownwardistowardthebottomofthepage. 3)Thearrowrepresentingtheaccelerationmustbenearbutnottouchingtheobject.(Ifitis touchingtheobject,onemightmistakeitforaforce.) 4)Thereisnovelocityinformationonafreebodydiagram.

87 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

5)Thereisnoforceofthehandactingontheobjectbecause,attheinstantinquestion,thehand isnolongertouchingtheobject.Whenyoudrawafreebodydiagram,onlyforcesthatare actingontheobjectattheinstantdepictedinthediagramareincluded.Theaccelerationof theobjectdependsonlyonthecurrentlyactingforcesontheobject.Theforceofthehandis ofhistoricalinterestonly. 6)Regardingthetableofforces: a)Makesurethatforanyfreebodydiagramyoudraw,youarecapableofmakinga completetableofforces.Youarenotrequiredtoprovideatableofforceswithevery freebodydiagramyoudraw,butyoushouldexpecttobecalledupontocreateatableof forcesmorethanonce. b)Inthetableofforces,theagentisthelifeformorthingthatisexertingtheforceandthe victimistheobjectonwhichtheforceisbeingexerted.Makesurethat,ineverycase, thevictimistheobjectforwhichthefreebodydiagramisbeingdrawn. c)Inthecaseathand,thereisonlyoneforcesothereisonlyoneentryinthetableof forces. d)Foranyobjectnearthesurfaceoftheearth,theagentofthegravitationalforceisthe earth’sgravitationalfield.Itisokaytoabbreviatethatto“Earth”becausethe gravitationalfieldoftheearthcanbeconsideredtobeaninvisiblepartoftheearth,but itisNOTokaytocallit“.”Gravityisasubjectheadingcorrespondingtothe kindofforcethegravitationalforceis,gravityisnotanagent. Example 15-2 Aballofmass mhangsatrest,suspendedbyastring.Drawthefreebodydiagram fortheball,andcreatethecorrespondingtableofforces. Todothisproblem,youneedthefollowinginformationaboutstrings: TheForceExertedbyaTautStringonanObjecttoWhichitisAffixed (Thisalsoappliestoropes,cables,chains,andthelike.) Theforceexertedbyastring,onanobjecttowhichitisattached,isalwaysdirectedaway fromtheobject,alongthelengthofthestring. Notethattheforceinquestionisexertedbythestring,notforinstance,bysomeperson pullingontheotherendofthestring. Theforceexertedbyastringonanobjectisreferredtoasa“tensionforce”andits magnitudeisconventionallyrepresentedbythesymbol FT. Note:Thereisnoformulatotellyouwhatthetensionforceis.Ifitisnotgiven,theonly waytogetitistouseNewton’s2 nd Law.

88 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

Hereisthefreebodydiagramoftheball,andthecorrespondingtableofforcesforExample152: FT TableofForces a=0 Symbol=? Name Agent Victim m Tension F TheString TheBall T Force F Gravitational TheEarth’s g F=m g TheBall g Force GravitationalField Example 15-3 Asledofmass misbeingpulledforwardoverahorizontalfrictionlesssurfaceby meansofahorizontalropeattachedtothefrontofthesled.Drawthefreebody diagramofthesledandprovidethecorrespondingtableofforces. Asidefromtheropeandtheearth’sgravitationalfield,thesledisincontactwithasolidsurface. Thesurfaceexertsakindofforcethatweneedtoknowaboutinordertocreatethefreebody diagramforthisexample. TheNormalForce Whenanobjectisincontactwithasurface,thatsurfaceexertsaforceontheobject.The surfacepressesontheobject.Theforceontheobjectisawayfromthesurface,anditis perpendiculartothesurface.Theforceiscalledthenormalforcebecause“normal” meansperpendicular,andasmentioned,theforceisperpendiculartothesurface.Weuse thesymbol FN torepresentthemagnitudeofthenormalforce. Note:Thereisnoformulatotellyouwhatthenormalforceis.Ifitisnotgiven,theonly waytogetitistouseNewton’s2 nd Law. Hereisthefreebodydiagramofthesledaswellasthecorrespondingtableofforces. TableofForces a Symbol=? Name Agent Victim The F Normal The N F Horizontal FT N Force Sled Surface Tension The FT TheRope F Force Sled g TheEarth’s Gravitational The F=m g Gravitational g Force Sled Field

89 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

Note:Theword“Free”in“FreeBodyDiagram”referstothefactthattheobjectisdrawnfreeof itssurroundings.Donotincludethesurroundings(suchasthehorizontalsurfaceon whichthesledisslidinginthecaseathand)inyourFreeBodyDiagram. Example 15-4 Ablockofmass mrestsonafrictionlesshorizontalsurface.Theblockisduewest ofawestfacingwall.Theblockisattachedtothewallbyanidealmassless uncompressed/unstretchedspringwhoseforceconstantis k.Thespringis perpendiculartothewall.Apersonpullstheblockadistance xdirectlyawayfrom thewallandreleasesitfromrest.Drawthefreebodydiagramoftheblock appropriateforthefirstinstantafterrelease.Providethecorrespondingtableof forces. Now,forthefirsttime,wehaveaspringexertingaforceontheobjectforwhichwearedrawing thefreebodydiagram.So,weneedtoknowabouttheforceexertedbyaspring. TheForceExertedbyaSpring Theforceexertedbyanidealmasslessspringonanobjectincontactwithoneendofthe springisdirectedalongthelengthofthespring,and • awayfromtheobjectifthespringisstretched, • towardtheobjectifthespringiscompressed. Forthespringtoexertaforceontheobjectinthestretchedspringcase,theobjectmust beattachedtotheendofthespring.Notsointhecompressedspringcase.Thespring canpushonanobjectwhetherornotthespringisattachedtotheobject. Theforcedependsontheamount x bywhichthespringisstretchedorcompressed, andonameasureofthestiffnessofthespringknownastheforceconstantofthespring a.k.a.thespringconstantandrepresentedbythesymbol k.Themagnitudeofthespring forceistypicallyrepresentedbythesymbol FS .Thespringforceisdirectlyproportional totheamountofstretch x .Thespringconstant kistheconstantofproportionality. Thus,

FS= k x (152) Hereisthefreebodydiagramoftheblock,andthecorrespondingtableofforcesfor Example154:

90 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

BEWARE:Bychance,intheexamples providedinthischapter,thenormalforce UP isupward.Neverassumeittobeupward. Thenormalforceisperpendicularto,and a awayfrom,thesurfaceexertingit.It happenstobeupwardintheexamples FN becausetheobjectisincontactwiththe topofahorizontalsurface.Ifthesurface EAST isawall,thenormalforceishorizontal;if m F S itisaceiling,downward;ifanincline, perpendiculartoandawayfromthe incline. Never assume the normal force F g to be upward. TableofForces Symbol=? Name Agent Victim F Normal TheHorizontal The N Force Surface Block The F === k x SpringForce TheSpring S Block Gravitational TheEarth’s The F=m g g Force GravitationalField Block Example 15-5 Fromyourvantagepoint,acrateofmass misslidingrightwardonaflatlevel concretefloor.Nothingsolidisincontactwiththecrateexceptforthefloor.Draw thefreebodydiagramofthecrate.Providethecorrespondingtableofforces. Fromourexperiencewithobjectsslidingonconcretefloors,weknowthatthecrateisslowing downattheinstantunderconsideration.Itisslowingbecauseofkineticfriction. KineticFriction Asurface,uponwhichanobjectissliding,exerts(inadditiontothenormalforce)a retardingforceonthatobject.Theretardingforceisinthedirectionoppositethatofthe velocityoftheobject.Inthecaseofanobjectslidingonadrysurfaceofasolidbody (suchasafloor)wecalltheretardingforceakineticfrictionalforce.Kineticmeans motionandweincludetheadjectivekinetictomakeitclearthatwearedealingwithan objectthatisinmotion. Thekineticfrictionalformulagivenbelowisanempiricalresult.Thismeansthatitis

91 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams deriveddirectlyfromexperimentalresults.Itworksonlyinthecaseofobjectsslidingondry surfaces.Itdoesnotapply,forinstance,tothecaseofanobjectslidingonagreasedsurface. WeusethesymbolF forthekineticfrictionforce.Thekineticfrictionalformulareads kf F = F (153) kf K N

FNisthemagnitudeofthenormalforce.Itspresenceintheformulaindicatesthatthemore stronglythesurfaceispressingontheobject,thegreaterthefrictionalforce.

K (subK)iscalledthecoefficientofkineticfriction.Itsvaluedependsonthematerialsof whichboththeobjectandthesurfacearemadeaswellasthesmoothnessofthetwocontact surfaces.Ithasnounits.Itisjustanumber.Themagnitudeofthekineticfrictionalforceis somefractionofthemagnitudeofthenormalforce; K isthatfraction.Valuesof K for variouspairsofmaterialscanbefoundinhandbooks.Theytendtofallbetween0and1.The actualvalueforagivenpairofmaterialsdependsonthesmoothnessofthesurfaceandis typicallyquotedwithbutasinglesignificantdigit.

IMPORTANT: K isacoefficient(withnounits)usedincalculatingthefrictionalforce.Itis notaforceitself. Hereisthefreebodydiagramandthetableofforcesforthecaseathand.Thecrateismoving rightwardandslowingdown—ithasaleftwardacceleration. TableofForces a Symbol Name Agent Victim TheConcrete The FN F NormalForce N Floor Crate Kinetic TheConcrete The F = F kf K N FrictionForce Floor Crate m TheEarth’s F =m Gravitational The F g g Gravitational Force Crate kf Field F g

Note:Noteveryobjecthasanormal(“perpendiculartothesurface”)forceactingonit.Ifthe objectisnotincontactwithasurface,thenthereisnonormalforceactingontheobject.

92 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

Example 15-6 Apersonhaspushedabrickalongatilefloortowardaneastwardfacingwall

trappingaspringofunstretchedlength Lo andforceconstant kbetweenthewalland theendofthebrickthatisfacingthewall.Thatendofthebrickisadistance dfrom thewall.Thepersonhasreleasedthebrick,butthespringisunabletobudgeit— thebrickremainsexactlywhereitwaswhenthepersonreleasedit.Drawthefree bodydiagramforthebrickandprovidethecorrespondingtableofforces. Africtionalforceisactingonanobjectatrest.Typically,anobject atrest clingsmorestrongly tothesurfacewithwhichitisincontactthanthesameobjectdoeswhenitis sliding acrossthe samesurface.Whatwehavehereisacaseofstaticfriction. StaticFrictionForce Asurfacethatisnotfrictionlesscanexertastaticfrictionforceonanobjectthatisin contactwiththatsurface.Theforceofstaticfrictionisparalleltothesurface.Itisinthe directionoppositethedirectionofimpendingmotionofthestationaryobject.The directionofimpendingmotionisthedirectioninwhichtheobjectwouldaccelerateif therewasnostaticfriction. Ingeneral,thereisnoformulaforcalculatingstaticfriction—tosolvefortheforceof staticfriction,youuseNewton’s2 nd Law.Theforceofstaticfrictioniswhateverithasto betomakethenetparalleltothesurfaceforcezero.

Weusethesymbol Fsftorepresentthemagnitudeofthestaticfrictionforce. SPECIALCASE:Imaginetryingtopusharefrigeratoracrossthefloor. Imaginethatyoupushhorizontally,andthatyougraduallyincreasetheforce withwhichyouarepushing.Initially,theharderyoupush,thebiggertheforce ofstaticfriction.Butitcan’tgrowforever.Thereisamaximumpossiblestatic frictionforcemagnitudeforanysuchcase.Oncethemagnitudeofyourforce exceedsthat,therefrigeratorwillstartsliding.Themaximumpossibleforceof staticfrictionisgivenby: maxpossible Fsf = SFN (154)

Theunitlessquantity S isthecoefficientofstaticfrictionspecifictothetypeof surfacetheobjectisslidingonandthenatureofthesurfaceoftheobject.

Valuesof S tendtofallbetween0and1.Foraparticularpairofsurfaces, S isatleastaslargeas,andtypicallylargerthan, . K

93 Chapter 15 Newton’s Laws #2: Kinds of Forces, Creating Free Body Diagrams

maxpossible Clearly,thisformula( Fsf = SFN )isonlyapplicablewhenthe questionisaboutthemaximumpossibleforceofstaticfriction.Youcanuse thisformulaiftheobjectissaidtobeonthevergeofslipping,orifthe questionisabouthowhardonemustpushtobudgeanobject.Italsocomes inhandywhenyouwanttoknowwhetherornotanobjectwillstayput.In suchacaseyouwoulduseNewton’s2 ndtofindoutthemagnitudeofthe forceofstaticfrictionneededtokeeptheobjectfromaccelerating.Thenyou wouldcomparethatmagnitudewiththemaximumpossiblemagnitudeofthe forceofstaticfriction. HereisthefreebodydiagramofthebrickandthetableofforcesforExample156: Up a=0 FN m East FS F sf F TableofForces g Symbol=? Name Agent Victim Normal The FN TheTileFloor Force Brick Static The F Friction TheTileFloor sf Brick Force Gravitational TheEarth’s The F = mg g Force GravitationalField Brick The F = k x SpringForce TheSpring S Brick

94 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings When,inthecaseofatiltedcoordinatesystem,youbreakupthegravitationalforce vectorintoitscomponentvectors,makesurethegravitationalforcevectoritselfforms thehypotenuseoftherighttriangleinyourvectorcomponentdiagram.Alltoooften, folksdrawoneofthecomponentsofthegravitationalforcevectorinsuchamannerthat itisbiggerthanthegravitationalforcevectoritissupposedtobeacomponentof.The componentofavectorisneverbiggerthanthevectoritself . Havinglearnedhowtousefreebodydiagrams,andthenhavinglearnedhowtocreatethem,you areinaprettygoodpositiontosolveahugenumberofNewton’s2 nd Lawproblems.An understandingoftheconsiderationsinthischapterwillenabletoyoutosolveanevenlarger classofproblems.Again,weuseexamplestoconveythedesiredinformation. Example 16-1 Aprofessorispushingonadeskwithaforceofmagnitude Fatanacuteangle θbelow thehorizontal.Thedeskisonaflat,horizontaltileflooranditisnotmoving.Forthe desk,drawthefreebodydiagramthatfacilitatesthedirectandstraightforward applicationofNewton’s2 nd Lawofmotion.Givethetableofforces. Whilenotarequiredpartofthesolution,asketchoftenmakesiteasiertocomeupwiththe correctfreebodydiagram.Justmakesureyoudon’tcombinethesketchandthefreebody diagram.Inthisproblem,asketchhelpsclarifywhatismeantby“atanacuteangle θbelowthe horizontal.” Pushingwithaforcethatisdirectedatsomeacuteanglebelowthehorizontalispushing horizontallyanddownwardatthesametime.

95 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

Hereistheinitialfreebodydiagramandthecorrespondingtableofforces. a=0 FN θ FP F F sf g TableofForces Symbol=? Name Agent Victim Normal F TheFloor Desk N Force Static Fsf Friction TheFloor Desk Force Gravitational TheEarth’s F =m g Desk g Force GravitationalField Forceof F HandsofProfessor Desk P Professor Notethattherearenotwomutuallyperpendicularlinestowhichalloftheforcesareparallel. Thebestchoiceofmutuallyperpendicularlineswouldbeaverticalandahorizontalline.Three ofthefourforcesliealongoneortheotherofsuchlines.Buttheforceoftheprofessordoesnot. Wecannotusethisfreebodydiagramdirectly.Wearedealingwithacasewhichrequiresa secondfreebodydiagram. CasesRequiringaSecondFreeBodyDiagraminWhichOneofMoreoftheForces thatwasintheFirstFreeBodyDiagramisReplacedWithitsComponents Establishapairofmutuallyperpendicularlinessuchthatmostofthevectorsliealong oneortheotherofthetwolines.Afterhavingdoneso,breakupeachoftheother vectors,theonesthatliealongneitherofthelines,(let’scallthesetheroguevectors)into componentsalongthetwolines.(Breakingupvectorsintotheircomponentsinvolves drawingavectorcomponentdiagram.)Drawasecondfreebodydiagram,identicaltothe first,exceptwithroguevectorsreplacedbytheircomponentvectors.Inthenewfree bodydiagram,drawthecomponentvectorsinthedirectioninwhichtheyactuallypoint andlabelthemwiththeirmagnitudes(nominussigns).

96 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

Forthecaseathand,ourrogueforceistheforceoftheprofessor.Webreakitupinto componentsasfollows: y

FPx x θ

|F | Py

FP

FPx F = cosθ Py = sinθ FP FP FPx = FP cosθ FPy = FP sinθ

Thenwedrawasecondfreebodydiagram,thesameasthefirst,exceptwith FPreplacedbyits componentvectors: a=0 F N

FPx F g Fsf FPy

97 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

Example 16-2 Awoodenblockofmass misslidingdownaflatmetalincline(aflatmetalramp)that makesanacuteangle θwiththehorizontal.Theblockisslowingdown.Drawthe directlyusablefreebodydiagramoftheblock.Provideatableofforces. Wechoosetostartthesolutiontothisproblemwithasketch.Thesketchfacilitatesthecreation ofthefreebodydiagrambutinnowayreplacesit. m v θ Sincetheblockisslidinginthedowntheinclinedirection,thefrictionalforcemustbeintheup theinclinedirection.Sincetheblock’svelocityisinthedowntheinclinedirectionand decreasing,theaccelerationmustbeintheuptheinclinedirection. TableofForces a Symbol=? Name Agent Victim FN Normal The FN TheRamp F Force Block kf Kinetic The F = F Friction TheRamp θ fk K N Block Force Gravitational TheEarth’s The F =m g g Force GravitationalField Block F g Nomatterwhatwechooseforapairofcoordinateaxes,wecannotmakeitsothatallthevectors inthefreebodydiagramareparalleltooneortheotherofthetwocoordinateaxeslines.Atbest, thepairoflines,onelineparalleltothefrictionalforceandtheotherperpendiculartotheramp, leavesoneroguevector,namelythegravitationalforcevector.Suchacoordinatesystemistilted onthepage.

98 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

CasesInvolvingTiltedCoordinateSystems Foreffectivecommunicationpurposes,studentsdrawingdiagramsdepictingphenomena occurringnearthesurfaceoftheeartharerequiredtouseeithertheconventionthat downwardistowardthebottomofthepage(correspondingtoasideview)orthe conventionthatdownwardisintothepage(correspondingtoatopview).Ifonewantsto depictacoordinatesystemforacaseinwhichthedirection“downward”isparallelto neithercoordinateaxisline,thecoordinatesystemmustbedrawnsothatitappearstilted onthepage. Inthecaseofatiltedcoordinatesystemproblemrequiringasecondfreebodydiagramofthe sameobject,itisagoodideatodefinethecoordinatesystemonthefirstfreebodydiagram.Use dashedlinessothatthecoordinateaxesdonotlooklikeforcevectors.Hereweredrawthefirst freebodydiagram.(When you gettothisstageinaproblem,justaddthecoordinateaxesto yourexistingdiagram.) y a F N Fkf θ F g x Nowwebreakup Fg intoits x,ycomponentvectors.Thiscallsforavectorcomponentdiagram.

99 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

y θ HorizontalLine θ 90 °−θ θ Fgy F g x F gx F g x F y = sinθ g = cosθ Fg Fg = = Fgx Fg sinθ Fg y Fg cosθ Next,weredrawthefreebodydiagramwiththegravitationalforcevectorreplacedbyits componentvectors. F a N Fkf θ Fg x F y g

100 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

Example 16-3 Asolidbrasscylinderofmass missuspendedbyamasslessstringwhichis attachedtothetopendofthecylinder.Fromthere,thestringextendsstraight upwardtoamasslessidealpulley.Thestringpassesoverthepulleyandextends downward,atanacuteanglethetatothevertical,tothehandofapersonwhois

pullingonthestringwithforce FT.Thepulleyandtheentirestringsegment,fromthe cylindertohand,lieinoneandthesameplane.Thecylinderisacceleratingupward. Providebothafreebodydiagramandatableofforcesforthecylinder. Asketchcomesinhandyforthisone: Toproceedwiththisone,weneedsomeinformationontheeffectofanidealmasslesspulleyon astringthatpassesoverthepulley. EffectofanIdealMasslessPulley Theeffectofanidealmasslesspulleyonastringthatpassesoverthepulleyistochange thedirectioninwhichthestringextends,withoutchangingthetensioninthestring.

Bypullingontheendofthestringwithaforceofmagnitude FT,thepersoncausestheretobea tension FTinthestring.(Theforceappliedtothestringbythehandoftheperson,andthe tensionforceofthestringpullingonthehandoftheperson,areaNewton’s3rd lawinteraction pairofforces.Theyareequalinmagnitudeandoppositeindirection.Wechoosetouseoneand thesamesymbol FTforthemagnitudeofbothoftheseforces.Thedirectionsareoppositeeach other.)Thetensionisthesamethroughoutthestring,so,wherethestringisattachedtothebrass cylinder,thestringexertsaforceofmagnitude FTdirectedawayfromthecylinderalongthe lengthofthestring.Hereisthefreebodydiagramandthetableofforcesforthecylinder:

101 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

F T TableofForces a Symbol=? Name Agent Victim Tension The F TheString T Force Cylinder F Gravitational TheEarth’s The g F =mg g Force GravitationalField Cylinder Example 16-4

Acartofmass mC isonahorizontalfrictionlesstrack.Oneendofanidealmassless stringsegmentisattachedtothemiddleofthefrontendofthecart.Fromtherethe stringextendshorizontally,forwardandawayfromthecart,paralleltothecenterlineof thetrack,toaverticalpulley.Thestringpassesoverthepulleyandextendsdownward

toasolidmetalblockofmass mB .Thestringisattachedtotheblock.Apersonwas holdingthecartinplace.Theblockwassuspendedatrest,wellabovethefloor,bythe string.Thepersonhasreleasedthecart.Thecartisnowacceleratingforwardandthe blockisacceleratingdownward.Drawafreebodydiagramforeachobject. Asketchwillhelpustoarriveatthecorrectanswertothisproblem. mC mB

Recallfromthelastexamplethatthereisonlyonetensioninthestring.Callit FT.Basedonour knowledgeoftheforceexertedonanobjectbyastring,viewedsothattheapparatusappearsas

itdoesinthesketch,thestringexertsarightwardforce FTonthecart,andanupwardforceof

magnitude FTontheblock.

102 Chapter 16 Newton’s Laws #3: Components, Friction, Ramps, Pulleys, and Strings

Thereisarelationshipbetweeneachofseveralvariablesofmotionofoneobjectattachedbya tautstring,whichremainstautthroughoutthemotionoftheobject,andthecorresponding variablesofmotionofthesecondobject.Therelationshipsaresosimplethatyoumightconsider themtobetrivial,buttheyarecriticaltothesolutionofproblemsinvolvingobjectsconnectedby atautspring. TheRelationshipsAmongtheVariablesofMotionForTwoObjects,OneatOne EndandtheOtherattheOtherEnd,ofanalwaystaut,UnstretchableString Considerthefollowingdiagram. 2 1 Becausetheyareconnectedtogetherbyastringoffixedlength,ifobject1goes downward5cm,thenobject2mustgorightward5cm.Soifobject1goesdownwardat 5cm/sthenobject2mustgorightwardat5cm/s.Infact,nomatterhowfastobject1 goesdownward,object2mustgorightwardattheexactsamespeed(aslongasthestring doesnotbreak,stretch,orgoslack).Inorderforthespeedstoalwaysbethesame,the accelerationshavetobethesameaseachother.Soifobject1ispickingupspeedinthe downwarddirectionat,forinstance,5cm/s 2,thenobject2mustbepickingupspeedin therightwarddirectionat5cm/s 2.Themagnitudesoftheaccelerationsareidentical. Thewaytodealwiththisistouseoneandthesamesymbolforthemagnitudeofthe accelerationofeachoftheobjects.Theideasrelevanttothissimpleexampleapplyto anycaseinvolvingtwoobjects,oneoneachendofaninextensiblestring,aslongaseach objectmovesonlyalongalinecollinearwiththestringsegmenttowhichtheobjectis attached. Let’sreturntotheexampleprobleminvolvingthecartandtheblock.Thetwofreebody diagramsfollow: F N FT a m mc B a F T F C FgB g

Notethattheuseofthesamesymbol FTinbothdiagramsisimportant,asistheuseofthesame symbol ainbothdiagrams.

103 Chapter 17 The Universal Law of Gravitation

17 The Universal Law of Gravitation Consideranobjectreleasedfromrestanentire’sdiameterabovethesurfaceofthe moon.Supposeyouareaskedtocalculatethespeedwithwhichtheobjecthitsthe moon . Thisproblemtypifiesthekindofprobleminwhichstudentsusetheuniversallawof gravitationtogettheforceexertedontheobjectbythegravitationalfieldofthemoon, andthenmistakenlyuseoneormoreoftheconstantaccelerationequationstogetthe finalvelocity.Theproblemis:theaccelerationisnotconstant.Theclosertheobject getstothemoon,thegreaterthegravitationalforce,andhence,thegreaterthe accelerationoftheobject.ThemistakeliesnotinusingNewton’ssecondlawto determinetheaccelerationoftheobjectataparticularpointinspace;themistakeliesin usingthatonevalueofacceleration,goodforoneobjecttomoondistance,asifitwere validontheentirepathoftheobject.Thewaytogoonaproblemlikethis,istouse conservationofenergy. Backinchapter12,wherewediscussedthenearsurfacegravitationalfieldoftheearth,we talkedaboutthefactthatanyobjectthathasmasscreatesaninvisibleforcepermassfieldinthe regionofspacearoundit.Wecalleditagravitationalfield.Herewetalkaboutitinmoredetail. Recallthatwhenwesaythatanobjectcausesagravitationalfieldtoexist,wemeanthatit createsaninvisibleforcepermassvectorateverypointintheregionofspacearounditself.The effectofthegravitationalfieldonanyparticle(callitthevictim)thatfindsitselfintheregionof spacewherethegravitationalfieldexists,istoexertaforce,onthevictim,equaltotheforceper massvectoratthevictim’slocation,timesthemassofthevictim. Nowweprovideaquantitativediscussionofthegravitationalfield.(Quantitative means, involvingformulas,calculations,andperhapsnumbers.Contrastthiswith qualitative which meansdescriptive/conceptual.)Westartwiththeidealizednotionofapointparticleofmatter. Beingmatter,ithasmass.Sinceithasmassithasagravitationalfieldintheregionaroundit. Thedirectionofaparticle’sgravitationalfieldatpoint P ,adistance rawayfromtheparticle,is towardtheparticle andthemagnitudeofthegravitationalfieldisgivenby m g = G 2 (171) r where: N ⋅⋅⋅ m2 Gistheuniversalgravitationalconstant: G === 6.67 ×××10−−−11 kg2 misthemassoftheparticle,and r isthedistancethatpoint P isfromtheparticle. Inthatpoint Pcanbeanyempty(oroccupied)pointinspacewhatsoever,thisformulagivesthe magnitudeofthegravitationalfieldoftheparticleatallpointsinspace.Equation171isthe equationformofNewton’sUniversalLawofGravitation 1. 1Newton’sUniversalLawofGravitationisanapproximationtoEinstein’sfarmorecomplicatedGeneralTheoryof Relativity.Theapproximationisfantasticfororbitalmechanicsforspacevehiclesandmost,butweneedto usetheGeneralTheoryofRelativityforacompleteexplanationoftheofMercury.

104 Chapter 17 The Universal Law of Gravitation

The Total Vector at an Empty Point in Space Supposethatyouhavetwoparticles.Eachhasitsowngravitationalfieldatallpointsinspace. Let’sconsiderasingleemptypointinspace.Eachofthetwoparticleshasitsowngravitational fieldvectoratthatemptypointinspace.Wecansaythateachparticlemakesitsownvector contributiontothetotalgravitationalfieldattheemptypointinspaceinquestion.Sohowdo youdeterminethetotalgravitationalfieldattheemptypointinspace?Youguessedit!Justadd theindividualcontributions.Andbecausethecontributionduetoeachparticleisavector,the twocontributionsaddlikevectors 2.

What the Gravitational Field does to a Particle that is in the Gravitational Field Nowsupposethatyouhavethemagnitudeanddirectionofthegravitationalfieldvector gggata particularpointinspace.Thegravitationalfieldexertsaforceonany“victim”particlethat happenstofinditselfatthatlocationinspace.Suppose,forinstance,thataparticleofmass m findsitselfatapointinspacewherethegravitat ionalfield(ofsomeotherparticleorparticles)is ggg.Thentheparticleofmass missubjecttoaforce FG = mggg (172)

The Gravitational Effect of one Particle on Another

Let’sputthetwoprecedingideastogether.Particle1ofmass m1 has,amongitsinfinitesetof gravitationalfieldvectors,agravitationalfieldvectoratalocationadistance r12 awayfrom itself,apointinspacethathappenstobeoccupiedbyanotherparticle,particle2,ofmass m2 . Thegravitationalfieldofparticle1exertsaforceonparticle2.Thequestionis,howbigand whichwayistheforce?

Let’sstartbyidentifyingthelocationofparticle2aspoint P .PointPisadistance r12 away fromparticle1.Thus,themagnitudeofthegravitationalfieldvector(ofparticle1)atpoint Pis: m g === G 1 (173) r 2 12

2Thestatementthatthevariouscontributionstothegravitationalfieldaddlikevectorsisknownasthesuperposition principleforthegravitationalfield.Einstein,inhisGeneralTheoryofRelativity,showedthatthesuperposition principleforthegravitationalfieldisactuallyanapproximationthatisexcellentforthegravitationalfieldsyouwill dealwithinthiscoursebutbreaksdowninthecaseofverystronggravitationalfields.

105 Chapter 17 The Universal Law of Gravitation

Nowtheforceexertedonparticle2bythegravitationalfieldofparticle1isgivenbyequation 172, FG = m2ggg.Using F12 for FG toemphasizethefactthatwearetalkingabouttheforceof1 on2,andwritingtheequationrelatingthemagnitudesofthevectorswehave

F12 === m2g Replacingthe gwiththeexpressionwejustfoundforthemagnitudeofthegravitationalfield duetoparticlenumber1wehave m F === m G 1 12 2 r 2 12 which,withsomeminorreorderingcanbewrittenas m m F === G 1 2 (174) 12 r 2 12 Thisequationgivestheforceofthegravitationalfieldofparticle1onparticle2.Neglectingthe “middleman”(thegravitationalfield)wecanthinkofthisastheforceofparticle1onparticle2. Youcangothroughthewholeargumentagain,withtherolesoftheparticlesreversed,tofind thatthesameexpressionappliestotheforceofparticle2onparticle1,oryoucansimplyinvoke Newton’s3 rd Lawtoarriveatthesameconclusion.

Objects, Rather than Point Particles Thevectorsumofallthegravitationalfieldvectorsduetoasphericallysymmetricdistribution ofpointparticles(forinstance,asphericallysymmetricsolidobject),atapointoutsidethe distribution(e.g.outsidetheobject),isthesameasthegravitationalfieldvectorduetoasingle particle,atthecenterofthedistribution,whosemassisequaltothesumofthemassesofallthe particles.Also,forpurposesofcalculatingtheforceexertedbythegravitationalfieldofapoint objectonasphericallysymmetricvictim,onecantreatthevictimasapointobjectatthecenter ofthevictim.Finally,regardingeitherobjectinacalculationofthegravitationalforceexerted onarigidobjectbytheanotherobject:iftheseparationoftheobjectsisverylargecomparedto thedimensionsoftheobject,onecantreattheobjectasapointparticlelocatedatthecenterof massoftheobjectandhavingthesamemassastheobject.Thisgoesforthegravitational potentialenergy,discussedbelow,aswell.

106 Chapter 17 The Universal Law of Gravitation

How Does this Fit in with ggg = 9.80 N/kg? Whenwetalkedabouttheearth’snearsurfacegravitationalfieldbefore,weusedasinglevalue foritsmagnitude,namely9 .80N/kgandsaidthatitalwaysdirecteddownward,towardthe centeroftheearth.9 .80N/kgisactuallyanaveragesealevelvalue. gvarieswithinaboutahalf apercentofthatvalueoverthesurfaceoftheearthandthehandbookvalueincludesatiny centrifugalpseudoforcepermassfieldcontribution(affectingbothmagnitudeanddirection) stemmingfromtherotationoftheearth.Sohowdoesthevalue9 .80N/kgforthemagnitudeof thegravitationalfieldnearthesurfaceoftheearthrelatetoNewton’sUniversalLawof Gravitation? Certainlythedirectionisconsistentwithourunderstandingofwhatitshouldbe:Theearthis roughlysphericallysymmetricsoforpurposesofcalculatingthegravitationalfieldoutsideofthe earthwecantreattheearthasapointparticlelocatedatthecenteroftheearth.Thedirectionof thegravitationalfieldofapointparticleistowardthatpointparticle,so,anywhereoutsidethe earth,includingatanypoint just outsidetheearth(nearthesurfaceoftheearth),thegravitational field,accordingtotheUniversalLawofGravitation,mustbedirectedtowardthecenterofthe earth,adirectionweearthlingscalldownward. Buthowaboutthemagnitude?Shouldn’titvarywithelevationaccordingtotheUniversalLaw m ofGravitation?Firstoff,howdoesthemagnitudecalculatedusing g = G 2 comparewith r 9.80N/kgat,forinstance,sealevel.Apointatsealevelisadistancer === 6.37 ×××106 m fromthe centeroftheearth.Themassoftheearthism = 5.98×1021 kg .Substitutingthesevaluesinto

m1 ourexpressionfor g(equation174whichreads g === G )wefind: r 2 12 2 24 −11 N ⋅⋅⋅ m 5.98×××10 kg g === 6.67 ×××10−− kg 2 6( .37 ×××106 m)2 N g === 9.83 kg whichdoesagreewiththevalueof9 .80N/kgtowithinabout0 .3percent.(Thedifferenceisdue inparttothecentrifugalpseudoforcepermassfieldassociatedwiththeearth’srotation.)We canactuallysee,justfromthewaythatthevalueoftheradiusoftheearth,6.37 ×××106 m ,is written,thatincreasingourelevation,evenbyamile(1 .61km),isnotgoingtochangethevalue of gtothreesignificantfigures.We’dbeincreasingrfrom6.37 ×××106 m to6.37161×××106 m which,tothreesignificantfiguresisstill6.37 ×××106 m .Thisbringsupthequestion,“Howhigh N abovethesurfacedoyouhavetogobefore g === 9.80 isnolongerwithinacertainpercentage kg ofthevalueobtainedbymeansoftheUniversalLawofGravitation?”Let’sinvestigatethat questionforthecaseofa1percentdifference.Inotherwords,howhighabovesealevelwould

107 Chapter 17 The Universal Law of Gravitation wehavetogotomakeg=99%ofgatsealevel,thatisg=( .99)(9 .80m/s 2)=9 .70m/s 2.Letting r=r +hwhere r istheradiusoftheearth,andusing =9 .70N/kgsothatwecanfindthe h E E g thatmakes9 .70N/kgwehave: Gm g === E (r + h)2 E ++ Solvingthisfor hyields Gm h === E −−− r g E N ⋅ m2 6.67 ×10−11 5.98×1024 kg kg 2 h = − 6.37 ×106 m N 9.70 kg h = .04 ×106 m Thatistosaythatatanyaltitudeabove40kmabovethesurfaceoftheearth,youshoulduse Newton’sUniversalLawofGravitationdirectlyinorderforyourresultstobegoodtowithin 1%. Insummary, g=9 .80N/kgforthenearearthsurfacegravitationalfieldmagnitudeisan approximationtotheUniversalLawofGravitationgoodtowithinabout1%anywherewithin about40kmofthesurfaceoftheearth.Inthatregion,thevalueisapproximatelyaconstant becausechangesinelevationrepresentsuchatinyfractionofthetotalearth’scentertosurface distanceastobenegligible.

108 Chapter 17 The Universal Law of Gravitation

The Universal Gravitational Potential Energy Sofarinthiscourseyouhavebecomefamiliarwithtwokindsofpotentialenergy,the nearearth’ssurfacegravitationalpotentialenergy U g = mgy andthespringpotentialenergy 1 U = k x 2 .Hereweintroduceanotherexpressionforgravitationalpotentialenergy.Thisone S 2 ispertinenttosituationsforwhichtheUniversalLawofGravitationisappropriate. Gm m U === −−− 1 2 (175) G r 12 Thisisthegravitationalpotentialenergyofapairofparticles,oneofmass m1andtheotherof mass m2,whichareseparatedbyadistanceof r12 .Notethatforagivenpairofparticles,the gravitationalpotentialenergycantakeonvaluesfromnegativeinfinityuptozero.Zeroisthe highestpossiblevalueanditisthevalueofthegravitationalpotentialenergyatinfinite separation.Thatistosaythat UG →→→ 0.Thelowestconceivablevalueisnegative limr12 →→→ ∞∞∞ infinityanditwouldbethevalueofthegravitationalpotentialenergyofthepairofparticlesif onecouldputthemsoclosetogetherthattheywerebothatthesamepointinspace.In mathematicalnotation: UG →→→ −−−∞∞∞ . limr12 →→→ 0

Conservation of Mechanical Energy Problems Involving Universal Gravitational Potential Energy for the Special Case in which the Total Amount of Mechanical Energy does not Change Yousolvefixedamountofmechanicalenergyproblemsinvolvinguniversalgravitational potentialenergyjustasyousolvedfixedamountofmechanicalenergyproblemsinvolvingother formsofpotentialenergybackinchapters2and3.Drawagoodbeforeandafterpicture,write anequationstatingthattheenergyinthebeforepictureisequaltotheenergyintheafterpicture, andproceedfromthere.Toreviewtheseprocedures,checkouttheexampleproblemonthenext page:

109 Chapter 17 The Universal Law of Gravitation

Example 17-1:Howgreatwouldthemuzzlevelocityofagunonthesurfaceofthemoon havetobeinordertoshootabullettoanaltitudeof101km? Solution:We’llneedthefollowinglunardata: 22 6 Massofthemoon:mm === 7.35×××10 kg ;Radiusofthemoon:rm === 1.74×××10 m v′=0 v=? h r′

r= rm rm r′= rm+ h 6 6 r=1 .74 ×10 m r ′=1 .74 ×10 m+ 5 1.01 ×10 m 6 r ′=1 .841 ×10 m Moon Moon E = E′

K + U = K′+ U ′

1 2 Gm m Gm m (m isthemassofthemoonand misthemassof mv + − m = − m m 2 r r ′ thebullet.)

1 Gm Gm v 2 = m − m 2 r r ′

1 Gm Gm v 2 = m − m 2 r r ′

1 2  1 1  v = Gmm  −  2  r r ′

 1 1  v = 2Gmm  −   r r ′  N ⋅ m2   1 1  v = 2 6.67 ×10−11 7.35×1022 kg −  2   6 6   kg  1.74×10 m 1.841×10 m 

m v = 556 s

110 Chapter 18 Circular Motion: Centripetal Acceleration

18 Circular Motion: Centripetal Acceleration Thereisatendencytobelievethatifanobjectismovingatconstantspeedthenithasno acceleration.Thisisindeedtrueinthecaseofanobjectmovingalongastraightline path.Ontheotherhand,aparticlemovingonacurvedpathisacceleratingwhetherthe speedischangingornot.Velocityhasbothmagnitudeanddirection.Inthecaseofa particlemovingonacurvedpath,thedirectionofthevelocityiscontinuallychanging, andthustheparticlehasacceleration. Wenowturnourattentiontothecaseofanobjectmovinginacircle.We’llstartwiththe simplestcaseofcircularmotion,thecaseinwhichthespeedoftheobjectisaconstant,acase referredtoasuniformcircularmotion.Forthemoment,let’shaveyoubetheobject.Imagine thatyouareinacarthatistravelingcounterclockwise,atsay40 mph,asviewedfromabove, aroundafairlysmallcirculartrack.Youaretravelinginacircle.Yourvelocityisnotconstant. Themagnitudeofyourvelocityisnotchanging(constantspeed),butthedirectionofyour velocityiscontinuallychanging,youkeepturningleft!Nowifyouarecontinuallyturningleft thenyoumustbecontinuallyacquiringsomeleftwardvelocity.Infact,youraccelerationhasto beexactlyleftward,atrightanglestoyourvelocitybecause,ifyourspeedisnotchanging,but dvvv yourvelocityiscontinuallychanging,meaningyouhavesomeacceleration a === ,thenfor dt everyinfinitesimalchangeinclockreading dt ,thechangeinvelocity dvvv thatoccursduringthat infinitesimaltimeintervalmustbeperpendiculartothevelocityitself.(Ifitwasn’t perpendicular,thenthespeedwouldbeincreasingordecreasing.)Sonomatterwhereyouarein thecircle(aroundwhichyouaretravelingcounterclockwiseasviewedfromabove)youhavean accelerationdirectedexactlyleftward,perpendiculartothedirectionofyourvelocity.Nowwhat isalwaysdirectlyleftwardofyouifyouaretravelingcounterclockwisearoundacircle? Precisely!Thecenterofthecircleisalwaysdirectlyleftwardofyou.Youraccelerationisthus, always,centerdirected.Wecallthecenterdirectedaccelerationassociatedwithcircularmotion centripetalaccelerationbecausetheword“centripetal”means“centerdirected.”Notethatifyou aretravelingaroundthecircleclockwiseasviewedfromabove,youarecontinuallyturningright andyouraccelerationisdirectedrightward,straighttowardthecenterofthecircle.These considerationsapplytoanyobject—anobjectmovinginacirclehascentripetal(centerdirected) acceleration. Wehaveacoupleofwaysofcharacterizingthemotionofaparticlethatismovinginacircle. First,wecharacterizeitintermsofhowfartheparticlehastraveledalongthecircle.Ifweneed apositionvariable,weestablishastartpointonthecircleandapositivedirection.Forinstance, foracirclecenteredontheoriginofan xyplanewecandefinethepointwherethecircle intersectsthepositive xaxisasthestartpoint,anddefinethedirectioninwhichtheparticlemust movetogocounterclockwisearoundthecircleasthepositivedirection.Thenamegiventothis positionvariableis s.Theposition sisthetotaldistance,measuredalongthecircle,thatthe ds particlehastraveled.Thespeedoftheparticleisthentherateofchangeof s, andthe dt directionofthevelocityistangenttothecircle.Thecircleitselfisdefinedbyitsradius.The secondmethodofcharacterizingthemotionofaparticleistodescribeitintermsofan

111 Chapter 18 Circular Motion: Centripetal Acceleration imaginarylinesegmentextendingfromthecenterofacircletotheparticle.Tousethismethod, onealsoneedstodefineareferencelinesegment—thepositive xaxisistheconventionalchoice forthecaseofacirclecenteredontheoriginofan xycoordinatesystem.Then,aslongasyou knowtheradius rofthecircle,theangle θthatthelinetotheparticlemakeswiththereference linecompletelyspecifiesthelocationoftheparticle. v r s θ Ingeometry,thepositionvariable s,definesanarclengthonthecircle.Recallthat,by definition,theangle θinradiansistheratioofthearclengthtotheradius: s θ = r Solvingfor swehave: s = r θ (181) inwhichweinterpretthe stobethepositiononthecircleoftheparticleandthe θtobethe anglethatanimaginarylinesegment,fromthecenterofthecircletotheparticle,makeswitha referencelinesegment,suchasthepositive xaxis.Clearly,thefastertheparticleismoving,the fastertheanglethetaischanging,andindeedwecangetarelationbetweenthespeedofthe particleandtherateofchangeof θjustbytakingthetimederivativeofbothsidesofequation 181.Let’sdothat.

112 Chapter 18 Circular Motion: Centripetal Acceleration

Startingwithequation181: s === r θ wetakethederivativeofbothsideswithrespecttotime: ds dθ === r dt dt andthenrewritetheresultas . . s === r θ justtogetthereaderusedtotheideathatwerepresentthetimederivativeofavariable,thatis therateofchangeofthatvariable,bythewritingthesymbolforthevariablewithadotoverit. Thenwerewritetheresultas . v === r θ (182) toemphasizethefactthattherateofchangeofthepositiononthecircleisthespeedofthe particle(themagnitudeofthevelocityoftheparticle).Finally,wedefinethevariable w dθ . (“omega”)tobetherateofchangeoftheangle,meaningthat w is and wis θ .Itshouldbe dt clearthat wisthespinratefortheimaginarylinefromthecenterofthecircletotheparticle. Wecallthatspinratethemagnitudeoftheangularvelocity ofthelinesegment.(Theexpression angularvelocity , w,ismorecommonlyusedtocharacterizehowfastandwhichwaya rigid . . body ,ratherthananimaginaryline,isspinning.)Rewriting v === r θ with θ replacedby w yields: v === r w (183)

113 Chapter 18 Circular Motion: Centripetal Acceleration

How the Centripetal Acceleration Depends on the Speed of the Particle and the Size of the Circle Wearenowinapositiontoderiveanexpressionforthatcenterdirected(centripetal) accelerationweweretalkingaboutatthestartofthischapter.Considerashorttimeinterval t. (Wewilltakethelimitas tgoestozerobeforetheendofthischapter.)Duringthatshorttime

interval,theparticletravelsadistance salongthecircleandtheanglethattheline,fromthe centerofthecircletotheparticle,makeswiththereferencelinechangesbyanamount θ. v′ v s r θ s θ Furthermore,inthattime t,thevelocityoftheparticlechangesfrom vvv to vvv ′ ,achange vvv definedby vvv ′ =vvv + vvv depictedinthefollowingvectordiagram(inwhichthearrows representingthevectors v and v ′ havebeencopiedfromabovewithnochangeinorientationor length).Notethatthesmallangle θappearinginthevectoradditiondiagramisthesame θ thatappearsinthediagramabove. v v θ v′

114 Chapter 18 Circular Motion: Centripetal Acceleration While vvv ′ isanewvector,differentfrom vvv ,wehavestipulatedthatthespeedoftheparticle isa constant,sothevector vvv ′ hasthesamemagnitudeasthevector vvv .Thatis, v ′ =v .Weredraw thevectoradditiondiagramlabelingbothvelocityvectorswiththesamesymbol v . v v θ v Themagnitudeofthecentripetalacceleration,bydefinition,canbeexpressedas v ac === lim t→→→ 0 t Lookatthetriangleinthevectoradditiondiagramabove.Itisanisoscelestriangle.Thetwo unlabeledanglesinthetriangleareequaltoeachother.Furthermore,inthelimitas t approaches0, θapproaches0,andas θapproaches0,theothertwoanglesmusteach approach90 °inorderforthesumoftheanglestoremain180 °,asitmust,becausethesumof theinterioranglesforanytriangleis180 °.Thusinthelimitas tapproaches0,thetriangleisa righttriangleandinthatlimitwecanwrite: v === tan(θ ) v v ===v tan(θ ) Substitutingthisintoourexpressionfor acwehave: v tan(θ ) ac === lim (184) t→→→ 0 t Nowweinvokethesmallangleapproximationfromthemathematicsofplanegeometry,an approximationwhichbecomesanactualequationinthelimitas θapproacheszero. TheSmallAngleApproximation Foranyanglethatisverysmallcomparedtoπradians(thesmallertheanglethebetter theapproximation),thetangentoftheangleisapproximatelyequaltotheangleitself, expressedinradians;andthesineoftheangleisapproximatelyequaltotheangleitself, expressedinradians.Infact, tan(θ ) →→→ θ ,and sin(θ ) →→→ θ θ →→→0 θ →→→0 where θ isinradians. Thesmallangleapproximationallowsustowrite

115 Chapter 18 Circular Motion: Centripetal Acceleration

v θ ac === lim [wherewehavereplacedthetan(θ ) inequation184abovewith θ]. t→→→ 0 t θ θ Theconstant v canbetakenoutsidethelimityielding ac === v lim .Butthe lim isthe t→→→ 0 t t→→→ 0 t rateofchangeoftheangle θ,whichis,bydefinition,theangularvelocity w.Thus

ac =v w v Accordingtoequation183, v = rw .Solvingthatfor wwefindthat w === .Substitutingthis r intoourexpressionfor acyields v 2 a === (185) c r Pleasesoundthedrumroll!Thisistheresultwehavebeenseeking.Notethatbysubstituting rwfor v,wecanalsowriteourresultas 2 ac === r w (186) Itshouldbepointedoutthat,despitethefactthatwehavebeenfocusingourattentiononthecase inwhichtheparticlemovingaroundthecircleismovingatconstantspeed,theparticlehas centripetalaccelerationwhetherthespeedischangingornot.Ifthespeedoftheparticleis changing,thecentripetalaccelerationatanyinstantis(still)givenby185withthe vbeingthe speedoftheparticleatthatinstant(andinadditiontothecentripetalacceleration,theparticle alsohassomealongthecircularpathaccelerationknownastangentialacceleration).Thecase thatwehaveinvestigatedis,howevertheremarkablecase.Evenifthespeedoftheparticleis constant,theparticlehassomeaccelerationjustbecausethedirectionofitsvelocityis continuallychanging.What’smore,thecentripetalaccelerationisnotaconstantacceleration becauseitsdirectioniscontinuallychanging.Visualizeit.Ifyouaredrivingcounterclockwise (asviewedfromabove)aroundacirculartrack,thedirectioninwhichyouseethecenterofthe circleiscontinuallychanging(andthatdirectionisthedirectionofthecentripetalacceleration). Whenyouareontheeasternmostpointofthecirclethecenteristothewestofyou.Whenyou areatthenorthernmostpointofthecirclethecenteristothesouthofyou.Whenyouareatthe westernmostpointofthecircle,thecenteristotheeastofyou.Andwhenyouareatthe southernmostpointofthecircle,thecenteristothenorthofyou.

116 Chapter 19 Rotational Motion Variables, Tangential Acceleration, Constant Angular Acceleration

19 Rotational Motion Variables, Tangential Acceleration, Constant Angular Acceleration Becausesomuchoftheeffortthatwedevotetodealingwithanglesinvolvesacuteangles, whenwegototheoppositeextreme,e.g.toanglesofthousandsofdegrees,asweoften dointhecaseofobjectsspinningwithaconstantangularacceleration,oneofthemost commonmistakeswehumanstendtomakeissimplynottorecognizethatwhensomeone asksus;startingfromtimezero,howmanyrevolutions,orequivalentlyhowmanyturns orrotationsanobjectmakes;thatsomeoneisaskingforthevalueoftheangular displacement θ.Tobesure,wetypicallycalculate θinradians,sowehavetoconvert theresulttorevolutionsbeforereportingthefinalanswer,butthenumberofrevolutions issimplythevalueof θ. Inthelastchapterwefoundthataparticleinuniformcircularmotionhascentripetalacceleration givenbyequations185and186: v 2 a === a === r w 2 c r c Itisimportanttonotethatanyparticleundergoingcircularmotionhascentripetalacceleration, notjustthoseinuniform(constantspeed)circularmotion.Ifthespeedoftheparticle(thevalue v 2 of v in a === )ischanging,thenthevalueofthecentripetalaccelerationisclearlychanging. c r Onecanstillcalculateitatanyinstantatwhichoneknowsthespeedoftheparticle. If,besidestheaccelerationthattheparticlehasjustbecauseitismovinginacircle,thespeedof theparticleischanging,thentheparticlealsohassomeaccelerationdirectedalong(orinthe exactoppositedirectionto)thevelocityoftheparticle.Sincethevelocityisalwaystangentto thecircleonwhichtheparticleismoving,thiscomponentoftheaccelerationisreferredtoasthe tangentialaccelerationoftheparticle.Themagnitudeofthetangentialaccelerationofaparticle incircularmotionissimplytheabsolutevalueoftherateofchangeofthespeedoftheparticle dv a = .Thedirectionofthetangentialaccelerationisthesameasthatofthevelocityifthe t dt particleisspeedingup,andinthedirectionoppositethatofthevelocityiftheparticleisslowing down. Recallthat,startingwithourequationrelatingtheposition softheparticlealongthecircletothe angularposition θofaparticle, s = rθ ,wetookthederivativewithrespecttotimetogetthe relationv = r w .Ifwetakeasecondderivativewithrespecttotimeweget dv dw === r dt dt

117 Chapter 19 Rotational Motion Variables, Tangential Acceleration, Constant Angular Acceleration

dw Ontheleftwehavethetangentialacceleration a oftheparticle.The ontherightisthe t dt timerateofchangeoftheangularvelocityoftheobject.Theangularvelocityisthespinrate,so dw anonzerovalueof meansthattheimaginarylinesegmentthatextendsfromthecenterof dt dw thecircletotheparticleisspinningfasterorslowerastimegoesby.Infact, istherateat dt whichthespinrateischanging.Wecallittheangularaccelerationandusethesymbol a(the dv dw Greekletteralpha)torepresentit.Thus,therelation === r canbeexpressedas dt dt

at = r a (191)

A Rotating Rigid Body

Thecharacterizationofthemotionofarotatingrigidbodyhasalotincommonwiththatofa particletravelingonacircle.Infact,everyparticlemakinguparotatingrigidbodyis undergoingcircularmotion.Butdifferentparticlesmakinguptherigidbodymoveoncirclesof differentradiiandhencehavespeedsandaccelerationsthatdifferfromeachother.Forinstance, eachtimetheobjectgoesaroundonce,everyparticleoftheobjectgoesallthewayaroundits circleonce,butaparticlefarfromtheaxisofrotationgoesallthewayaroundcirclethatis biggerthantheonethataparticlethatisclosetotheaxisofrotationgoesaround.Todothat,the particlefarfromtheaxisofrotationmustbemovingfaster.Butinonerotationoftheobject,the linefromthecenterofthecirclethatanyparticleoftheobjectison,totheparticle,turnsthrough exactlyonerotation.Infact,theangularmotionvariablesthatwehavebeenusingto characterizethemotionofalineextendingfromthecenterofacircletoaparticlethatismoving onthatcirclecanbeusedtocharacterizethemotionofaspinningrigidbodyasawhole.There isonlyonespinrateforthewholeobject,theangularvelocity w,andifthatspinrateis changing,thereisonlyonerateofchangeofthespinrate,theangularacceleration a.To specifytheangularpositionofarotatingrigidbody,weneedtoestablishareferencelineonthe rigidbody,extendingawayfromapointontheaxisofrotationinadirectionperpendiculartothe axisofrotation.Thisreferencelinerotateswiththeobject.Itsmotionistheangularmotionof theobject.Wealsoneedareferencelinesegmentthatisfixedinspace,extendingfromthesame pointontheaxis,andawayfromtheaxisinadirectionperpendiculartotheaxis.Thisonedoes notrotatewiththeobject.Imaginingthetwolinestohaveatonetimebeencollinear,thenet anglethroughwhichthefirstlineontherigidbodyhasturnedrelativetothefixedlineisthe angularposition θoftheobject. The Constant Angular Acceleration Equations Whilephysically,thereisahugedifference,mathematically,therotationalmotionofarigid bodyisidenticaltomotionofaparticlethatonlymovesalongastraightline.Asinthecaseof linearmotion,wehavetodefineapositivedirection.Wearefreetodefinethepositivedirection whicheverwaywewantforagivenproblem,butwehavetostickwiththatdefinitionthroughout theproblem.Here,weestablishaviewpointsomedistanceawayfromtherotatingrigidbody,

118 Chapter 19 Rotational Motion Variables, Tangential Acceleration, Constant Angular Acceleration butontheaxisofrotation,andstatethat,fromthatviewpoint,counterclockwiseisthepositive senseofrotation,oralternatively,thatclockwiseisthepositivesenseofrotation.Whichever waywepickaspositive,willbethepositivesenseofrotationforangulardisplacement(change inangularposition),angularvelocity,angularacceleration,andangularpositionrelativetothe referencelinethatisfixedinspace.Next,weestablishazeroforthetimevariable;weimaginea stopwatchtohavebeenstartedatsomeinstantthatwedefinetobetimezero.Wecallvaluesof angularpositionandangularvelocity,atthatinstant,theinitialvaluesofthosequantities. Giventhesecriteria,wehavethefollowingtableofcorrespondingquantities.Notethata rotationalmotionquantityisinnowayequaltoitslinearmotioncounterpart,itsimplyplaysa roleinrotationalmotionthatismathematicallysimilartotheroleplayedbyitscounterpartin linearmotion. LinearMotionQuantity CorrespondingAngularMotionQuantity x θ

v w a a Theonevariablethatthetwodifferentkindsofmotiondohaveincommonisthestopwatch reading t. Recallthat,bydefinition, dθ w === dt and dw a = dt Whileitiscertainlypossiblefor atobeavariable,manycasesariseinwhich aisaconstant. Suchacaseisaspecialcase.Thefollowingsetofconstantangularaccelerationequationsapply inthespecialcaseofconstantangularacceleration:(Thederivationoftheseequationsis mathematicallyequivalenttothederivationoftheconstantlinearaccelerationequations.Rather thanderivethemagain,wesimplypresenttheresults.) 1 2 θ === θo +++ wo t +++ 2 a t (192) TheConstant w +++ w θ === θ +++ o t (193) Angular o 2 Acceleration

Equations w === wo +++ a t (194) 2 2 w === wo +++ 2a θ (195)

119 Chapter 19 Rotational Motion Variables, Tangential Acceleration, Constant Angular Acceleration

Example 19-1 Therateatwhichasprinklerheadspinsaboutaverticalaxisincreasessteadilyfor thefirst2 .00secondsofitsoperationsuchthat,startingfromrest,thesprinkler completes15 .0revolutionsclockwise(asviewedfromabove)duringthatfirst 2.00secondsofoperation.Anozzle,onthesprinklerhead,atadistanceof11 .0cm fromtheaxisofrotationofthesprinklerhead,isinitiallyduewestoftheaxisof rotation.Findthedirectionandmagnitudeoftheaccelerationofthenozzleatthe instantthesprinklerheadcompletesitssecond(goodtothreesignificantfigures) rotation. Solution: We’retoldthatthesprinklerheadspinrateincreases steadily ,meaningthatweare dealingwithaconstantangularaccelerationproblem,so,wecanusetheconstantangular accelerationequations.Thefactthatthereisanonzeroangularaccelerationmeansthatthe nozzlewillhavesometangentialacceleration a .Also,thesprinklerheadisspinningatthe t instantinquestionsothenozzlewillhavesomecentripetalacceleration a .We’llhavetofind c both at and ac andaddthemlikevectorstogetthetotalaccelerationofthenozzle.Let’sget startedbyfindingtheangularacceleration a.Westartwiththefirstconstantangular accelerationequation(equation192): 0 0 1 2 θ =θo +wo t + 2 a t

Theinitialangularvelocity wo isgivenaszero.Wehavedefinedtheinitialangular positiontobezero.Thismeansthat,attime t=2.00s,theangularposition θis 2π rad 15 .0rev=15.0rev === 94 .25rad. rev Solvingequation192abovefor ayields: 2θ a = t 2 (2 94.25rad) a === 2( .00 )s 2 rad a === 47.12 s 2 Substitutingthisresultintoequation191:

at = r a givesus 2 at = (.110m) 47.12rad/s

120 Chapter 19 Rotational Motion Variables, Tangential Acceleration, Constant Angular Acceleration whichevaluatesto m a = 5.18 . t s2 Nowweneedtofindtheangularvelocityofthesprinklerheadattheinstantitcompletes 2.00revolutions.Theangularacceleration athatwefoundisconstantforthefirstfifteen revolutions,sothevaluewefoundiscertainlygoodforthefirsttwoturns.Wecanuseitinthe fourthconstantangularaccelerationequation(equation195): 0 2 2 w = wo + 2a θ 2π rad where θ === 2 rev === 2.00 rev === 4.00π rad rev w = 2a θ w === 2 (94.25rad/s2 4) .00π rad w === 48.67 rad s/ (atthatinstantwhenthesprinklerheadcompletesits2 nd turn) Nowthatwehavetheangularvelocity,togetthecentripetalaccelerationwecanuse equation186: 2 ac === r w 2 ac === .110m (48.67 rad )s/ m a === .260.6 c s2 Giventhatthenozzleisinitiallyatapointduewestoftheaxisofrotation,attheendof 2.00revolutionsitwillagainbeatthatsamepoint. NORTH

at EAST a c

121 Chapter 19 Rotational Motion Variables, Tangential Acceleration, Constant Angular Acceleration

Nowwejusthavetoaddthetangentialaccelerationandthecentripetalaccelerationvectoriallyto getthetotalacceleration.Thisisoneoftheeasierkindsofvectoradditionproblemssincethe vectorstobeaddedareatrightanglestoeachother. North a a 2 θ t=5 .18m/s 2 East ac=260 .6m/s FromPythagorean’stheoremwehave 2 2 a === ac +++ at a === (260.6m s/ 2 )2 +++ 5( .18m s/ 2 )2 a=261m/s 2 Fromthedefinitionofthetangentofanangleastheoppositeovertheadjacent: a tanθ === t ac a θ === tan−−−1 t ac 5.18m s/ 2 θ === tan−−−1 260.6 m s/ 2 θ = 1.14o Thus 2 a=261 m/s at1 .14 °NorthofEast

122 Chapter 19 Rotational Motion Variables, Tangential Acceleration, Constant Angular Acceleration

When the Angular Acceleration is not Constant Theangularpositionofarotatingbodyundergoingconstantangularaccelerationisgiven,asa functionoftime,byourfirstconstantangularaccelerationequation,equation192: 1 2 θ === θo +++ wo t +++ 2 a t Ifwetakethe2 nd derivativeofthiswithrespecttotime,wegettheconstant a.(Recallthatthe dw firstderivativeyieldstheangularvelocity wandthat a === .)Theexpressionontheright dt 1 2 sideof θ === θo +++ wo t +++ 2 a t containsthreeterms:aconstant,atermwith ttothefirstpower,and nd atermwith ttothe2 power.Ifyouaregiven θintermsof t,anditcannotberearrangedso thatitappearsasoneofthesetermsorasasumoftwoorallthreesuchterms;then; aisnota constantandyoucannotusetheconstantangularaccelerationequations.Indeed,ifyouare beingaskedtofindtheangularvelocityataparticularinstantintime,thenyou’llwanttotake dθ thederivative andevaluatetheresultatthegivenstopwatchreading.Alternatively,ifyou dt arebeingaskedtofindtheangularaccelerationataparticularinstantintime,thenyou’llwantto d 2θ takethesecondderivative andevaluatetheresultatthegivenstopwatchreading. dt 2

Correspondingargumentscanbemadeforthecaseof w.Ifyouaregiven wasafunctionof t andtheexpressioncannotbemadeto“looklike”theconstantangularaccelerationequation

w === wo +++ a t thenyouarenotdealingwithaconstantangularaccelerationsituationandyou shouldnotusetheconstantangularaccelerationequations.

123 Chapter 20 Torque & Circular Motion

20 Torque & Circular Motion ThemistakethatcropsupintheapplicationofNewton’s2 nd LawforRotational Motioninvolvesthereplacementofthesumofthetorquesaboutsomeparticular axis, ∑∑∑τo,withasumoftermsthatarenotalltorques.Oftentimes,theerrant sumwillincludeforceswithnomomentarms(aforcetimesamomentarmisa torque,butaforcebyitselfisnotatorque)andinothercasestheerrantsumwill includeatermconsistingofatorquetimesamomentarm(atorqueisalreadya torque,multiplyingitbyamomentarmyieldssomethingthatisnotatorque). Folksthatareinthehabitofcheckingunitswillcatchtheirmistakeassoonas theypluginvalueswithunitsandevaluate. Wehavestudiedthemotionofspinningobjectswithoutanydiscussionoftorque.Itistimeto addressthelinkbetweentorqueandrotationalmotion.First,let’sreviewthelinkbetweenforce andtranslationalmotion.(Translationalmotionhastodowiththemotionofaparticlethrough space.Thisistheordinarymotionthatyou’veworkedwithquiteabit.Untilwestartedtalking aboutrotationalmotionwecalledtranslationalmotion“motion.”Now,todistinguishitfrom rotationalmotion,wecallittranslationalmotion.)Therealanswertothequestionofwhat causesmotiontopersist,isnothing—amovingparticlewithnoforceonitkeepsonmovingat constantvelocity.However,wheneverthevelocityoftheparticleischanging,thereisaforce. Thedirectlinkbetweenforceandmotionisarelationbetweenforceandacceleration.The relationisknownasNewton’s2 nd LawofMotionwhichwehavewrittenasequation141: 1 a = F m ∑ inwhich, a istheaccelerationoftheobject,howfastandwhichwayitsvelocityischanging 1 misthemass,a.k.a.inertia,oftheobject. canbeviewedasasluggishnessfactor,the m 1 biggerthemass m,thesmallerthevalueof andhencethesmallertheaccelerationofthe m objectforagivennetforce.(“Net”inthiscontextjustmeans“total”.) ∑ F isthevectorsumoftheforcesactingontheobject,thenetforce.

124 Chapter 20 Torque & Circular Motion

Wefindacompletelyanalogoussituationinthecaseofrotationalmotion.Thelinkinthecase ofrotationalmotionisbetweentheangularaccelerationofarigidbodyandthetorquebeing exertedonthatrigidbody. 1 aaa = ∑ τ (201) I inwhich, aaa istheangularaccelerationoftherigidbody,howfastandwhichwaytheangularvelocityis changing

I isthemomentofinertia,a.k.a.therotationalinertia(butnotjustplainoldinertia,whichis mass)oftherigidbody.Itistherigidbody’sinherentresistancetoachangeinhowfastit 1 (therigidbody)isspinning.(“Inherent”means“ofitself”,“partofitsownbeing.”) can I beviewedasasluggishnessfactor,thebiggertherotationalinertia I,thesmallerthevalue 1 of andhencethesmallertheangularaccelerationoftheobjectforagivennettorque. I ∑∑∑ τ isthenettorqueactingontheobject.(Atorqueiswhatyouareapplyingtoabottlecapor jarlidwhenyouaretryingtounscrewit.)

125 Chapter 20 Torque & Circular Motion

The Vector Nature of Torque and You’vesurelynoticedthearrowsoverthelettersusedtorepresenttorque,angularacceleration, andangularvelocity;andasyouknow,thearrowsmeanthatthequantitiesinquestionarevector quantities.Thatmeansthattheyhavebothmagnitudeanddirection.Someexplanationabout thedirectionpartisinorder.Let’sstartwiththetorque.Asmentioned,itisatwistingaction suchasthatwhichyouapplytobottlecaptoloosenortightenthebottlecap.Therearetwo waystospecifythedirectionassociatedwithtorque.Onewayistoidentifytheaxisofrotation aboutwhichthetorqueisbeingapplied,thentoestablishaviewpoint,apositionontheaxis,ata locationthatisinonedirectionortheotherdirectionawayfromtheobject.Theneitherstatethat thetorqueisclockwise,orstatethatitiscounterclockwise,asviewedfromthespecified viewpoint.Notethatitisnotsufficienttoidentifytheaxisandstate“clockwise”or “counterclockwise”withoutgivingtheviewpoint—atorquewhichisclockwisefromoneofthe twoviewpointsiscounterclockwisefromtheother.Thesecondmethodofspecifyingthe directionistogivethetorquevectordirection.Theconventionforthetorquevectoristhatthe axisofrotationisthelineonwhichthetorquevectorlies,andthedirectionisinaccordwith“the righthandruleforsomethingcurlysomethingstraight.” Bythe“therighthandruleforsomethingcurlysomethingstraight”,ifyoupointthethumbof yourcuppedrighthandinthedirectionofthetorquevector,thefingerswillbecurledaroundin thatdirectionwhichcorrespondstothesenseofrotation(counterclockwiseasviewedfromthe headofthetorquevectorlookingbackalongtheshaft)ofthetorque. Theangularaccelerationvector aaa andtheangularvelocityvector www obeythesameconvention. Thesevectors,whichpointalongtheaxisaboutwhichtherotationtheyrepresentoccurs,are referredtoasaxialvectors.

126 Chapter 20 Torque & Circular Motion

The Torque Due to a Force Whenyouapplyaforcetoarigidbody,youaretypicallyapplyingatorquetothatrigidbodyat thesametime.Consideranobjectthatisfreetorotateaboutafixedaxis.Wedepicttheobject asviewedfromapositionontheaxis,somedistanceawayfromtheobject.Fromthatviewpoint, theaxislookslikeadot.Wegivethename“pointO”tothepositionatwhichtheaxisof rotationappearsinthediagramandlabelit“ O”inthediagramtomakeiteasiertorefertolater inthisdiscussion.Thereisaforce F actingontheobject. AxisofRotation O F Themagnitudeofthetorqueduetoaforceisthemagnitudeoftheforcetimesthemomentarm r⊥(read“rperp”)oftheforce.Themomentarm r⊥istheperpendiculardistancefromtheaxisof rotationtothelineofactionoftheforce.Thelineofactionoftheforceisalinethatcontainsthe forcevector.Hereweredrawthegivendiagramwiththelineofactionoftheforcedrawnin. LineofActionoftheForce AxisofRotation O F

127 Chapter 20 Torque & Circular Motion

Nextweextendalinesegmentfromtheaxisofrotationtothelineofactionoftheforce,insuch amannerthatitmeetsthelineofactionoftheforceatrightangles.Thelengthofthisline segmentisthemomentarm r⊥. TheMomentArm LineofActionoftheForce AxisofRotation r ⊥ O F Themagnitudeofthetorqueaboutthespecifiedaxisofrotationisjusttheproductofthemoment armandtheforce. τ = r⊥F (202)

Applying Newton’s Second Law for Rotational Motion in Cases Involving a Fixed Axis Startingonthenextpage,wetellyouwhatstepsarerequired(andwhatdiagramisrequired)in thesolutionofafixedaxis“Newton’s2 nd LawforRotationalMotion”problembymeansofan example.

128 Chapter 20 Torque & Circular Motion

Example 20-1: Aflatmetalrectangular293mm×452mmplateliesonaflathorizontal frictionlesssurfacewith(attheinstantinquestion)onecornerattheoriginofan xycoordinate systemandtheoppositecornerat point Pwhichisat(293 mm,452 mm).Theplateis pin 1 connected to the horizontal surface at(10 .0cm,10 .0cm).Acounterclockwise(asviewed fromabove)torque,withrespecttothepin,of15 .0N⋅m,isbeingappliedtotheplateandaforce of21 .0Ninthe–ydirectionisappliedtothecorneroftheplateat point P.Themomentof inertiaoftheplate,withrespecttothepin,is1 .28kg ⋅m2.Findtheangularaccelerationofthe plateattheinstantforwhichthespecifiedconditionsprevail. Westartbydrawingapseudofreebodydiagramoftheobjectasviewedfromabove(downward is“intothepage”): y F=21.0N .100m 0.193m 2 I = 1.28 kg⋅m

τττ1=15.0N ⋅⋅⋅m a O x 0.293m Werefertothediagramasapseudofreebodydiagramratherthanafreebodydiagrambecause: a. Weomitforcesthatareparalleltotheaxisofrotation(becausetheydonotaffectthe rotationoftheobjectabouttheaxisofrotation).Inthecaseathand,wehaveomittedthe forceexertedontheplatebythegravitationalfieldoftheearth(whichwouldbe“intothe page”inthediagram)aswellasthenormalforceexertedbythefrictionlesssurfaceon theplate(“outofthepage”). b. Weignoreforcesexertedontheplatebythepin.(Suchforceshavenomomentarmand hencedonotaffecttherotationoftheplateabouttheaxisofrotation.Note,apincan, however,exertafrictionaltorque—assumeittobezerounlessotherwisespecified.) 1“Pinconnectedtothehorizontalsurface”meansthatthereisashortverticalaxlefixedtothehorizontalsurfaceand passingthroughasmallroundholeintheplatesothattheplateisfreetospinabouttheaxle.Assumethatthereis nofrictionaltorqueexertedonapinconnectedobjectunlessotherwisespecifiedinthecaseathand.

129 Chapter 20 Torque & Circular Motion

Nextweannotatethepseudofreebodydiagramtofacilitatethecalculationofthetorquedueto theforce F: y F=21.0N .100m 0.193m 2 I = 1.28 kg⋅m τττ =15.0N ⋅⋅⋅m 1 O rrr a ⊥ =.193m x 0.293m LineofActionoftheForce NowwegoaheadandapplyNewton’s2 nd LawforRotationalMotion,equation201: 1 aaa = τ I ∑ AsinthecaseofNewton’s2 nd Law(fortranslationalmotion)thisequationisthreescalar equationsinone,oneequationforeachofthreemutuallyperpendicularaxesaboutwhich rotation,underthemostgeneralcircumstances,couldoccur.Inthecaseathand,theobjectis constrainedtoallowrotationaboutasingleaxis.Inoursolution,weneedtoindicatethatweare summingtorquesaboutthataxis,andweneedtoindicatewhichofthetwopossiblerotational senseswearedefiningtobepositive.Wedothatbymeansofthesubscripttobereado “counterclockwiseaboutpointO.”Newton’s2 nd Lawforrotationalmotionaboutthevertical axis(perpendiculartothepageandrepresentedbythedotlabeled“ O”inthediagram)reads: 1 a = τ (203) o I ∑ o

130 Chapter 20 Torque & Circular Motion

1 Now,whenwereplacetheexpression τ withtheactualtermbytermsumofthetorques, I ∑ o

wenotethat τ isindeedcounterclockwiseasviewedfromabove(andhencepositive)butthat 1 theforce F ,whereitisapplied,wouldtendtocauseaclockw iserotationoftheplate,meaning thatthetorqueassociatedwithforce F isclockwiseandhence,mustenterthesumwithaminus sign. 1 a === (τ −−− r F ) I 1 T Substitutingvalueswithunitsyields: 1 a = []15.0 N ⋅ m − 0.193m()21.0N 1.28 kg ⋅ m2 Evaluatingandroundingtheanswertothreesignificantfiguresgivesusthefinalanswer: rad a === 8.55 (counterclockwiseasviewedfromabove) s2 Regardingtheunitswehave: 1 1 kg ⋅⋅⋅ m 1 rad N ⋅⋅⋅ m ====== kg ⋅⋅⋅ m2 kg ⋅⋅⋅ m s2 s2 s2 kg ⋅ m wherewehavetakenadvantageofthefactthatanewtonisa andthefactthattheradian s 2 isnotatrueunitbutratheramarkerthatcanbeinsertedasneeded.

131 Chapter 21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque Donotuseyourlefthandwhenapplyingeithertherighthandruleforthecrossproduct oftwovectors(discussedinthischapter)ortherighthandrulefor“somethingcurly somethingstraight”discussedintheprecedingchapter. Thereisa relationaloperator 1forvectorsthatallowsustobypassthecalculationofthe momentarm.Therelationaloperatoriscalledthecrossproduct.Itisrepresentedbythesymbol “×”read“cross.”Thetorque τ canbeexpressedasthecrossproductoftheposit ionvector rrr forthepointofapplicationoftheforce,andtheforcevector F itself: τ = rrr × F (211) Beforewebeginourmathematicaldiscussionofwhat wemeanbythecrossproduct,afew wordsaboutthevector rrr areinorder.Itisimportantforyoutobeabletodistinguishbetween thepositionvector rrr fortheforce,andthemomentarm,sowepresentthembelowinoneand thesamediagram.Weusethesameexamplethatwehaveusedbefore: AxisofRotation O PositionofthePointofApplicationoftheForce F inwhichwearelookingdirectlyalongtheaxisofrotation(soitlookslikeadot)andtheforce liesinaplaneperpendiculartothataxisofrotation.Weusethediagramaticconventionthat,the pointatwhichtheforceisappliedtotherigidbodyisthepointatwhichoneendofthearrowin thediagramtouchestherigidbody.Nowweaddthelineofactionoftheforceandthemoment arm r⊥tothediagram,aswellasthepositionvector rrr ofthepointofapplicationoftheforce.

1Youaremuchmorefamiliarwithrelationaloperatorsthenyoumightrealize.The+signisarelationaloperator forscalars(numbers).Theoperationisaddition.Applyingittothenumbers2and3yields2+3=5.Youarealso familiarwiththerelationaloperators −, ⋅,and ÷forsubtraction,multiplication,anddivision(ofscalars)respectively.

132 Chapter 21 Vectors: The Cross Product & Torque

LineofActionoftheForce TheMomentArm r ⊥ O rrr PositionVectorforthePoint ofApplicationoftheForce F Themomentarmcanactuallybedefinedintermsofthepositionvectorforthepointof applicationoftheforce.Consideratilted xycoordinatesystem,havinganoriginontheaxisof rotation,withoneaxisparalleltothelineofactionoftheforceandoneaxisperpendiculartothe lineofactionoftheforce.Welabelthe xaxis for“perpendicular”andtheyaxis || for ┴ “parallel.” ┴ || O rrr F

133

Chapter 21 Vectors: The Cross Product & Torque

⊥ ⊥ ⊥ ⊥ Nowwebreakupthepositionvector rrr intoitscomponentvectorsalongthe and |axes. ┴ || rrr ┴ rrr | O rrr F Fromthediagramitisclearthatthemomentarm rrr isjustthemagnitudeofthecomponent ┴ vector,intheperpendiculartotheforcedirection,ofthepositionvectorofthepointof applicationoftheforce.

134 Chapter 21 Vectors: The Cross Product & Torque

Nowlet’sdiscussthecrossproductingeneralterms.Considertwovectors, A and B thatare neitherparallelnor antiparallel 2toeachother.Twosuchvectorsdefineaplane. Letthatplanebetheplaneofthepageanddefine θtobethesmallerofthetwoanglesbetween thetwovectorswhenthevectorsaredrawntailtotail. B θ A Themagnitudeofthecrossproductvector A ×B isgivenby A ×B = ABsinθ (212) Thedirectionofthecrossproductvector A ×B isgivenbytherighthandruleforthecross productoftwo vectors 3.Toapplythisrighthandrule,extendthefingersofyourrighthandso thattheyarepointingdirectlyawayfromyourrightelbow.Extendyourthumbsothatitisat rightanglestoyourfingers.

2Twovectorsthatareantiparallelareinexactoppositedirectionstoeachother.Theanglebetweenthemis180 ° degrees.Antiparallelvectorsliealongparallellinesoralongoneandthesameline,butpointinopposite directions. 3Youneedtolearntworighthandrulesforthiscourse:the“righthandruleforsomethingcurlysomething straight,”andthisone,therighthandruleforthecrossproductoftwovectors.

135 Chapter 21 Vectors: The Cross Product & Torque

Keepingyourfingersalignedwithyourforearm,pointyourfingersinthedirectionofthefirst vector(theonethatappearsbeforethe“ ×”inthemathematicalexpressionforthecrossproduct; e.g.the A in A ×B ). B A Nowrotateyourhand,asnecessary,aboutanimaginaryaxisextendingalongyourforearmand alongyourmiddlefinger,untilyourhandisorientedsuchthat,ifyouweretocloseyourfingers, theywouldpointinthedirectionofthesecondvector. B Thisthumbispointing straightoutofthepage, rightatyou! A Yourthumbisnowpointinginthedirectionofthe crossproductvector. C = A×B .Thecross productvector C isalwaysperpendiculartobothofthevectorsthatareinthecrossproduct(the A andthe B inthecaseathand).Hence,ifyoudrawthemsothatbothofthevectorsthatarein thecrossproductareintheplaneofthepage,thecrossproductvectorwillalwaysbe perpendiculartothepage,eitherstraightintothepage,orstraightoutofthepage.Inthecaseat hand,itisstraightoutofthepage.

136 Chapter 21 Vectors: The Cross Product & Torque Whenweusethecrossproducttocalculatethetorq ueduetoaforce F whosepointof r applicationhasapositionvector rr ,relativetothepointaboutwhichwearecalculat ingthe torque,wegetanaxialtorquevector τ .Todeterminethesenseofrotationthatsuchatorque vectorwouldcorrespondto,abouttheaxisdefinedbythetorquevectoritself,weuseTheRight HandRuleForSomethingCurlySomethingStraight.Notethatwearecalculatingthetorque withrespecttoapointratherthananaxis—theaxisaboutwhichthetorqueacts,comesoutinthe answer.

Calculating the Cross Product of Vectors that are Given in iii, jjj, kkk Notation Unitvectorsallowforastraightforwardcalculationofthecrossproductoftwovectorsunder eventhemostgeneralcircumstances,e.g.circumstancesinwhicheachofthevectorsispointing inanarbitrarydirectioninathreedimensionalspace.Totakeadvantageofthemethod,weneed toknowthecrossproductoftheCartesiancoordinateaxisunitvectors i, j,and kwitheach other. Firstoff,weshouldnotethatanyvectorcrossedintoitselfgiveszero.Thisisevidentfrom equation212: A×B = ABsinθ , becauseifAandBareinthesamedirection,then θ=0°,andsincesin 0°=0,wehave A×B = 0 .Regardingtheunitvectors,thismeansthat: i×i = 0 j×j = 0 k×k = 0 Nextwenotethatthemagnitudeofthecrossproductoftwovectorsthatareperpendicularto eachotherisjusttheordinaryproductofthemagnitudesofthevectors.Thisisalsoevidentfrom equation212: A×B = ABsinθ , becauseif A isperpendicularto Bthen θ=90 °andsin 90 °=1so A×B = AB Nowif A and B areunitvectors,thentheirmagnitudesareboth1,so,theproductoftheir magnitudesisalso1.Furthermore,theunitvectors i, j,and kareallperpendiculartoeach othersothe magnitude ofthecrossproductofanyoneofthemwithanyotheroneofthemisthe productofthetwomagnitudes,thatis,1.

137 Chapter 21 Vectors: The Cross Product & Torque

Nowhowaboutthedirection?Let’susetherighthandruletogetthedirectionof i×j : z y k j i x Figure1 Withthefingersoftherighthandpointingdirectlyawayfromtherightelbow,andinthesame directionas i,(the first vectorin“ i×j ”)tomakeitsothatifoneweretoclosethefingers,they wouldpointinthesamedirectionas j,thepalmmustbefacinginthe+ydirection.Thatbeing thecase,theextendedthumbmustbepointinginthe+zdirection.Puttingthemagnitude(the magnitudeofeachunitvectoris1)anddirection(+z)informationtogetherwe see 4that i ×j = k .Similarly: j ×k = i , k ×i = j , j ×i = −k , k ×j = −i ,and i ×k = −j .One wayofrememberingthisistowrite i,j,ktwiceinsuccession: i,j,k,i,j,k. Then,crossinganyoneofthefirstthreevectorsintothevectorimmediatelytoitsrightyieldsthe nextvectortotheright.Butcrossinganyoneofthelastthreevectorsintothevector

4Youmayhavepickeduponabitofcircularreasoninghere.NotethatinFigure1,ifwehadchosentohavethez axispointintheoppositedirection(keeping xandyasshown)then i×j wouldbepointinginthe–zdirection.In fact,havingchosenthe+ xand+ydirections,wedefinethe+zdirectionasthatdirectionthatmakes i ×j = k . Doingsoformswhatisreferredtoasarighthandedcoordinatesystemwhichis,byconvention,thekindof coordinatesystemthatweuseinandmathematics.If i ×j = −k thenyouaredealingwithalefthanded coordinatesystem,somethingtobeavoided.

138 Chapter 21 Vectors: The Cross Product & Torque immediatelytoitsleftyieldsthe negative ofthenextvectortotheleft(lefttoright“+“,but righttoleft“ −“). Nowwe’rereadytolookatthegeneralcase.Anyvector A canbeexpressedintermsofunit vectors: A = Axi + Ayj + Azk Doingthesameforavector B thenallowsustowritethecrossproductas: A ×B = (Axi + Ayj + Azk)× (Bxi + Byj + Bzk) Usingthedistributiveruleformultiplicationwecanwritethisas: A ×B = Axi× (Bxi + Byj + Bzk) +

Ayj× (Bxi + Byj + Bzk) +

Azk× (Bxi + Byj + Bzk) A ×B = Axi× Bxi + Axi× Byj + Axi× Bzk +

Ayj× Bxi + Ayj× Byj + Ayj× Bzk +

Azk× Bxi + Azk× Byj + Azk× Bzk Using,ineachterm,thecommutativeruleandtheassociativeruleformultiplicationwecan writethisas: A ×B = Ax Bx (i×i) + Ax By (i×j) + Ax Bz (i×k) +

Ay Bx (j×i) + Ay By (j×j) + Ay Bz (j×k) +

Az Bx (k×i) + Az By (k×j) + Az Bz (k×k) Nowweevaluatethecrossproductthatappearsineachterm: A ×B = Ax Bx )0( + Ax By (k) + Ax Bz (−j) +

Ay Bx (−k) + Ay By )0( + Ay Bz (i) +

Az Bx (j) + Az By (−i) + Az Bz )0( Eliminatingthezerotermsandgroupingthetermswith itogether,thetermswith jtogether, andthetermswith ktogetheryields:

139 Chapter 21 Vectors: The Cross Product & Torque

A ×B = Ay Bz (i) + Az By (−i) +

Az Bx (j) + Ax Bz (−j) +

Ax By (k) + Ay Bx (−k) Factoringouttheunitvectorsyields: A ×B = (Ay Bz − Az By )i +

(Az Bx − Ax Bz )j +

(Ax By − Ay Bx )k whichcanbewrittenononelineas: A ×B = (Ay Bz − Az By )i + (Az Bx − Ax Bz )j + (Ax By − Ay Bx )k (213) Thisisourendresult.Wecanarriveatthisresultmuchmorequicklyifweborrowatoolfrom thatbranchofmathematicsknownaslinearalgebra(themathematicsofmatrices). Weformthe3 ×3matrix  i j k     Ax Ay Az    Bx By Bz  bywriting i, j, kasthefirstrow,thenthecomponentsofthe first vectorthatappearsinthe crossproductasthesecondrow,andfinallythecomponentsofthesecondvectorthatappearsin thecrossproductasthelastrow.Itturnsoutthatthecrossproductisequaltothe determinant of thatmatrix.Weuseabsolutevaluesignsontheentirematrixtosignify“thedeterminantofthe matrix.”Sowehave: i j k A ×B = Ax Ay Az (214)

Bx By Bz Totakethedeterminantofa3 ×3matrixyouworkyourwayacrossthetoprow.Foreach elementinthatrowyoutaketheproductoftheelementsalongthediagonalthatextendsdown andtotheright,minustheproductoftheelementsdownandtotheleft;andyouaddthethree results(oneresultforeachelementinthetoprow)together.Iftherearenoelementsdownand totheappropriateside,youmoveovertotheothersideofthematrix(seebelow)tocompletethe diagonal.

140 Chapter 21 Vectors: The Cross Product & Torque

Forthefirstelementofthefirstrow,the i,taketheproductdownandtotheright, i j k Ax Ay Az B B B x y z

(thisyields i Ay Bz ) minustheproductdownandtotheleft i j k

Ax A y Az Bx By Bz

(theproductdownandtotheleftis i Az By ).

Forthefirstelementinthefirstrow,wethushave: i Ay Bz − i Az By whichcanbewrittenas:

(Ay Bz − Az By )i .Repeatingtheprocessforthesecondandthirdelementsinthefirstrow(the j andthe k)weget (Az Bx − Ax Bz )j and (Ax By − Ay Bx )k respectively.Addingthethreeresults, toformthedeterminantofthematrixresultsin: A ×B = (Ay Bz − Az By )i + (Az Bx − Ax Bz )j + (Ax By − Ay Bx )k (213) aswefoundbefore,“thehardway.”

141 Chapter 22 Center of Mass, Moment of Inertia

22 Center of Mass, Moment of Inertia Amistakethatcropsupinthecalculationofmomentsofinertia,involvestheParallel AxisTheorem.Themistakeistointerchangethemomentofinertiaoftheaxisthrough thecenterofmass,withtheoneparalleltothat,whenapplyingtheParallelAxis Theorem.Recognizingthatthesubscript“CM”intheparallelaxistheoremstandsfor “centerofmass”willhelponeavoidthismistake.Also,acheckontheanswer,tomake surethatthevalueofthemomentofinertiawithrespecttotheaxisthroughthecenterof massissmallerthantheothermomentofinertia,willcatchthemistake.

Center of Mass Considertwoparticles,havingoneandthesamemass m,eachofwhichisatadifferentposition onthexaxisofaCartesiancoordinatesystem. y #1 #2 m m x Commonsensetellsyouthattheaveragepositionofthematerialmakingupthetwoparticlesis midwaybetweenthetwoparticles.Commonsenseisright.Wegivethename“centerofmass” totheaveragepositionofthematerialmakingupadistribution,andthecenterofmassofapair ofsamemassparticlesisindeedmidwaybetweenthetwoparticles. Howaboutifoneoftheparticlesismoremassivethantheother?Onewouldexpectthecenter ofmasstobeclosertothemoremassiveparticle,andagain,onewouldberight.Todetermine thepositionofthecenterofmassofthedistributionofmatterinsuchacase,wecomputea weightedsumofthepositionsoftheparticlesinthedistribution,wheretheweightingfactorfora givenparticleisthatfraction,ofthetotalmass,thattheparticle’sownmassis.Thus,fortwo particlesonthexaxis,oneofmass m1,at x1,andtheotherofmass m2,at x2, y (x ,0) 1 (x2 ,0) m m x 1 2

142 Chapter 22 Center of Mass, Moment of Inertia theposition x ofthecenterofmassisgivenby

m1 m2 x === x1 +++ x2 (221) m1 +++ m2 m1 +++ m2 Notethateachweightingfactorisaproperfractionandthatthesumoftheweightingfactorsis always1.Alsonotethatif,forinstance, m isgreaterthan m ,thentheposition x ofparticle1 1 2 1 willcountmoreinthesum,thusensuringthatthecenterofmassisfoundtobeclosertothe moremassiveparticle(asweknowitmustbe).Furthernotethatif m =m ,eachweighting 1 2 1 factoris ,asisevidentwhenwesubstitute mforboth m and m inequation221: 2 1 2 m m x = x + x m + m 1 m + m 2 1 1 x = x + x 2 1 2 2 x + x x = 1 2 2 Thecenterofmassisfoundtobemidwaybetweenthetwoparticles,rightwherecommonsense tellsusithastobe.

The Center of Mass of a Thin Rod Quiteoften,whenthefindingofthepositionofthecenterofmassofadistributionofparticlesis calledfor,thedistributionofparticlesisthesetofparticlesmakinguparigidbody.Theeasiest rigidbodyforwhichtocalculatethecenterofmassisthethinrodbecauseitextendsinonly onedimension.(Here,wediscussanidealthinrod.Aphysicalthinrodmusthavesomenon zerodiameter.Theidealthinrod,however,isagoodapproximationtothephysicalthinrodas longasthediameteroftherodissmallcomparedtoitslength.) Inthesimplestcase,thecalculationofthepositionofthecenterofmassistrivial.Thesimplest caseinvolvesa uniform thinrod.Auniformthinrodisoneforwhichthelinearmassdensity , themassperlengthoftherod,hasoneandthesamevalueatallpointsontherod.Thecenterof massofauniformrodisatthecenteroftherod.So,forinstance,thecenterofmassofa uniformrodthatextendsalongthexaxisfrom x=0to x=Lisat( L/2,0 ). The linearmassdensity ,typicallycalled lineardensity whenthecontextisclear,isameasure ofhowcloselypackedtheelementaryparticlesmakinguptherodare.Wherethelineardensity ishigh,theparticlesareclosetogether.

143 Chapter 22 Center of Mass, Moment of Inertia

Topicturewhatismeantbyanonuniformrod,arodwhoselineardensityisafunctionof position,imagineathinrodmadeofanalloyconsistingofleadandaluminum.Furtherimagine thatthepercentageofleadintherodvariessmoothlyfrom0%atoneendoftherodto100%at theother.Thelineardensityofsucharodwouldbeafunctionofthepositionalongthelengthof therod.Aonemillimetersegmentoftherodatonepositionwouldhaveadifferentmassthan thatofaonemillimetersegmentoftherodatadifferentposition. Peoplewithsomeexposuretocalculushaveaneasiertimeunderstandingwhatlineardensityis thancalculusdeprivedindividualsdobecauselineardensityisjusttheratiooftheamountof massinarodsegmenttothelengthofthesegment,inthelimitasthelengthofthesegmentgoes tozero.Considerarodthatextendsfrom0to Lalongthe xaxis.Nowsupposethat ms(x)isthe massofthatsegmentoftherodextendingfrom0to xwherex≥0but x<L.Then,thelinear dm densityoftherodatanypoint xalongtherod,isjust s evaluatedatthevalueof xin dx question. Nowthatyouhaveagoodideaofwhatwemeanbylinearmassdensity,wearegoingto illustratehowonedeterminesthepositionofthecenterofmassofanonuniformthinrodby meansofanexample. Example 22-1 Findthepositionofthecenterofmassofathinrodthatextendsfrom0to.890m alongthexaxisofaCartesiancoordinatesystemandhasalineardensitygiven kg by (x) === 0.650 x2 . m3 Inordertobeabletodeterminethepositionofthecenterofmassofarodwithagivenlength andagivenlineardensityasafunctionofposition,youfirstneedtobeabletofindthemassof sucharod.Todothat,onemightbetemptedtouseamethodthatworksonlyforthespecial caseofauniformrod,namely,totryusing m= Lwith Lbeingthelengthoftherod.The problemwiththisis,that variesalongtheentirelengthoftherod.Whatvaluewouldoneuse for ?Onemightbetemptedtoevaluatethegiven at x=Landusethat,butthatwouldbe actingasifthelineardensitywereconstantat =(L).Itisnot.Infact,inthecaseathand,

(L)isthemaximumlineardensityoftherod,itonlyhasthatvalueatonepointontherod.

Whatwecandoistosaythattheinfinitesimalamountofmass dm inasegment dxoftherodis

dx.Herewearesayingthatatsomeposition xontherod,theamountofmassinthe infinitesimallength dxoftherodisthevalueof atthat xvalue,timestheinfinitesimallength dx.Herewedon’thavetoworryaboutthefactthatchangeswithpositionsincethesegment dxisinfinitesimallylong,meaning,essentially,thatithaszerolength,sothewholesegmentis essentiallyatoneposition xandhencethevalueof atthat xisgoodforthewholesegment dx.

dm = (x)dx(222)

144 Chapter 22 Center of Mass, Moment of Inertia

y

dx (L,0) • z x x dm = dx Nowthisistrueforanyvalueof x,butitjustcoversaninfinitesimalsegmentoftherodat x.To getthemassofthewholerod,weneedtoaddupallsuchcontributionstothemass. Ofcourse,sinceeach dm correspondstoaninfinitesimallengthoftherod,wewillhavean infinitenumberoftermsinthesumofallthe dm ’s.Aninfinitesumofinfinitesimalterms,isan integral. L ∫ dm = ∫ (x) dx (223) 0 wherethevaluesof xhavetorunfrom0to Ltocoverthelengthoftherod,hencethelimitson theright.Nowthemathematicianshaveprovideduswitharichsetofalgorithmsforevaluating integrals,andindeedwewillhavetoreachintothattoolboxtoevaluatetheintegralontheright, buttoevaluatetheintegralontheleft,wecannot,shouldnot,andwillnotturntosuchan algorithm.Instead,weusecommonsenseandourconceptualunderstandingofwhattheintegral ontheleftmeans.Inthecontextoftheproblemathand, ∫∫∫dm means“thesumofallthe infinitesimalbitsofmassmakinguptherod.”Now,ifyouaddupalltheinfinitesimalbitsof massmakinguptherod,yougetthemassoftherod.So ∫∫∫dm isjustthemassoftherod,which wewillcall m.Equation223thenbecomes L m = ∫ (x) dx (224) 0

kg 2 Replacing (x)withthegivenexpressionforthelineardensity === 0.650 x whichIchoose m3 kg towriteas = bx2 with bbeingdefinedby b ≡≡≡ 0.650 weobtain m3 L m = ∫ bx 2dx 0 Factoringouttheconstantyields

145 Chapter 22 Center of Mass, Moment of Inertia

L m === b ∫∫∫ x 2dx 0 Whenintegratingthevariableofintegrationraisedtoapowerallwehavetodoisincreasethe powerbyoneanddividebythenewpower.Thisgives L x3 m = b 3 0 Evaluatingthisatthelowerandupperlimitsyields  L3 0 3  m === b −−−   3 3   L3 0 3  m === b −−−   3 3  bL3 m === 3 kg Thevalueof Lisgivenas0 .890mandwedefined btobetheconstant 0.650 inthegiven m3 kg expressionfor , === 0.650 x2 ,so m3

kg 3 0.650 3 0( .890m) m === m 3 m === 0.1527 kg That’savaluethatwillcomeinhandywhenwecalculatethepositionofthecenterofmass. Now,whenwecalculatedthecenterofmassofasetofdiscreteparticles(whereadiscrete particleisonethatisbyitself,asopposed,forinstance,tobeingpartofarigidbody)wejust carriedoutaweightedsuminwhicheachtermwasthepositionofaparticletimesitsweighting factorandtheweightingfactorwasthatfraction,ofthetotalmass,representedbythemassofthe particle.Wecarryoutasimilarprocedureforacontinuousdistributionofmasssuchasthat whichmakesuptherodinquestion.Let’sstartbywritingonesingletermofthesum.We’ll consideraninfinitesimallength dxoftherodataposition xalongthelengthoftherod.The position,asjuststated,is x,andtheweightingfactoristhatfractionofthetotalmass moftherod

146 Chapter 22 Center of Mass, Moment of Inertia

thatthemass dm oftheinfinitesimallength dxrepresents.Thatmeanstheweightingfactoris dm ,so,aterminourweightedsumofpositionslookslike: m dm x m

Now, dm canbeexpressedas dxsoourexpressionforthetermintheweightedsumcanbe writtenas dx x m That’sonetermintheweightedsumofpositions,thesumthatyieldsthepositionofthecenterof mass.Thethingis,becausethevalueof xisunspecified,thatonetermisgoodforany infinitesimalsegmentofthebar.Everyterminthesumlooksjustlikethatone.Sowehavean expressionforeveryterminthesum.Ofcourse,becausetheexpressionisforaninfinitesimal length dxoftherod,therewillbeaninfinitenumberoftermsinthesum.So,againwehavean infinitesumofinfinitesimalterms.Thatis,againwehaveanintegral.Ourexpressionforthe positionofthecenterofmassis: L dx x === x ∫∫∫ m 0 kg Substitutingthegivenexpression (x) === 0.650 x 2 for ,whichweagainwriteas = bx2 m3 kg with bbeingdefinedby b ≡≡≡ 0.650 ,yields m3 L bx 2 dx x = x ∫ m 0 Rearrangingandfactoringtheconstantsoutgives b L x === x3 dx m ∫∫∫ 0 Nextwecarryouttheintegration. L b x4 x === m 4 0

147 Chapter 22 Center of Mass, Moment of Inertia

b  L4 04  x ===  −−−  m  4 4  bL4 x === 4m Nowwesubstitutevalueswithunits;themass moftherodthatwefoundearlier,theconstant b thatwedefinedtosimplifytheappearanceofthelineardensityfunction,andthegivenlength L oftherod:

 kg  4 0.650  0( .890m) m3 x ===   0(4 .1527kg) x === 0.668m Thisisourfinalanswerforthepositionofthecenterofmass.Notethatitisclosertothedenser endoftherod,aswewouldexpect.Thereadermayalsobeinterestedtonotethathadwe bL3 substitutedtheexpression m === thatwederivedforthemass,ratherthanthevaluewe 3 3 obtainedwhenweevaluatedthatexpression,ourexpressionfor x wouldhavesimplifiedto L 4 whichevaluatesto x === 0.668 m ,thesameresultastheoneabove.

Moment of Inertia—a.k.a. Rotational Inertia Youalreadyknowthatthemomentofinertiaofarigidobject,withrespecttoaspecifiedaxisof rotation,dependsonthemassofthatobject,andhowthatmassisdistributedrelativetotheaxis ofrotation.Infact,youknowthatifthemassispackedinclosetotheaxisofrotation,theobject willhaveasmallermomentofinertiathanitwouldifthesamemasswasmorespreadout relativetotheaxisofrotation.Let’squantifytheseideas.(Quantify,inthiscontext,meansto putintoequationform.) Westartbyconstructing,inourminds,anidealizedobjectforwhichthemassisallconcentrated atasinglelocationwhichisnotontheaxisofrotation:Imagineamasslessdiskrotatingwith angularvelocity waboutanaxisthroughthecenterofthediskandperpendiculartoitsfaces. Lettherebeaparticleofmass membeddedinthediskatadistance rfromtheaxisofrotation. Here’swhatitlookslikefromaviewpointontheaxisofrotation,somedistanceawayfromthe disk:

148 Chapter 22 Center of Mass, Moment of Inertia

w r O Particleof mass m Ma sslessDisk wheretheaxisofrotationismarkedwithan O.Becausethediskismassless,wecallthe momentofinertiaoftheconstruction,themomentofinertiaofaparticle,withrespecttorotation aboutanaxisfromwhichtheparticleisadistance r.

Knowingthatthevelocityoftheparticlecanbeexpressedas v=r wyoucanshowyourself 1 how Imustbedefinedinorderforthekineticenergyexpression K = Iw 2 fortheobject, 2 1 viewedasaspinningrigidbody,tobethesameasthekineticenergyexpression K = mv 2 for 2 theparticlemovingthroughspaceinacircle.Eitherpointofviewisvalidsobothviewpoints mustyieldthesamekineticenergy.Pleasegoaheadandderivewhat Imustbeandthencome backandreadthederivationbelow. Hereisthederivation:

1 2 1 2 Giventhat K = mv ,wereplace v with r w.Thisgives K = m(r w) 2 2 whichcanbewrittenas 1 K = (mr 22 ) w 2 2 Forthistobeequivalentto 1 K = Iw 2 2 wemusthave 2 I= mr (225) Thisisourresultforthemomentofinertiaofaparticleofmass m,withrespecttoanaxisof rotationfromwhichtheparticleisadistance r.

149 Chapter 22 Center of Mass, Moment of Inertia

Nowsupposewehavetwoparticlesembeddedinourmasslessdisk,oneofmass m1atadistance r1fromtheaxisofrotationandanotherofmass m2atadistance r2fromtheaxisofrotation. w r 1 O m 1 r 2 m 2 MasslessDisk Themomentofinertiaofthefirstonebyitselfwouldbe 2 I = m r 1 1 1 andthemomentofinertiaofthesecondparticlebyitselfwouldbe 2 I2 === m2 r2 Thetotalmomentofinertiaofthetwoparticlesembeddedinthemasslessdiskissimplythesum ofthetwoindividualmomentsofinertial.

I= I1+ I2 2 2 I === m1r1 +++ m2 r2 Thisconceptcanbeextendedtoincludeanynumberofparticles.Foreachadditionalparticle, 2 onesimplyincludesanother miri terminthesumwhere miisthemassoftheadditionalparticle and riisthedistancethattheadditionalparticleisfromtheaxisofrotation.Inthecaseofarigid object,wesubdividetheobjectupintoaninfinitesetofinfinitesimalmasselements dm .Each masselementcontributesanamountofmomentofinertia dI = r 2dm (226) tothemomentofinertiaoftheobject,where risthedistancethattheparticularmasselementis fromtheaxisofrotation.

150 Chapter 22 Center of Mass, Moment of Inertia

Example 22-2

FindthemomentofinertiaoftherodinExample221withrespecttorotation aboutthezaxis. kg InExample221,thelineardensityoftherodwasgivenas === 0.650 x2 .Toreducethe m3 2 numberoftimeswehavetowritethevalueinthatexpression,wewillwriteitas = bx with b kg beingdefinedas b ≡≡≡ 0.650 . m3 Thetotalmomentofinertiaoftherodistheinfinitesumoftheinfinitesimalcontributions dI = r 2dm (226) fromeachandeverymasselement dm makinguptherod. y

dx (L,0) • z x x dm = dx

Inthediagram,wehaveindicatedaninfinitesimalelement dxoftherodatanarbitraryposition ontherod.Thezaxis,theaxisofrotation,lookslikeadotinthediagramandthedistance rin dI = r 2dm ,thedistancethatthebitofmassunderconsiderationisfromtheaxisofrotation,is simplytheabscissa xofthepositionofthemasselement.Hence,equation226forthecaseat handcanbewrittenas dI = x2dm

151 Chapter 22 Center of Mass, Moment of Inertia whichwecopyhere dI = x2dm

Bydefinitionofthelinearmassdensity ,theinfinitesimalmass dm canbeexpressedas dm = dx .Substitutingthisintoourexpressionfor dI yields dI = x2 dx 2 Now wasgivenas bx (with bactuallybeingthesymbolthatIchosetousetorepresentthe kg 2 givenconstant 0.650 ).Substituting bx infor inourexpressionfor dI yields m3 dI = x2 (bx2 ) dx dI = bx4dx

Thisexpressionforthecontributionofanelementdxoftherodtothetotalmomentofinertiaof therodisgoodforeveryelement dxoftherod.Theinfinitesumofallsuchinfinitesimal contributionsisthustheintegral L ∫∫∫ dI === ∫∫∫ bx4dx 0 Again,aswithourlastintegration,ontheleft,wehavenotbotheredwithlimitsofintegration— theinfinitesumofalltheinfinitesimalcontributionstothemomentofinertiaissimplythetotal momentofinertia. L I === ∫∫∫ bx 4dx 0 Ontherightweusethelimitsofintegration0toLtoincludeeveryelementoftherodwhich extendsfrom x=0to x=L,with Lgivenas0 .890m.Factoringouttheconstant bgivesus L I === b ∫∫∫ x 4dx 0 Nowwecarryouttheintegration: L x5 I === b 5 0  L 5 0 5  I = b −   5 5 

152 Chapter 22 Center of Mass, Moment of Inertia

L 5 I === b 5 Substitutingthegivenvaluesof band Lyields: kg 0( .890m) 5 I === 0.650 m3 5 I = 0.0726kg ⋅ m 2

The Parallel Axis Theorem

Westate,withoutproof ,theparallelaxistheorem: 2 I === ICM +++ md (227) inwhich: I isthemomentofinertiaofanobjectwithrespecttoanaxisfromwhichthecenterof massoftheobjectisadistance d.

I isthemomentofinertiaoftheobjectwithrespecttoanaxisthatisparalleltothefirstaxis CM andpassesthroughthecenterofmass. misthemassoftheobject. disthedistancebetweenthetwoaxes.

Theparallelaxistheoremrelatesthemomentofinertia ICM ofanobject,withrespecttoanaxis throughthecenterofmassoftheobject,tothemomentofinertia Iofthesameobject,with respecttoanaxisthatisparalleltotheaxisthroughthecenterofmassandisatadistance dfrom theaxisthroughthecenterofmass. Aconceptualstatementmadebytheparallelaxistheoremisonethatyouprobablycouldhave arrivedatbymeansofcommonsense,namelythatthemomentofinertiaofanobjectwith respecttoanaxisthroughthecenterofmassissmallerthanthemomentofinertiaaboutanyaxis paralleltothatone.Asyouknow,thecloserthemassis“packed”totheaxisofrotation,the smallerthemomentofinertia;and;foragivenobject,perdefinitionofthecenterofmass,the massispackedmostcloselytotheaxisofrotationwhentheaxisofrotationpassesthroughthe centerofmass.

153 Chapter 22 Center of Mass, Moment of Inertia

Example 22-3

Findthemomentofinertiaoftherodfromexamples221and222,withrespect toanaxisthatisperpendiculartotherodandpassesthroughthecenterofmass oftherod.

Recallthattherodinquestionextendsalongthe xaxisfrom x=0to x=Lwith L=0.890mand kg thattherodhasalineardensitygivenby = bL2 withb≡ 0.650 x 2 . m3 Theaxisinquestioncanbechosentobeonethatisparalleltothezaxis,theaxisaboutwhich,in solvingexample222,wefoundthemomentofinertiatobe I === 0.0726kg ⋅⋅⋅ m2 .Insolving example221wefoundthemassoftherodtobem === 0.1527 kg andthecenterofmassofthe rodtobeatadistance d=0.668 mawayfromthezaxis.Herewepresentthesolutiontothe problem: y d • • z x Thecenterofmassoftherod 2 I === ICM +++ m d 2 ICM === I −−− m d 2 2 ICM === 0.0726kg ⋅⋅⋅ m −−− 0.1527kg 0( .668m) 2 ICM === 0.0047kg ⋅⋅⋅ m

154 Chapter 23 Statics

23 Statics Itbearsrepeating:Makesurethatanyforcethatentersthetorqueequilibriumequation ismultipliedbyamomentarm,andthatanypuretorque(suchas τointhesolutionof example23-2onpage151)thatentersthetorqueequilibriumequationis NOT multiplied byamomentarm. Foranyrigidbody,atanyinstantintime,Newton’s2 nd Lawfortranslationalmotion 1 a = F m ∑ andNewton’s2 nd LawforRotationalmotion 1 aaa = ∑ τ I bothapply.Inthischapterwefocusonrigidbodiesthatareinequilibrium.Thistopic,thestudy ofobjectsinequilibrium,isreferredtoas statics.Beinginequilibriummeansthatthe accelerationandtheangularaccelerationoftheri gidbodyinquestionarebothzero.When a === 0 ,Newton’s2 nd Lawfortranslationalmotionboilsdownto ∑ F = 0 (231) andwhen aaa = 0,Newton’s2 nd LawforRotationalmotionbecomes ∑∑∑ τ === 0 (232) Thesetwovectorequationsarecalledtheequilibriumequations.Theyarealsoknownasthe equilibriumconditions.Inthateachofthevectorshasthreecomponents,thetwovector equationsactuallyrepresentasetofsixscalarequations:

∑∑∑ Fx === 0

∑∑∑ Fy === 0

∑∑∑ Fz === 0

∑τ x< = 0

∑∑∑τ y< === 0

∑τ z< = 0

155 Chapter 23 Statics

Inmanycases,alltheforceslieinoneandthesameplane,andifthereareanytorquesaside fromthetorquesresultingfromtheforces,thosetorquesareaboutanaxisperpendiculartothat plane.Ifwedefinetheplaneinwhichtheforceslietobethexyplane,thenforsuchcases,the setofsixscalarequationsreducestoasetof3scalarequations(inthattheother3aretrivial0=0 identities):

∑∑∑ Fx === 0 (233)

∑∑∑ Fy === 0 (234)

∑τ z< = 0(235) StaticsproblemsrepresentasubsetofNewton’s2 nd Lawproblems.Youalreadyknowhowto solveNewton’s2 nd Lawproblemssothereisnotmuchnewforyoutolearnhere,butacoupleof detailsregardingthewayinwhichobjectsaresupportedwillbeusefultoyou. Manystaticsproblemsinvolvebeamsandcolumns.Beamsandcolumnsarereferredto collectivelyasmembers.Theanalysisoftheequilibriumofamembertypicallyentailssome approximationswhichinvolvetheneglectofsomeshortdistances.Aslongasthesedistances aresmallcomparedtothelengthofthebeam,theapproximationsareverygood.Oneofthese approximationsisthat,unlessotherwisespecified,weneglectthedimensionsofthecrosssection ofthemember(forinstance,thewidthandheightofabeam).Wedonotneglectthelengthof themember.

Pin-Connected Members Apinisashortaxle.Amemberwhichispinconnectedatoneend,isfreetorotateaboutthe pin.Thepinisperpendiculartothedirectioninwhichthememberextends.Inpractice,inthe caseofamemberthatispinconnectedatoneend,thepinisnotreallyrightattheendofthe member,butunlessthedistancefromthepintotheend(theendthatisverynearthepin)ofthe memberisspecified,weneglectthatdistance.Also,themechanismbywhichabeamispin connectedto,forinstance,awall,causestheendofthebeamtobeashortdistancefromthe wall.Unlessotherwisespecified,wearesupposedtoneglectthisdistanceaswell.Apinexerts aforceonthemember.Theforceliesintheplanethatcontainsthememberandisperpendicular tothepin.Beyondthat,thedirectionoftheforce,initially,isunknown.Onafreebodydiagram ofthemember,onecanincludethepinforceasanunknownforceatanunknownangle,orone canincludetheunknownxandycomponentsofthepinforce.

156 Chapter 23 Statics

Example 23-1 Oneendofabeamofmass6.92kgandoflength2 .00mispinconnectedtoa wall.Theotherendofthebeamrestsonafrictionlessfloorata point thatis 1.80mawayfromthewall.Thebeamisinaplanethatisperpendiculartoboth thewallandthefloor.Thepinisperpendiculartothatplane.Findtheforce exertedbythepinonthebeam,andfindthenormalforceexertedonthebeam bythefloor. Solution Firstlet’sdrawasketch: • L=2 .00m x=1 .80m Nowwedrawafreebodydiagramofthemember:

F Py F Px O F F g N

157 Chapter 23 Statics

WearegoingtoneedtoapplythetorqueequilibriumconditiontothebeamsoIamgoingtoadd momentarmstothediagram.MyplanistosumthetorquesaboutpointOsoIwilldepict momentarmswithrespecttoanaxisthroughpointO. r = x=1 .80m ⊥ FN

F Py r = x/2 ⊥Fg O F Px F FN g Nowlet’sapplytheequilibriumconditions:

∑ F→ = 0

FPx = 0 Therearethreeunknownforcevaluesdepictedinthefreebodydiagramandwehavealready foundoneofthem!Let’sapplyanotherequilibriumcondition:

∑ F↑ = 0

FPy − Fg + FN = 0

FPy − mg + FN = 0 (236) Therearetwounknownsinthisequation.Wecan’tsolveitbutitmayproveusefullateron. Let’sapplythetorqueequilibriumcondition.

∑τ O< = 0 x − F + xF = 0 2 g N x − mg + xFN = 0 2

158 Chapter 23 Statics

Here,Icopythatlastlineforyoubeforeproceeding: x − mg + xFN = 0 2 mg F = N 2 6.92kg(9.80newtons/kg) F = N 2

FN = 32. 9 newtons mg Wecanusethisresult( FN = )inequation236(theonethatreads FPy − mg + FN = 0 )to 2 obtainavaluefor FPy :

FPy − mg + FN = 0

FPy = mg − FN mg FPy = mg − 2 mg F = Py 2 6.92kg(9.80newtons/kg) F = Py 2

FPy = 32. 9 newtons

Recallingthatwefound FPx tobezero,wecanwrite,forourfinalanswer: FP =32 .9newtons,straightupward and FN =32 .9newtons,straightupward

159 Chapter 23 Statics

Fix-Connected Members Afixconnectedmemberisonethatisrigidlyattachedtoastructure(suchasawall)thatis externaltotheobjectwhoseequilibriumisunderstudy.Anexamplewouldbeametalrod,one endofwhichisweldedtoametalwall.Afixedconnectioncanapplyaforceinanydirection, anditcanapplyatorqueinanydirection.Whenalltheotherforceslieinaplane,theforce appliedbythefixedconnectionwillbeinthatplane.Whenalltheothertorquesarealongor paralleltoaparticularline,thenthetorqueexertedbythefixedconnectionwillbealongor paralleltothatsameline. Example 23-2 Ahorizontalbaroflength Landmass misfixconnectedtoawall.Findtheforce andthetorqueexertedonthebarbythewall. Solution Firstasketch:

160 Chapter 23 Statics thenafreebodydiagram: F oy O Fox τo L/2 F = m g g followedbytheapplicationoftheequilibriumconditionstothefreebodydiagram:

∑∑∑ F→→→ === 0

Fox === 0 Thatwasquick.Let’sseewhatsettingthesumoftheverticalforcesequaltozeroyields: F === 0 ∑∑∑ ↑↑↑

Foy − Fg = 0

Foy = Fg

Foy === mg Nowforthetorqueequilibriumcondition:

∑τ O< = 0 L τ − F = 0 o 2 g L τ o − mg = 0 2 1 τ o === mgL 2 Thewallexertsanupwardforceofmagnitude mg,andacounterclockwise(asviewedfromthat 1 positionforwhichthefreeendofthebaristotheright)torqueofmagnitude mgL onthebar. 2

161 Chapter 24 Work and Energy

24 Work and Energy Youhavedonequiteabitofproblemsolvingusingenergyconcepts.Backinchapter2we definedenergyasatransferablephysicalquantitythatanobjectcanbesaidtohaveandwesaid thatifonetransfersenergytoamaterialparticlethatisinitiallyatrest,thatparticleacquiresa speedwhichisanindicatorofhowmuchenergywastransferred.Wesaidthatanobjectcan haveenergybecauseitismoving(kineticenergy),orduetoitspositionrelativetosomeother object(potentialenergy) 1.Wesaidthatenergyhasunitsofjoules.Youhavedealtwith 1 2 1 2 translationalkineticenergy K = 2 mv ,rotationalkineticenergy K = 2Iw ,springpotential 1 2 energy U = 2 k x ,nearearth’ssurfacegravitationalpotentialenergy U = mgy ,andthe

G m1m2 universalgravitationalpotentialenergy U === −−− r correspondingtotheUniversalLawof Gravitation.Theprincipleoftheconservationofenergyis,intheopinionofthisauthor,the centralmostimportantconceptinphysics.Indeed,atleastonedictionarydefinesphysicsasthe studyofenergy.Itisimportantbecauseitisconservedandtheprincipleofconservationof energyallowsustousesimpleaccountingprocedurestomakepredictionsabouttheoutcomesof physicalprocessesthathaveyettooccurandtounderstandprocessesthathavealreadyoccurred. Accordingtotheprincipleofconservationofenergy,anychangeinthetotalamountofenergyof asystemcanbeaccountedforintermsofenergytransferredfromtheimmediatesurroundingsto thesystemortotheimmediatesurroundingsfromthesystem.Physicistsrecognizetwo categoriesofenergytransferprocesses.Oneiscalledworkandtheotheriscalledheatflow.In thischapterwefocusourattentiononwork. Conceptually,positiveworkiswhatyouaredoingonanobjectwhenyoupushorpullonitin thesamedirectioninwhichtheobjectismoving.Youdonegativeworkonanobjectwhenyou pushorpullonitinthedirectionoppositethedirectioninwhichtheobjectisgoing.The mnemonicforrememberingthedefinitionofworkthathelpsyourememberhowtocalculateitis “WorkisForcetimesDistance.”Themnemonicdoesnottellthewholestory.Itisgoodforthe caseofaconstantforceactingonanobjectthatmovesonastraightlinepathwhentheforceisin thesameexactdirectionasthedirectionofmotion. Amoregeneral,butstillnotcompletelygeneral,“howtocalculateit”definitionofworkapplies tothecaseofaconstantforceactingonanobjectthatmovesalongastraightlinepath(whenthe forceisnotnecessarilydirectedalongthepath).Insuchacase,thework Wdoneontheobject, whenittravelsacertaindistancealongthepath,is:thealongthepathcomponentoftheforce F| timesthelengthofthepathsegment r.

W=F|r (241) Eventhiscasestillneedssomeadditionalclarification:Iftheforcecomponentvectoralongthe pathisinthesamedirectionastheobject’sdisplacementvector,then F| ispositive,sothework ispositive;butiftheforcecomponentvectoralongthepathisintheoppositedirectiontothatof 1Asmentionedbefore,thepotentialenergyisactuallytheenergyofthesystemoftheobjectsandtheirfieldsasa whole,butitiscommontoassignittopartofthesystemfor“bookkeeping”purposesasIdointhisbook.

162 Chapter 24 Work and Energy

theobject’sdisplacementvector,then F| isnegative,sotheworkisnegative.Thus,ifyouare pushingorpullingonanobjectinadirectionthatwouldtendtomakeitspeedup,youaredoing positiveworkontheobject.Butifyouarepushingorpullingonanobjectinadirectionthat wouldtendtoslowitdown,youaredoingnegativeworkontheobject. Inthemostgeneralcaseinwhichthe“componentoftheforcealongthepath”iscontinually changingbecausetheforceiscontinuallychanging(suchasinthecaseofanobjectontheendof aspring)orbecausethepathisnotstraight,our“howtocalculateit”definitionofthework becomes:Foreachinfinitesimalpathsegmentmakingupthepathinquestion,wetakethe productofthealongthepathforcecomponentandtheinfinitesimallengthofthepathsegment. Theworkisthesumofallsuchproducts.Suchasumwouldhaveaninfinitenumberofterms. Werefertosuchasumasanintegral.

The Relation Between Work and Motion Let’sgobacktothesimplestcase,thecaseinwhichaforce F istheonlyforceactingona particleofmass mwhichmovesadistance r(whiletheforceisactingonit)inastraightlinein theexactsamedirectionastheforce.Theplanhereistoinvestigatetheconnectionbetweenthe workontheparticleandthemotionoftheparticle.We’llstartwithNewton’s2 nd Law. FreeBodyDiagram F m a 1 a = F → m ∑ → 1 a = F m Solvingfor F,wearriveat: F === ma Ontheleft,wehavethemagnitudeoftheforce.Ifwemultiplythatbythedistance r,weget theworkdonebytheforceontheparticleasitmovesthedistance ralongthepath,inthesame directionastheforce.Ifwemultiplytheleftsideoftheequationby rthenwehavetomultiply therightbythesamethingtomaintaintheequality. Fr === mar

163 Chapter 24 Work and Energy

Ontheleftwehavethework W,so: W = ma r Ontherightwehavetwoquantitiesusedtocharacterizethemotionofaparticlesowehave certainlymetourgoalofrelatingworktomotion,butwecanuntanglethingsontherightabitif werecognizethat,sincewehaveaconstantforce,wemusthaveaconstantacceleration.This meanstheconstantaccelerationequationsapply,inparticular,theonethat(intermsof rrather than x)reads: 2 2 v = vo + 2ar

Solvingthisfor a rgives

1 2 1 2 ar = v − vo 2 2 Substitutingthisintoourexpressionfor Wabove(theonethatreads W = ma r )weobtain

 1 2 1 2  W = m  v − vo   2 2  whichcanbewrittenas

1 2 1 2 W = mv − mvo 2 2

1 2 Ofcoursewerecognizethe mvo asthekineticenergyoftheparticlebeforetheworkisdone 2 1 ontheparticleandthe mv 2 asthekineticenergyoftheparticleaftertheworkisdoneonit. 2 Tobeconsistentwiththenotationweusedinourearlydiscussionoftheconservationof mechanicalenergywechangetothenotationinwhichtheprimesymbol( ′)signifies“after”and nosuperorsubscriptatall(ratherthanthesubscript“o”)represents“before.”Usingthis notationandthedefinitionofkineticenergy,ourexpressionfor Wbecomes: W = K′ − K Sincethe“after”kineticenergyminusthe“before”kineticenergyisjustthechangeinkinetic energy K,wecanwritetheexpressionfor Was: W = K (242) Thisisindeedasimplerelationbetweenworkandmotion.Thecause,workonaparticle,onthe left,isexactlyequaltotheeffect,achangeinthekineticenergyoftheparticle.Thisresultisso importantthatwegiveitaname,itisthe WorkEnergyRelation .Italsogoesbythename: The WorkEnergyPrinciple .Itworksforextendedrigidbodiesaswell.Inthecaseofarigidbody thatrotates,itisthedisplacementofthepointofapplicationoftheforce,alongthepathofsaid pointofapplication,thatisused(asthe r)incalculatingtheworkdoneontheobject.

164 Chapter 24 Work and Energy

Intheexpression W = K ,theworkisthenetwork(thetotalwork)donebyalltheforcesacting ontheparticleorrigidbody.Thenetworkcanbecalculatedbyfindingtheworkdonebyeach forceandaddingtheresults,orbyfindingthenetforceandusingitinthedefinitionofthework.

Calculating the Work as the Force-Along-the-Path Times the Length of the Path Considerablockonaflatfrictionlessinclinethatmakesanangle θwiththevertical.Theblock travelsfromapoint Anearthetopoftheinclinetoapoint B ,adistance dinthedownthe inclinedirectionfromA.Findtheworkdone,bythegravitationalforce,ontheblock. A θ d B Fg = mg We’vedrawnasketchofthesituation(notafreebodydiagram).Wenotethattheforcefor whichwearesupposedtocalculatetheworkisnotalongthepath.So,wedefineacoordinate systemwithoneaxisinthedowntheinclinedirectionandtheotherperpendiculartothataxis ┴ A θ B Fg= mg || andbreakthegravitationalforcevectorupintoitscomponentswithrespecttothatcoordinate system.

165 Chapter 24 Work and Energy

┴ F g|| θ Fg| = Fg cosθ = mg cosθ F = m g g F = F sinθ = mg sinθ g⊥ g |F | g⊥⊥⊥ || Nowweredrawthesketchwiththegravitationalforcereplacedbyitscomponents: A θ d

F g||

|F | g⊥⊥⊥ B

Fg⊥,beingperpendiculartothepathdoesnoworkontheblockastheblockmovesfromAtoB. Theworkdonebythegravitationalforceisgivenby

W = F| d W = F d g| W = mg(cosθ ) d W = mgd cosθ Whilethismethodforcalculatingtheworkdonebyaforceisperfectlyvalid,thereisaneasier way.Itinvolvesanotherproductoperatorforvectors(besidesthecrossproduct),calledthe dot product .Touseit,weneedtorecognizethatthelengthofthepath,combinedwiththedirection ofmotion,isnoneotherthanthedisplacementvector(forthepointofapplicationoftheforce). Thenwejustneedtofindthedotproductoftheforcevectorandthedisplacementvector.

166 Chapter 24 Work and Energy

The Dot Product of Two Vectors Thedotproductofthevectors A and B iswritten A ⋅B andisexpressedas: A ⋅B = ABcosθ (243) where θ,justasinthecaseofthecrossproduct,istheanglebetweenthetwovectorsafterthey havebeenplacedtailtotail. B θ A Thedotproductcanbeinterpretedaseither A B(thecomponentof A along B ,times,the | magnitudeof B )orB A(thecomponentof B along A ,times,themagnitudeof A ),bothof | whichevaluatetooneandthesamevalue.Thismak esthedotproductperfectforcalculatingthe work.Since F ⋅rrr = F|r and F|r is W,wehave W = F ⋅ rrr (244) Bymeansofthedotproduct,wecansolvetheexampleinthelastsectionmuchmorequickly thanwedidbefore. A Findtheworkdoneontheblockby θ d thegravitationalforcewhentheobject movesfrompointAtoPointB. B F = m g g

167 Chapter 24 Work and Energy

Wedefinethedisplacementvector d tohaveamagnitudeequaltothedistancefrompoint Ato point B withadirectionthesameasthedirectionofmotion(thedowntherampdirection). Usingourdefinitionofworkasthedotproductoftheforceandthedisplacement,equation244: W = F ⋅rrr withthegravitationalforcevectorFg beingtheforce,and d beingthedisplacement,thework canbewrittenas: W = Fg ⋅d . Usingthedefinitionofthedotproductwefindthat:

W = Fgdcosθ . Replacingthemagnitudeofthegravitationalforcewith mgwearriveatourfinalanswer: W = mgdcosθ . Thisisthesameanswerthatwegotpriortoourdiscussionofthedotproduct. Incasesinwhichtheforceandthedisplacementvectorsaregivenin i, j, knotation,finding theworkisstraightforward.

The Dot Product in Unit Vector Notation Thesimpledotproductrelationsamongtheunitvectorsmakesiteasytoevaluatethedotproduct oftwovectorsexpressedinunitvectornotation.Fromwhatamountstoourdefinitionofthedot product,equation243: A ⋅B = ABcosθ wenotethatavectordottedintoitselfissimplythesquareofthemagnitudeofthevector.This istruebecausetheanglebetweenavectoranditselfis0 °andcos 0°is1. A ⋅ A = AAcos0o = A2 2 Sincetheunitvectorsallhavemagnitude1,anyunitvectordottedintoitselfyields(1) whichis just1. i⋅i = 1,j ⋅ j = 1,and k ⋅ k = 1 NowtheanglebetweenanytwodifferentCartesiancoordinateaxisunitvectorsis90 °andthe cos 90 °is0.Thus,thedotproductofanyCartesiancoordinateaxisunitvectorintoanyother Cartesiancoordinateaxisunitvectoriszero.

168 Chapter 24 Work and Energy

So,if A = Axi + Ayj + Az k and B = B i + B j + B k x y z then A ⋅B isjust A ⋅ B = (Axi + Ayj + Azk)⋅(Bxi + Byj + Bzk) A ⋅ B = Axi⋅(Bxi + Byj + Bzk) +

Ayj⋅(Bxi + Byj + Bzk) +

Azk⋅(Bxi + Byj + Bzk) A ⋅ B = Axi⋅ Bxi + Axi ⋅ Byj + Axi ⋅ Bzk +

Ayj⋅ Bxi + Ayj ⋅ Byj + Ayj⋅ Bzk +

Azk⋅ Bxi + Azk⋅ Byj + Azk⋅ Bzk A ⋅ B = Ax Bxi⋅i + Ax Byi ⋅j + Ax Bzi⋅k +

Ay Bxj ⋅i + Ay Byj ⋅j + Ay Bzj ⋅k +

Az Bxk⋅i + Az Byk⋅j + Az Bzk ⋅k A ⋅ B = Ax Bx + Ay By + Az Bz Theendresultisthatthedotproductoftwovectorsissimplythesumof:theproductofthetwo vectors’ xcomponents,theproductoftheir ycomponents,andtheproductoftheir zcomponents.

Energy Transfer Work vs. Center of Mass Pseudo-Work

Iintroducedthetopicofworkbystatingthatitrepresentsonecategoryofenergytransfertoa system.Assuch,workisenergytransferwork.Thereisaquantitythatiscalculatedinmuchthe samewayaswork,withonesubtledifference.I’mgoingtocallthequantity centerofmass pseudowork andI’mgoingtouseacoupleofspecificprocessesinvolvingafrictionless horizontalsurface,aspring,andablock(andinonecase,anotherblock)todistinguishenergy transferworkfromcenterofmasspseudowork.Supposeweattachthespringtothewallsothat thespringsticksouthorizontallyandthenpushtheblocktowardthewallinsuchamannerasto compressthespring.Thenwereleasetheblockfromrestandstartourobservationsatthefirst instantsubsequenttorelease.Letoursystembetheblock.Thespringpushestheblockaway fromthewall.Thespringtransfersenergytotheblockwhilethespringisincontactwiththe block.Theworkdonecanbecalculatedastheintegralofvectorforcedotvectorinfinitesimal displacementwhichI'lllooselystateastheintegralofforcetimesdistance.Thedistanceinthis caseisthedisplacement(theinfinitesetofinfinitesimaldisplacements)ofthepointof applicationoftheforce.Thiskindofworkisenergytransferwork.Itistheamountofenergy transferredtotheblockbythespring.

169 Chapter 24 Work and Energy

Nowlet'sdisconnectthespringfromthewallandattachthespringtotheblocksothatthespring sticksouthorizontallyfromtheblockandagainpushtheblockupagainstthewall,compressing thespring,andreleasetheblockfromrest.Letoursystembetheblockplusspring.Theblock goesslidingoffasbefore,thistimewiththespringattached.Thewalldoesnoenergytransfer workonthesystembecausethepartofthewallthatisexertingtheforceonthesystemisnot moving—thereisnodisplacement.However,wefindsomethingusefulifwecalculatethe integralofthevectorforce(exertedbythewall)dotvectorinfinitesimaldisplacementofthe centerofmassofthesystem—looselystated,forcetimesdistancemovedbycenterofmass.I'm callingthat"somethinguseful"thecenterofmasspseudoworkexperiencedbythesystem.It's usefulbecauseourNewton’sLawderivationshowsthatquantitytobeequaltothechangeinthe centerofmasskineticenergyofthesystem.Inthiscasethesystemgainedsomecenterofmass kineticenergyeventhoughnoenergywastransferredtoit.Howdidthathappen?Energythat wasalreadypartofthesystem,energystoredinthespring,wasconvertedtocenterofmass kineticenergy. Sowhatisthesubtledifference?Inbothcasesweare,looselyspeaking,calculatingforcetimes distance.Butinthecaseofenergytransferwork,thedistanceisthedistancemovedbythat elementoftheagentoftheforcethatisincontactwiththevictimatexactlythatpointwherethe forceisbeingapplied,whereas,inthecaseofcenterofmasswork,thedistancein“forcetimes distance”isthedistancemovedbythecenterofmass.Foraparticle,thereisnodifference.For atrulyrigidbodyundergoingpurelytranslationalmotion(norotation)thereisnodifference. Butbeware,atrulyrigidbodyisanidealizedobjectinwhichnobitofthebodycanmove relativetoanyotherbitofthebody.Evenforsuchabody,ifthereisrotation,therewillbea differencebetweentheenergytransferworkandthecenterofmasspseudoworkdoneonthe object.Considerforinstanceablockatrestonahorizontalfrictionlesssurface.Youapplyan offcenterhorizontalforcetotheblockforashortdistancebypressingontheblockwithyour finger.Theworkyoudoistheintegratedforcetimesdistanceoverwhichyoumovethetipof yourfinger.Itwillbegreaterthantheintegratedforcetimesthedistanceoverwhichthecenter ofmassmoves.Someoftheworkyoudogoesintoincreasingthecenterofmasskineticenergy oftherigidbodyandsomeofitgoesintoincreasingtherotationalkineticenergyoftherigid body.Inthiscasetheenergytransferworkisgreaterthanthecenterofmasspseudowork.

Concluding Remarks Atthispointyouhavetwowaysofcalculatingtheworkdoneonanobject.Ifyouaregiven informationabouttheforceandthepathyouwillusethe“forcetimesdistance”definitionof work.Butifyouaregiveninformationontheeffectofthework(thechangeinkineticenergy) thenyouwilldeterminethevalueofthechangeinkineticenergyandsubstitutethatintothe workenergyrelation,equation242: W = K todeterminethework(orcenterofmasspseudoworkasapplicable).Thereisyetanother methodforcalculatingthework.Likethefirstmethod,itisgoodforcasesinwhichyouhave informationontheforceandthepath.Itonlyworksforcertainkindsofforces,butwhenitdoes work,touseit,theonlythingyouneedtoknowaboutthepathisthepositionsoftheendpoints. Thisthirdmethodforcalculatingtheworkinvolvesthe potentialenergy ,themaintopicofour nextchapter.

170 Chapter 25 Potential Energy, Conservation of Energy, Power

25 Potential Energy, Conservation of Energy, Power Theworkdoneonaparticlebyaforceactingonitasthatparticlemovesfrompoint Atopoint B undertheinfluenceofthatforce,for some forces,doesnotdependonthepathfollowedbythe particle.Forsuchaforcethereisaneasywaytocalculatetheworkdoneontheparticleasit movesfrompoint Atopoint B .Onesimplyhastoassignavalueofpotentialenergy(ofthe 1 particle )topoint A(callthatvalue UA)andavalueofpotentialenergytopoint B (callthatvalue

UB).Onechoosesthevaluessuchthattheworkdonebytheforceinquestionisjustthenegative ofthedifferencebetweenthetwovalues.

W = − (U B −U A ) W = −U (251)

U =U B −U A isthechangeinthepotentialenergyexperiencedbytheparticleasitmovesfrom point Atopoint B .Theminussigninequation251ensuresthatanincreaseinpotentialenergy correspondstonegativeworkdonebythecorrespondingforce.Forinstanceforthecaseofnear earth’ssurfacegravitationalpotentialenergy,theassociatedforceisthegravitationalforce,a.k.a. thegravitationalforce.Ifweliftanobjectupwardnearthesurfaceoftheearth,thegravitational forcedoesnegativeworkontheobjectsincethe(downward)forceisintheoppositedirectionto the(upward)displacement.Atthesame,time,weareincreasingthecapacityoftheparticleto doworksoweareincreasingthepotentialenergy.Thus,weneedthe“ −“signin W === −−− U to ensurethatthechangeinpotentialenergymethodofcalculatingtheworkgivesthesame algebraicsignforthevalueoftheworkthattheforcealongthepathtimesthelengthofthepath gives. Notethatinorderforthismethodofcalculatingtheworktobeusefulinanycasethatmight arise,onemustassignavalueofpotentialenergytoeverypointinspacewheretheforcecanact onaparticlesothatthemethodcanbeusedtocalculatetheworkdoneonaparticleasthe particlemovesfromanypoint A toanypoint B .Ingeneral,thismeansweneedavalueforeach ofaninfinitesetofpointsinspace. Thisassignmentofavalueofpotentialenergytoeachofaninfinitesetofpointsinspacemight seemdauntinguntilyourealizethatitcanbedonebymeansofasimplealgebraicexpression.

Forinstance,wehavealreadywrittentheassignmentforaparticleofmass m2forthecaseofthe universalgravitationalforceduetoaparticleofmass m1.Itwasequation175:

G m1 m 2 U = − r

1Thepotentialenergyisactuallythepotentialenergyofthesystemconsistingoftheparticle,whatevertheparticle isinteractingwith,andtherelevantfield.Forinstance,ifwearetalkingaboutaparticleinthegravitationalfieldof theearth,thepotentialenergyunderdiscussionisthepotentialenergyoftheearthplusparticleandgravitational fieldoftheearthplusparticle.Foraccountingpurposes,itisconvenienttoascribethepotentialenergytothe particleandthatiswhatIdointhisbook.

171 Chapter 25 Potential Energy, Conservation of Energy, Power

2 −11 N ⋅ m in which Gis the universal gravitational constant G = 6.67 ×10 and ris the distance that kg 2 particle2isfromparticle1.Notethatconsideringparticle1tobeattheoriginofacoordinate system,thisequationassignsavalueofpotentialenergytoeverypointintheuniverse! Thevalue,foranypoint,simplydependsonthedistancethatthepointisfromtheorigin. Supposewewanttofindtheworkdonebythegravitationalforceduetoparticle1,onparticle2 asparticle2movesfrompoint A ,adistance r fromparticle1topoint B ,adistance r from A B particle1.Thegravitationalforceexertedonit(particle2)bythegravitationalfieldofparticle1 doesanamountofwork,onparticle2,givenby(startingwithequation251): W = − U

W = − (U B − U A )  G m m   G m m   1 2   1 2  W = − − r  − − r   B   A   1 1  W =  −  G m1 m 2  r r   B A 

The Relation Between a Conservative Force and the Corresponding Potential Whilethisbusinessofcalculatingtheworkdoneonaparticleasthenegativeofthechangeinits potentialenergydoesmakeitaloteasiertocalculatethework,wedohavetobecarefulto definethepotentialsuchthatthismethodisequivalenttocalculatingtheworkasthe forcealongthepathtimesthelengthofthepath. Ratherthanjumpintotheproblemoffindingthepotentialenergyatallpointsinathree dimensionalregionofspaceforakindofforceknowntoexistatallpointsinthatthree dimensionalregionofspace,let’slookintothesimplerproblemoffindingthepotentialalonga line.Wedefineacoordinatesystemconsistingofasingleaxis,let’scallitthe xaxis,withan originandapositivedirection.Weputaparticleontheline,aparticlethatcanmovealongthe line.Weassumethatwehaveaforcethatactsontheparticlewherevertheparticleisontheline andthattheforceisdirectedalongtheline.Whilewewillalsoaddressthecaseofaforcewhich hasthesamevalueatdifferentpointsalongtheline,weassumethat,ingeneral, theforcevaries withposition . Rememberthisfactsothatyoucanfindtheflawdiscussedbelow.Becausewe wanttodefineapotentialforit,itisimportantthattheworkdoneontheparticlebytheforce beingexertedontheparticle,astheparticlemovesfrompoint A topoint B doesnotdependon howtheparticlegetsfrompoint A topoint B .Ourgoalistodefineapotentialenergyfunction fortheforcesuchthatwegetthesamevaluefortheworkdoneontheparticlebytheforce whetherweusetheforcealongthepathmethodtocalculateitorthenegativeofthechangeof

172 Chapter 25 Potential Energy, Conservation of Energy, Power potentialenergymethod.Supposetheparticleundergoesadisplacement xalongthelineunder theinfluenceoftheforce.Seeifyoucanseetheflawinthefollowing,beforeIpointitout:We write W = F x fortheworkdonebytheforce,calculatedusingtheforcealongthepathtimes thelengthofthepathidea,andthen W = −U fortheworkdonebytheforcecalculatedusing thenegativeofthechangeinpotentialenergyconcept.Settingthetwoexpressionsequaltoeach U other,wehave, Fx === −−− U whichwecanwriteas F === −−− fortherelationbetweenthe x potentialenergyandthe xcomponentoftheforce. Doyouseewherewewentwrong?Whilethemethodwillworkforthespecialcaseinwhichthe forceisaconstant,weweresupposedtocomeupwitharelationthatwasgoodforthegeneral caseinwhichtheforcevarieswithposition.Thatmeansthatforeachvalueof xintherangeof valuesextendingfromtheinitialvalue,let’scallit xA,tothevalueattheendofthedisplacement xA+x,thereisadifferentvalueofforce.Sotheexpression W = F x isinappropriate.Given anumericalproblem,thereisnoonevaluetopluginfor F,because Fvariesalongthe x.

Tofixthings,wecanshrink xtoinfinitesimalsize,sosmallthat, xAand xA+xare,forall practicalpurposes,oneandthesamepoint.Thatistosay,wetakethelimitas x→0.Then ourrelationbecomes  U    Fx = lim −  x→ 0  x  whichisthesamethingas  U    Fx = − lim   x→0  x  U dU Thelimitof thatappearsontherightisnoneotherthanthederivative ,so: x dx dU F = − ( (252) x dx Toemphasizethefactthatforceisavector,wewriteitinunitvectornotationas: dU F = − i ( (253) dx Let’smakethismoreconcretebyusingittodeterminethepotentialenergyduetoaforcewith whichyouarefamiliar—theforceduetoaspring.

173 Chapter 25 Potential Energy, Conservation of Energy, Power

Considerablockonfrictionlesshorizontalsurface.Theblockisattachedtooneendofaspring. Theotherendofthespringisattachedtoawall.Thespringextendshorizontallyawayfromthe wall,atrightanglestothewall.Definean xaxiswiththeoriginattheequilibriumpositionof thatendofthespringwhichisattachedtotheblock.Considertheawayfromthewalldirection tobethepositive xdirection.Experimentally,wefindthattheforceexertedbythespringonthe blockisgivenby: F = −k xi ( (254) where kistheforceconstantofthespring.(Note:Apositive x,correspondingtotheblockhaving beenpulledawayfromthewall,thusstretchingthespring,resultsinaforceinthenegative xdirection.Anegative x,compressedspring,resultsinaforceinthe+ xdirection,consistentwith dU commonsense.)Bycomparisonwithequation253(theonethatreads F = − i )wenotethat dx thepotentialenergyfunctionhastobedefinedsothat dU = k x dx Thisissuchasimplecasethatwecanprettymuchguesswhat Uhastobe. Uhastobedefined suchthatwhenwetakethederivativeofitwegetaconstant(the k)times xtothepowerof1. Nowwhenyoutakethederivativeof xtoapower,youreducethepowerbyone.Forthatto resultinapowerof1,theoriginalpowermustbe2.Also,thederivativeofaconstanttimes somethingyieldsthatsameconstanttimesthederivative,so,theremustbeafactorof kinthe 2 2 potentialenergyfunction.Let’stry U=kx andseewherethatgetsus.Thederivativeof kx is

2kx.Exceptforthatfactorof2outfront,thatisexactlywhatwewant.Let’samendourguess 1 bymultiplyingitbyafactorof ,toeventuallycanceloutthe2thatcomesdownwhenwetake 2 1 dU thederivative.With U = k x 2 weget = k x whichisexactlywhatweneeded.Thus 2 dx 1 U = k x2 (255) 2 isindeedthepotentialenergyfortheforceduetoaspring.Youusedthisexpressionbackin chapter2.Nowyouknowwhereitcomesfrom. Wehaveconsideredtwootherconservativeforces.Foreach,let’sfindthepotentialenergy dU function Uthatmeetsthecriterionthatwehavewrittenas, F = − i . dx

174 Chapter 25 Potential Energy, Conservation of Energy, Power

First,let’sconsiderthenearearth’ssurfacegravitationalforceexertedonanobjectofmass m, bytheearth.Wechooseoursingleaxistobedirectedverticallyupwardwiththeoriginatan arbitrarybutclearlyspecifiedandfixed elevation fortheentireproblemthatonemightsolve usingtheconceptsunderconsiderationhere.Byconvention,wecallsuchanaxisthe yaxis ratherthanthe xaxis.Nowweknowthatthegravitationalforceisgivensimply(again,thisisan experimentalresult)by F = − mgj wherethe mgistheknownmagnitudeofthegravitationalforceandthe −jisthedownward direction. Equation253,writtenforthecaseathandis: dU F = − j dy Forthelasttwoequationstobeconsistentwitheachother,weneed Utobedefinedsuchthat dU = mg dy Forthederivativeof Uwithrespectto ytobetheconstant“ mg ”, Umustbegivenby U=m gy (256) andindeedthisistheequationfortheearth’snearsurfacegravitationalpotentialenergy.Please verifythatwhenyoutakethederivativeofitwithrespectto y,youdoindeedgetthemagnitude ofthegravitationalforce, mg.

Nowlet’sturnourattentiontotheUniversalLawofGravitation.Particlenumber1ofmass m1 createsagravitationalfieldintheregionofspacearoundit.Let’sdefinethepositionofparticle number1tobetheoriginofathreedimensionalCartesiancoordinatesystem.Nowlet’sassume thatparticlenumber2isatsomepositioninspace,adistance rawayfromparticle1.Let’sdefine thedirectionthatparticle2isin,relativetoparticle1,asthe+ xdirection.Then,thecoordinatesof particle2are( r,0, 0). risthenthe xcomponentofthepositionvectorforparticle2,aquantitythat weshallnowcall x.Thatis, xisdefinedsuchthat x=r.Intermsofthecoordinatesystemthus defined,theforceexertedbythegravitationalfieldofparticle1,onparticle2,isgivenby: G m m F = − 1 2 i x2

175 Chapter 25 Potential Energy, Conservation of Energy, Power whichIrewritehere: G m m F = − 1 2 i x2 Comparethiswithequation253: dU F = − i dx Combiningthetwoequations,wenotethatourexpressionforthepotentialenergy Uintermsof xmustsatisfytheequation dU G m m = 1 2 dx x2 It’seasiertodeducewhat Umustbeifwewritethisas dU = G m m x −2 dx 1 2

Forthederivativeof Uwithrespectto xtobeaconstant( Gm1 m2 )timesapower( −2)of x, U

itselfmustbethatsameconstant(Gm1 m2 )times xtothenexthigherpower( −1),dividedbythe valueofthelatterpower. G m m x−1 U = 1 2 −1 whichcanbewritten G m m U = − 1 2 x Recallingthatthe xinthedenominatorissimplythedistancefromparticle1toparticle2which wehavealsodefinedtobe r,wecanwritethisintheforminwhichitismorecommonlywritten: G m m U = − 1 2 (257) r Thisisindeedtheexpressionforthegravitationalpotentialthatwegaveyou(withoutany justificationforit)backinChapter17,thechapterontheUniversalLawofGravitation.

176 Chapter 25 Potential Energy, Conservation of Energy, Power

Conservation of Energy Revisited Recalltheworkenergyrelation,equation242fromlastchapter, W = K , thestatementthatworkcausesachangeinkineticenergy.Nowconsideracaseinwhichallthe workisdonebyconservativeforces,so,theworkcanbeexpressedasthenegativeofthechange inpotentialenergy. −−− U === K Furthersupposethatwearedealingwithasituationinwhichaparticlemovesfrompoint A to point B undertheinfluenceoftheforceorforcescorrespondingtothepotentialenergy U. Then,theprecedingexpressioncanbewrittenas:

−−− (UB −−− UA ) === KB −−− KA

−−−UB +++ UA === KB −−− KA

KA +++ UA === KB +++ UB Switchingovertonotationinwhichweuseprimedvariablestocharacterizetheparticlewhenit isatpoint B andunprimedvariablesatAwehave: K +++ U === K′′′+++ U ′′′ Interpreting E === K +++ U astheenergyofthesystematthe“before”instant,and E′ = K′ + U′ as theenergyofthesystematthe“after”instant,weseethatwehavederivedtheconservationof mechanicalenergystatementforthespecialcaseofnonetenergytransfertoorfromthe surroundingsandnoconversionofenergywithinthesystemfrommechanicalenergytoother formsorviceversa.Inequationform,thestatementis E === E′′′ (258) anequationtowhichyouwereintroducedinchapter2.Notethatyouwouldbewelladvisedto reviewchapter2now,becauseforthecurrentchapter,youareagainresponsibleforsolvingany ofthe“chapter2type”problems(rememberingtoinclude,andcorrectlyuse,beforeandafter diagrams)andansweranyofthe“chapter2type”questions.

177 Chapter 25 Potential Energy, Conservation of Energy, Power

Power Inthislastsectiononenergyweaddressanewtopic.Asaseparateandimportantconcept,it woulddeserveitsownchapterexceptforthefactthatitissuchasimple,straightforward concept. Power istherateofenergytransfer,energyconversion,andinsomecases,therateat whichtransferandconversionofenergyareoccurringsimultaneously.Whenyoudoworkonan object,youaretransferringenergytothatobject.Supposeforinstancethatyouarepushinga blockacrossahorizontalfrictionlesssurface.Youaredoingworkontheobject.Thekinetic energyoftheobjectisincreasing.Therateatwhichthekineticenergyisincreasingisreferred toaspower.Therateofchangeofanyquantity(howfastthatquantityischanging)canbe calculatedasthederivativeofthatquantitywithrespecttotime.Inthecaseathand,thepower P canbeexpressedas dK P = (259) dt 1 2 thetimederivativeofthekineticenergy.Since K = 2 mv wehave d 1 P = mv 2 dt 2 1 d P = m v 2 2 dt 1 dv P = m2v 2 dt dv P = m v dt

P === ma|v

P = F|v P = F ⋅vvv (2510) where a|istheaccelerationcomponentparalleltothevelocityvector.Theperpendicular componentchangesthedirectionofthevelocitybutnotthemagnitude. Besidestherateatwhichthekineticenergyischanging,thepoweristherateatwhichworkis beingdoneontheobject.Inaninfinitesimaltimeinterval dt ,youdoaninfinitesimalamountof work dW = F ⋅dx ontheobject.Dividingbothsidesby dt ,wehave

178 Chapter 25 Potential Energy, Conservation of Energy, Power dW dx = F ⋅ dt dt whichagainis P = F ⋅ v asitmustbesince,inaccordwiththeworkenergyrelation,therateatwhichyoudoworkonthe objecthastobetherateatwhichthekineticenergyoftheobjectincreases. Ifyoudoworkatasteadyrateforafinitetimeinterval,thepowerisconstantandcansimplybe calculatedastheamountofworkdoneduringthetimeintervaldividedbythetimeintervalitself. Forinstance,whenyouclimbstairs,youconvertchemicalenergystoredinyourbodyto gravitationalpotentialenergy.Therateatwhichyoudothisispower.Ifyouclimbatasteady rateforatotalincreaseofgravitationalpotentialenergyof Uoveratimeinterval tthenthe constantvalueofyourpowerduringthattimeintervalis U P = (2511) t Ifyouknowthatthepowerisconstant,youknowthevalueofthepower P,andyouareaskedto findthetotalamountofworkdone,thetotalamountofenergytransferred,and/orthetotal amountofenergyconvertedduringaparticulartimeinterval t,youjusthavetomultiplythe power Pbythetimeinterval t. Energy= Pt (2512) Onecouldincludeatleastadozenformulasonyourformulasheetforpower,buttheyareallso simplethat,ifyouunderstandwhatpoweris,youcancomeupwiththespecificformulayou needforthecaseonwhichyouareworking.Weincludebutoneformulaontheformulasheet, dE P = (2513) dt whichshouldremindyouwhatpoweris.Sincepoweristherateofchangeofenergy,theSI J unitsofpowermustbe .Thiscombinationunitisgivenaname,thewatt,abbreviatedW. s J 1W ≡1 s

179 Chapter 26 Impulse and Momentum

26 Impulse and Momentum

First, a Few More Words on Work and Energy, for Comparison Purposes Imagineagiganticairhockeytablewithawholebunchofpucksofvariousmasses,noneof whichexperiencesanyfrictionwiththehorizontalsurfaceofthetable.Assumeairresistanceto benegligible.Nowsupposethatyoucomeupandgiveeachpuckashove,wherethekindof shovethatyougivethefirstoneisspecialinthatthewholetimeyouarepushingonthatpuck, theforcehasoneandthesamevalue;andtheshovethatyougiveeachoftheotherpucksis similarinthefollowingrespect:Toeachpuckyouapplythesameforcethatyouappliedtothe firstpuck,overthesameexactdistance.Sinceyougiveeachofthepucksasimilarshove,you mightexpectthemotionofthepucks(aftertheshove)tohavesomethingincommonandindeed wefindthat,whilethepucks(eachofwhich,aftertheshove,movesatitsownconstantvelocity) havespeedsthatdifferfromoneanother(becausetheyhavedifferentmasses),theyallhavethe 2 samevalueoftheproduct mv andindeedifyouputa½infrontofthatproductandcallit 1 kineticenergy K,thecommonvalueof mv 2 isidenticaltotheproductofthemagnitudeofthe 2 forceusedduringtheshove,andthedistanceoverwhichtheforceisapplied.Thislatterproduct iswhatwehavedefinedtobethework Wandwerecognizethatwearedealingwithaspecial caseoftheworkenergyprinciple W = K ,acaseinwhich,foreachofthepucks,theinitial kineticenergyiszero.Wecanmodifyourexperimenttoobtainmoregeneralresults,e.g.a smallerconstantforceoveragreaterdistanceresultsinthesamekineticenergyaslongasthe productofthemagnitudeoftheforceandthedistanceoverwhichitisappliedisthesameasit wasfortheotherpucks,butitisinterestingtoconsiderhowdifferentitwouldseemtous,inthe originalexperiment,aswemovefromahighmasspucktoalowmasspuck.Imaginedoingthat. Youpushonthehighmasspuckwithacertainforce,foracertaindistance.Nowyoumoveon toalowmasspuck.Asyoupushonitfrombehind,withthesameforcethatyouusedonthe highmasspuck,younoticethatthelowmasspuckspeedsupmuchmorerapidly.Youprobably finditmuchmoredifficulttomaintainasteadyforcebecauseitissimplymoredifficultto“keep up”withthelowmasspuck.Andofcourse,itcoversthespecifieddistanceinamuchshorter amountoftime.So,althoughyoupushitforthesamedistance,youmustpushthelowmass puckforashorteramountoftimeinordertomakeitsothatbothpuckshaveoneandthesame kineticenergy.Ponderingonityourecognizethatifyouweretopushthelowmasspuckforthe sameamountof time asyoudidthehighmasspuck(withthesameforce),thatthelowmass puckwouldhaveagreaterkineticenergyaftertheshove,becauseyouwouldhavetopushonit overagreaterdistance,meaningyouwouldhavedonemoreworkonit.Still,youimaginethatif youweretopushoneachofthepucksforthesameamountoftime(ratherthandistance),that theirrespectivemotionswouldhavetohavesomethingincommon,becauseagain,thereis somethingsimilarabouttheirrespectiveshoves.

Now we Move on to Impulse and Momentum Youdecidetodotheexperimentyouhavebeenthinkingabout.Youplaceeachofthepucksat restonthefrictionlesssurface.Youapplyoneandthesameconstantforcetoeachofthepucks foroneandthesameamountoftime.Onceagain,youfindthismoredifficultwiththelower masspucks.Whileyouarepushingonit,alowmasspuckspeedsupfasterthanahighmass puckdoes.Asaresultyouhavetokeeppushingonalowmasspuckoveragreaterdistanceand

180 Chapter 26 Impulse and Momentum itisgoingfasterwhenyouletitgo.Havinggivenallthepucksasimilarshove,youexpectthere tobesomethingaboutthemotionofeachofthepucksthatisthesameasthecorresponding characteristicofthemotionofalltheotherpucks.Wehavealreadyestablishedthatthesmaller themassofthepuck,thegreaterthespeed,andthegreaterthekineticenergyofthepuck. Experimentally,wefindthatallthepuckshaveone andthesamevalueoftheproduct mv , where v isthepostshovepuckvelocity.Further,wefind thatthevalueof mv isequaltothe productoftheconstantforce F andthetimeinterval tforwhichitwasapplied. Thatis, Ft = mv Theproductoftheforceandthetimeintervalforwhichitisappliedissuchanimportant quantitythatwegiveitaname, impulse ,andasymbol J . J = F t (261) Also,asyouprobablyrecallfromchapter4,bydef inition,theproductofthemassofanobject, anditsvelocity,isthemomentum p oftheobject. Thus,theresultsoftheexperimentdescribedabovecanbeexpressedas J = p Theexperimentdealtwithaspecialcase,thecaseinwhicheachobjectwasinitiallyatrest.If wedoasimilarexperimentinwhich,ratherthanbeinginitiallyatrest,eachobjecthassome knowninitialvelocity,wefind,experimentally,thattheimpulseisactuallyequaltothechange inmomentum. J = p (262) Ofcourseifwestartwithzeromomentum,thenthechangeinmomentum is thefinal momentum. Equation262, J = p ,isreferredtoasthe ImpulseMomentumRelation .Itisacauseand effectrelationship.Youapplysomeimpulse(forcetimestime)toanobject,andtheeffectisa changeinthemomentumoftheobject.Theresult,whichwehavepresentedasanexperimental result,canbederivedfromNewton’ssecondlawofmotion.Herewedosoforthecaseinwhich theforceactingontheobjectisconstantduringthetimeintervalunderconsideration.Notethat theforcewhichappearsinthedefinitionofimpulseisthenetexternalforceactingontheobject. Considerthecaseofaparticle,ofmass m,whichhasbutone,constantforce(whichcould actuallybethevectorsumofalltheforces)actingonit.

181 Chapter 26 Impulse and Momentum

Asalways,inapplyingNewton’ssecondlawofmotion,westartbydrawingafreebody diagram: m F a InordertokeeptrackofthevectornatureofthequantitiesinvolvedweapplyNewton’s2 nd Law invectorform(equation141): 1 a = F m ∑ Inthecaseathandthesumoftheforcesisjusttheoneforce F ,so: 1 a = F m Solvingfor F,wearriveat: F = ma multiplyingbothsidesby tweobtain Ft = mat Giventhattheforceisconstant,theresultingaccelerationisconstant.Inthecaseofaconstant acceleration,theaccelerationcanbewrittenastheratioofthechangein v thatoccursduringthe timeinterval t,tothetimeinterval titself. vvv a = t Substitutingthisintotheprecedingexpressionyields: vvv Ft = m t t Ft = mvvv Thechangeinvelocitycanbeexpressedasthefinalvelocity vvv ′ (thevelocityattheendofthe timeintervalduringwhichtheforceacts)minusth einitialvelocity vvv (thevelocityatthestartof thetimeinterval): vvv = vvv ′−vvv .Substitutingthisinto Ft = mvvv yields Ft = m(vvv ′−vvv ) whichcanbewrittenas Ft = mvvv ′− mvvv

182 Chapter 26 Impulse and Momentum

Recognizingthat mvvv ′ isthefinalmomentumandthat mvvv istheinitialmomentumwerealize thatwehave Ft = p′ − p Ontheleft,wehavewhatisdefinedtobetheimpulse,andontherightwehavethechangein momentum(equation262): J = p ThiscompletesourderivationoftheimpulsemomentumrelationfromNewton’s2 nd Law.

Conservation of Momentum Revisited Regardingtheconservationofmomentum,wefirstnotethat,foraparticle,ifthenetexternal forceontheparticleiszero,thentheimpulse,definedby J = F t,deliveredtothatparticle duringanytimeinterval t,is0.Iftheimpulseiszerothenfrom J = p ,thechangein momentummustbe0.Thismeansthatthemomentum p isaconstant,andsince p = mv ,ifthe momentumisconstant,thevelocitymustbeconstant.Thisresultsimplyconfirmsthat,inthe absenceofaforce,ourimpulsemomentumrelationisconsistentwithNewton’s1 st Lawof Motion,theonethatstatesthatifthereisnoforceonaparticle,thenthevelocityofthatparticle doesnotchange. Nowconsiderthecaseoftwoparticlesinwhichnoexternalforcesareexertedoneitherofthe particles.(Forasystemoftwoparticles,aninternalforcewouldbeaforceexertedbyone particleontheother.Anexternalforceisaforceexertedbysomethingoutsidethesystemon somethinginsidethesystem.)Thetotalmomentumofthepairofparticlesisthevectorsumof themomentumofoneoftheparticlesandthemomentumoftheotherparticle.Supposethatthe particlesareindeedexertingforcesoneachotherduringatimeinterval t.Tokeepthings simplewewillassumethattheforcethateitherexertsontheotherisconstantduringthetime interval.Let’sidentifythetwoparticlesaspart icle#1andparticle#2anddesignatetheforce exertedby1on2as F12 .Becausethisforceisexertedonparticle#2,itwillaffectthemotionof particle#2andwecanwritetheimpulsemomentumrelationas F12t = p2 (263) Nowparticle#1can’texertaforceonparticle2withoutparticle#2exertinganequaland oppositeforcebackonparticle1.Thatis,theforce F exertedbyparticle#2onparticle#1is 21 thenegativeof F . 12 F21 = −F12 Ofcourse F21 (“effof2on1”)affectsthemotionofparticle1only,andtheimpulsemomentum relationforparticle1reads

183 Chapter 26 Impulse and Momentum F t = p 21 1 Replacing F with − F weobtain 21 12 − F12t = p1 (264) Nowaddequation263( F12t = p2 )andequation264together.Theresultis: F12t − F12t = p1 + p2 0 = p1 + p2 Ontherightisthetotalchangeinmomentumforthepairofparticles pTOTAL = p1 + p2 so whatwehavefoundisthat 0= pTOTAL whichcanbewrittenas pTOTAL = 0(265) Recapping:Ifthenetexternalforceactingonapairofparticlesiszero,thetotalmomentumof thepairofparticlesdoesnotchange.Addathirdparticletothemixandanymomentumchange thatitmightexperiencebecauseofforcesexertedonitbytheoriginaltwoparticleswouldbe canceledbythemomentumchangesexperiencedbytheothertwoparticlesasaresultofthe interactionforcesexertedonthembythethirdparticle.Wecanextendthistoanynumberof particles,andsinceobjectsaremadeofparticles,theconceptappliestoobjects.Thatis,if, duringsometimeinterval,thenetexternalforceexertedonasystemofobjectsiszero,thenthe momentumofthatsystemofobjectswillnotchange. AsyoushouldrecallfromChapter4,theconceptisreferredtoasconservationofmomentumfor thespecialcaseinwhichthereisnonettransferofmomentumtothesystemfromthe surroundings,andyouapplyitinthecaseofsomephysicalprocesssuchasacollision,by pickingabeforeinstantandanafterinstant,drawingasketchofthesituationateachinstant,and writingthefactthat,themomentuminthebeforep icturehastobeequaltothemomentuminthe afterpicture,inequationform: p = p′.Whenyoureadthischapter,youshouldagainconsider yourselfresponsibleforsolvinganyoftheproblems,andansweringanyofthequestions,that youwereresponsibleforbackinChapter4.

184 Chapter 27 Oscillations: Introduction, Mass on a Spring

27 Oscillations: Introduction, Mass on a Spring Ifasimpleharmonicoscillationproblemdoesnotinvolvethetime,youshould probablybeusingconservationofenergytosolveit.Acommon“tacticalerror” inproblemsinvolvingoscillationsistomanipulatetheequationsgivingthe

positionandvelocityasafunctionoftime, x === xmaxcos(2πf t) and

v === −−−vmax sin(2πf t) ratherthanapplyingtheprincipleofconservationofenergy. Thisturnsaneasyfiveminuteproblemintoadifficultfifteenminuteproblem. Whensomethinggoesbackandforthwesayitvibratesoroscillates.Inmanycasesoscillations involveanobjectwhosepositionasafunctionoftimeiswellcharacterizedbythesineorcosine functionoftheproductofaconstantandelapsedtime.Suchmotionisreferredtoassinusoidal oscillation.Itisalsoreferredtoassimpleharmonicmotion.

Math Aside: The Cosine Function Bynow,youhavehadagreatdealofexperiencewiththecosinefunctionofanangleastheratio oftheadjacenttothehypotenuseofarighttriangle.Thisdefinitioncoversanglesfrom0radians π to radians(0 °to90 °).Inapplyingthecosinefunctiontosimpleharmonicmotion,weusethe 2 extendeddefinitionwhichcoversallangles.Theextendeddefinitionofthecosineoftheangle θ isthatthecosineofanangleisthe xcomponentofaunitvector,thetailofwhichisontheorigin ofan xycoordinatesystem;aunitvectorthatoriginallypointedinthe+ xdirectionbuthassince beenrotatedcounterclockwisefromourviewpoint,throughtheangle θ,abouttheorigin. Hereweshowthattheextendeddefinitionisconsistentwiththe“adjacentoverhypotenuse” π definition,foranglesbetween0radiansand radians. 2 Forsuchangles,wehave: y u uy θ u x x inwhich, u,beingthemagnitudeofaunitvector,isofcourseequalto1,thepurenumber1with nounits.Now,accordingtotheordinarydefinitionofthecosineof θastheadjacentoverthe hypotenuse:

185 Chapter 27 Oscillations: Introduction, Mass on a Spring

u cosθ === x u

Solvingthisfor uxweseethat

ux = ucosθ Recallingthat u=1,thismeansthat

ux = cosθ Recallingthatourextendeddefinitionof cosθ is,thatitisthe xcomponentoftheunitvector uˆ when uˆ makesanangle θwiththe xaxis,thislastequationisjustsayingthat,forthecaseat π hand( θbetween0and radians)ourextendeddefinitionof cosθ isequivalenttoourordinary 2 definition. π 3π Atanglesbetween and radians(90 °and270 °)weseethat u takesonnegativevalues 2 2 x (whenthe xcomponent vector ispointinginthenegative xdirection,the xcomponent value is, bydefinition,negative).Accordingtoourextendeddefinition,cos θtakesonnegativevaluesat suchanglesaswell. y u u y θ u x x

186 Chapter 27 Oscillations: Introduction, Mass on a Spring

Withourextendeddefinition,validforanyangle θ,agraphofthe cosθ vs. θappearsas: cos θθθ 1 0 4π θθθ[radians] π 2π 3π 1

Some Calculus Relations Involving the Cosine Thederivativeofthecosineof θ,withrespectto θ: d cosθ = −sinθ dθ Thederivativeofthesineof θ,withrespectto θ : d sinθ === cosθ dθ

Some Jargon Involving The Sine And Cosine Functions Whenyouexpress,define,orevaluatethefunctionofsomething,thatsomethingiscalledthe argumentofthefunction.Forinstance,supposethefunctionisthesquarerootfunctionandthe expressioninquestionis 3x .Theexpressionisthesquarerootof3x,so,inthatexpression,3x istheargumentofthesquarerootfunction.Nowwhenyoutakethecosineofsomething,that somethingiscalledtheargumentofthecosine,butinthecaseofthesineandcosinefunctions, wegiveitanothernameaswell,namely,thephase.So,whenyouwritecos θ,thevariable θis theargumentofthecosinefunction,butitisalsoreferredtoasthe phase ofthecosinefunction.

187 Chapter 27 Oscillations: Introduction, Mass on a Spring

Inorderforanexpressioninvolvingthecosinefunctiontobeatallmeaningful,thephaseofthe cosinemusthaveunitsofangle(forinstance,radiansordegrees).

A Block Attached to the End of a Spring Considerablockofmass monafrictionlesshorizontalsurface.Theblockisattached,bymeans ofanidealmasslesshorizontalspringhavingforceconstant k,toawall.Apersonhaspulledthe blockout,directlyawayfromthewall,andreleaseditfromrest.Theblockoscillatesbackand forth(towardandawayfromthewall),ontheendofthespring.Wewouldliketofindequations thatgivetheblock’sposition,velocity,andaccelerationasfunctionsoftime.Westartby applyingNewton’s2 nd Lawtotheblock.Beforedrawingthefreebodydiagramwedrawa sketchtohelpidentifyouronedimensionalcoordinatesystem.Wewillcallthehorizontal positionofthepointatwhichthespringisattached,theposition xoftheblock.Theoriginofour coordinatesystemwillbethepositionatwhichthespringisneitherstretchednorcompressed. Whentheposition xispositive,thespringisstretchedandexertsaforce,ontheblock,inthe −x direction.Whenthepositionof xisnegative,thespringiscompressedandexertsaforce,on theblock,inthe+ xdirection. k m +x

x=0 EquilibriumPosition

188 Chapter 27 Oscillations: Introduction, Mass on a Spring

Nowwedrawthefreebodydiagramoftheblock: FN a

FS =kx m F =m +x g g andapplyNewton’s2 nd Law: 1 a === F →→→ m ∑∑∑ →→→ 1 a === ((()(−−− kx))) m k a === −−− x m Thisequation,relatingtheaccelerationoftheblocktoitsposition x,canbeconsideredtobean equationrelatingthepositionoftheblocktotimeifwesubstitutefor ausing: dv a = dt and dx v = dt so d dx a = dt dt whichisusuallywritten d 2x a === (271) dt 2 andread“dsquared xby dt squared”or“thesecondderivativeof xwithrespectto t.” k Substitutingthisexpressionfor ainto a === −−− x (theresultwederivedfromNewton’s2 nd Law m above)yields

189 Chapter 27 Oscillations: Introduction, Mass on a Spring

d 2 x k = − x (272) dt 2 m Weknowinadvancethatthepositionoftheblockdependsontime.Thatistosay, xisa functionoftime.Thisequation,equation272,tellsusthatifyoutakethesecondderivativeof x withrespecttotimeyouget xitself,timesanegativeconstant( −k/m). Wecanfindtheanexpressionforxintermsoftthatsolves272bythemethodof“guessand check.”Grossly,we’relookingforafunctionwhosesecondderivativeisessentiallythenegative ofitself.Twofunctionsmeetthiscriterion,thesineandthecosine.Eitherwillwork.We arbitrarilychoosetousethecosinefunction.Weincludesomeconstantsinourtrialsolution (ourguess)tobedeterminedduringthe“check”partofourprocedure.Here’sourtrialsolution:  2π rad  x = xmax cos t   T  Here’showwehavearrivedatthistrialsolution:Havingestablishedthat x,dependsonthe cosineofamultipleofthetimevariable,welettheunitsbeourguide.Weneedthetime ttobe partoftheargumentofthecosine,butwecan’ttakethecosineofsomethingunlessthat 2π rad somethinghasunitsofangle.Theconstant ,withtheconstant Thavingunitsoftime T (we’lluseseconds),makesitsothattheargumentofthecosinehasunitsofradians.Itis, 2π rad however,morethanjusttheunitsthatmotivatesustochoosetheratio astheconstant. T Tomaketheargumentofthecosinehaveunitsofradians,allweneedisaconstantwithunitsof 2π rad radianspersecond.Sowhywriteitas ?Here’stheexplanation:Theblockgoesback T andforth.Thatis,itrepeatsitsmotionoverandoveragainastimegoesby.Startingwiththe blockatitsmaximumdistancefromthewall,theblockmovestowardthewall,reachesits closestpointofapproachtothewallandthencomesbackouttoitsmaximumdistancefromthe wall.Atthatpoint,it’srightbackwhereitstartedfrom.Wedefinetheconstantvalueoftime T tobetheamountoftimethatittakesforoneiterationofthemotion. Nowconsiderthecosinefunction.Wechoseitbecauseitssecondderivativeisthenegativeof itself,butitislookingbetterandbetterasafunctionthatgivesthepositionoftheblockasa functionoftimebecauseittoorepeatsitselfasitsphase(theargumentofthecosine)continually increases.Supposethephasestartsoutas0attime0.Thecosineof0radiansis1,thebiggest thecosineevergets.Wecanmakethiscorrespondtotheblockbeingatitsmaximumdistance fromthewall.Asthephaseincreases,thecosinegetssmaller,thengoesnegative,eventually reachingthevalue −1whenthephaseis πradians.Thiscouldcorrespondtotheblockbeing closesttothewall.Then,asthephasecontinuestoincrease,thecosineincreasesuntil,whenthe phaseis2 π,thecosineisbackupto1correspondingtotheblockbeingrightbackwhereit startedfrom.Fromhere,asthephaseofthecosinecontinuestoincreasefrom2 πto4 π,the

190 Chapter 27 Oscillations: Introduction, Mass on a Spring cosineagaintakesonallthevaluesthatittookonfrom0to2 π.Thesamethinghappensagain asthephaseincreasesfrom4 πto6 π,from8 πto10 π,etc. 2π rad Gettingbacktothatconstant thatwe“guessed”shouldbeinthephaseofthecosinein T ourtrialsolutionfor x(t):  2π rad  x = xmax cos t   T  With Tbeingdefinedasthetimeittakesfortheblocktogobackandforthonce,lookwhat happenstothephaseofthecosineasthestopwatchreadingcontinuallyincreases.Startingfrom 2π rad 0,as tincreasesfrom0to T,thephaseofthecosine, t ,increasesfrom0to2 πradians. T So,justastheblock,fromtime0totime T,goesthoughonecycleofitsmotion,thecosine,from time0totime T,goesthroughonecycleofitspattern.Asthestopwatchreadingincreasesfrom Tto2 T,thephaseofthecosineincreasesfrom2 πradto4 πrad.Theblockundergoesthesecond cycleofitsmotionandthecosinefunctionusedtodeterminethepositionoftheblockgoes throughthesecondcycleofitspattern.Theideaholdstrueforanytime t —asthestopwatch readingcontinuestoincrease,thecosinefunctionkeepsrepeatingitscycleinexact synchronizationwiththeblock,asitmustifitsvalueistoaccuratelyrepresentthepositionofthe 2π rad blockasafunctionoftime.Again,itisnocoincidence.Wechosetheconstant inthe T phaseofthecosinesothatthingswouldworkoutthisway. Afewwordsonjargonareinorderbeforewemoveon.Thetime Tthatittakesfortheblockto completeonefullcycleofitsmotionisreferredtoasthe period oftheoscillationsoftheblock.  2π rad  Nowhowaboutthatotherconstant,the“ xmax ”inoureducatedguess x = xmax cos t  ?  T  Again,theunitswereourguide.Whenyoutakethecosineofanangle,yougetapurenumber,a valuewithnounits.So,weneedthe xmax theretogiveourfunctionunitsofdistance(we’lluse meters).Wecanfurtherrelate xmax tothemotionoftheblock.Thebiggestthecosineofthe phasecanevergetis1,thus,thebiggest xmax timesthecosineofthephasecanevergetis xmax .  2π rad  So,intheexpression x = xmax cos t  ,with xbeingthepositionoftheblockatanytime t,  T  xmax mustbethemaximumpositionoftheblock,thepositionoftheblock,relativetoits equilibriumposition,whenitisasfarfromthewallasitevergets.  2π rad  Okay,we’vegivenalotofreasonswhy x === xmax cos t  shouldwelldescribethemotion  T  oftheblock,butunlessitisconsistentwithNewton’s2 nd Law,thatis,unlessitsatisfiesequation 272:

191 Chapter 27 Oscillations: Introduction, Mass on a Spring

d 2x k === −−− x dt 2 m whichwederivedfromNewton’s2 nd Law,itisnogood.So,let’splugitintoequation272and d 2x seeifitworks.First,let’stakethesecondderivative ofourtrialsolutionwithrespectto t dt 2 (sowecanplugitand xitselfdirectlyintoequation272): Given  2π rad  x === xmax cos t  ,  T  thefirstderivativeis dx   2π rad  2π rad = xmax −sin t  dt   T  T dx 2π rad  2π rad  = − xmax sin t  dt T  T  Thesecondderivativeisthen d 2x 2π rad  2π rad  2π rad === −−− xmax cos t  dt 2 T  T  T 2 d 2x  2π rad   2π rad  === −−−  xmax cos t  dt 2  T   T   2π rad  Nowwearereadytosubstitutethisand xitself, x = xmax cos t  ,intothedifferential  T  d 2 x k equation = − x (equation272)stemmingfromNewton’s2 nd LawofMotion.The dt 2 m substitutionyields: 2  2π rad   2π rad  k  2π rad  −   xmax cos t  = − xmax cos t   T   T  m  T 

192 Chapter 27 Oscillations: Introduction, Mass on a Spring whichwecopyhereforyourconvenience. 2  2π rad   2π rad  k  2π rad  −   xmax cos t  = − xmax cos t   T   T  m  T  2  2π rad  Thetwosidesarethesame,byinspection,exceptthatwhere   appearsontheleft,we  T  k  2π rad  have ontheright.Thus,substitutingourguess, x = xmax cos t  ,intothedifferential m  T  d 2 x k equationthatwearetryingtosolve, = − x (equation272)leadstoanidentityifandonly dt 2 m 2  2π rad  k if   = .Thismeansthattheperiod Tisdeterminedbythecharacteristicsofthe  T  m springandtheblock,morespecificallybytheforceconstant(the“stiffnessfactor”) kofthe spring,andthemass(theinertia)oftheblock.Let’ssolvefor Tintermsofthesequantities. 2  2π rad  k From   = wefind:  T  m 2π rad k = T m m T = 2π rad k m T = 2π (273) k wherewehavetakenadvantageofthefactthataradianis,bydefinition,1 m/mbysimply deletingthe“rad”fromourresult. Thepresenceofthe minthenumeratormeansthatthegreaterthemass,thelongertheperiod. Thatmakessense:wewouldexpecttheblocktobemore“sluggish”whenithasmoremass.On theotherhand,thepresenceofthe kinthe denominator meansthatthestifferthespring,the shortertheperiod.Thismakessensetoointhatwewouldexpectastiffspringtoresultin quickeroscillations.Notetheabsenceof xmax intheresultfortheperiod T.Manyfolkswould expectthatthebiggertheoscillations,thelongeritwouldtaketheblocktocompleteeach oscillation,buttheabsenceof xmax inourresultfor Tshowsthatitjustisn’tso.Theperiod T doesnotdependonthesizeoftheoscillations. So,ourendresultisthatablockofmass m,onafrictionlesshorizontalsurface,ablockthatis attachedtoawallbyanidealmasslesshorizontalspring,andreleased,attime t=0,fromrest, fromaposition x=x max ,adistance xmax fromitsequilibriumposition;willoscillateaboutthe

193 Chapter 27 Oscillations: Introduction, Mass on a Spring

m equilibriumpositionwithaperiod T = 2π .Furthermore,theblock’spositionasafunction k oftimewillbegivenby  2π rad  x = xmax cos t  (274)  T 

Fromthisexpressionfor x(t)wecanderiveanexpressionforthevelocity v (t)asfollows: dx v = dt

d   2π rad  v = xmax cos t  dt   T    2π rad  2π rad v = xmax − sin  t    T  T 2π rad  2π rad  v = −xmax sin  t  (275) T  T 

Andfromthisexpressionfor v (t)wecangettheacceleration a(t)asfollows: dv a = dt d  2π rad  2π rad  a = − xmax sin t  dt  T  T  2π rad   2π rad  2π rad a = −xmax cos t  T   T  T 2  2π rad   2π rad  a = −xmax   cos t  (276)  T   T  k Notethatthislatterresultisconsistentwiththerelation a = − x between aand xthatwe m derivedfromNewton’s2 nd Lawnearthestartofthischapter.Recognizingthatthe 2  2π rad   2π rad  k xmax cos t  is xandthatthe   is ,itisclearthatequation276isthesame  T   T  m thingas k a = − x (277) m

194 Chapter 27 Oscillations: Introduction, Mass on a Spring

Frequency Theperiod Thasbeendefinedtobethetimethatittakesforonecompleteoscillation.InSI unitswecanthinkofitasthenumberofsecondsperoscillation.Thereciprocalof Tisthusthe numberofoscillationspersecond.Thisistherateatwhichoscillationsoccur.Wegiveita name,frequency,andasymbol, f. 1 f = (278) T 1 oscillations Theunitsworkouttobe whichwecanthinkofas astheoscillation,muchlike s s theradianisamarkerratherthanatrueunit.AspecialnamehasbeenassignedtotheSIunitof oscillation frequency, 1 isdefinedtobe1hertz,abbreviated1Hz.Youcanthinkof1Hzas s oscillation 1 either 1 orsimply 1 . s s 1 Intermsoffrequency,ratherthanperiod,wecanuse f = toexpressallourpreviousresultsin T termsof fratherthan t. 1 k f === 2π m

x === xmax cos(((2π radf t)))

v === −−−2πf xmax sin (((2π radf t))) 2 a === −−− 2( πf ) xmax cos(((2π radf t)))

195 Chapter 27 Oscillations: Introduction, Mass on a Spring

Byinspectionoftheexpressionsforthevelocityandaccelerationaboveweseethatthegreatest possiblevalueforthevelocityis 2πf xmax andthegreatestpossiblevaluefortheaccelerationis 2 2( πf ) xmax .Defining

v max = xmax 2( πf ) (279) and 2 amax = xmax 2( πf ) (2710) and,omittingtheunits“rad”fromthephase(thusburdeningtheuserwithrememberingthatthe unitsofthephaseareradianswhilemakingtheexpressionsabitmoreconcise)wehave:

x = xmax cos(2π f t)(2711)

v = −v max sin (2πf t)(2712)

a = − amax cos(2πf t)(2713)

The Simple Harmonic Equation

Whenthemotionofanobjectissinusoidalasin x = xmax cos(2π f t),werefertothemotionas simpleharmonicmotion.Inthecaseofablockonaspringwefoundthat a = − constant x (2714) k wherethe|constant|was andwasshowntobeequalto 2( πf )2 .Writtenas m d 2 x === −−− 2( πf )2 x (2715) dt 2 theequationisacompletelygeneralequation,notspecifictoablockonaspring.Indeed,any timeyoufindthat,foranysystem,thesecondderivativeofthepositionvariable,withrespectto time,isequaltoanegativeconstanttimesthepositionvariableitself,youaredealingwithacase ofsimpleharmonicmotion,andyoucanequatetheabsolutevalueoftheconstantto 2( πf )2 .

196 Chapter 28 Oscillations: The Simple Pendulum, Energy in Simple Harmonic Motion

28 Oscillations: The Simple Pendulum, Energy in Simple Harmonic Motion Startingwiththependulumbobatitshighestpositionononeside,theperiodof oscillationsisthetimeittakesforthebobtoswingallthewaytoitshighestposition ontheotherside and backagain.Don’tforgetthatpartabout“andbackagain.” Bydefinition,asimplependulumconsistsofaparticleofmass msuspendedbyamassless unstretchablestringoflength Linaregionofspaceinwhichthereisauniformconstant gravitationalfield,e.g.nearthesurfaceoftheearth.Thesuspendedparticleiscalledthe pendulumbob.Herewediscussthemotionofthebob.Whiletheresultstoberevealedhereare mostpreciseforthecaseofapointparticle,theyaregoodaslongasthelengthofthependulum (fromthefixedtopendofthestringtothecenterofmassofthebob)islargecomparedtoa characteristicdimension(suchasthediameterifthebobisasphereortheedgelengthifitisa cube)ofthebob.(Usingapendulumbobwhosediameteris10%ofthelengthofthependulum (asopposedtoapointparticle)introducesa0 .05%error.Youhavetomakethediameterofthe bob45%ofthependulumlengthtogettheerrorupto1%.) Ifyoupullthependulumbobtoonesideandreleaseit,youfindthatitswingsbackandforth.It oscillates.Atthispoint,youdon’tknowwhetherornotthebobundergoessimpleharmonic motion,butyoucertainlyknowthatitoscillates.Tofindoutifitundergoessimpleharmonic motion,allwehavetodoistodeterminewhetheritsaccelerationisanegativeconstanttimesits position.Becausethebobmovesonanarcratherthanaline,itiseasiertoanalyzethemotion usingangularvariables. θ L m Thebobmovesonthelowerpartofaverticalcirclethatiscenteredatthefixedupperendofthe string.We’llpositionourselvessuchthatweareviewingthecircle,faceon,andadopta coordinatesystem,basedonourpointofview,whichhasthereferencedirectionstraight

197 Chapter 28 Oscillations: The Simple Pendulum, Energy in Simple Harmonic Motion downward,andforwhichpositiveanglesaremeasuredcounterclockwisefromthereference direction.Referringtothediagramabove,wenowdrawapseudofreebodydiagram(thekind weusewhendealingwithtorque)forthestringplusbobsystem. r O ⊥ = Lsin θ +a θ L m Fg= mg Weconsiderthecounterclockwisedirectiontobethepositivedirectionforalltherotational motionvariables.Applying Newton’s2 nd LawforRotationalMotion,yields: τ a === ∑∑∑ o< o< I −−− mgL sinθ a === I Nextweimplementthesmallangleapproximation.Doingsomeansourresultisapproximate andthatthesmallerthemaximumangleachievedduringtheoscillations,thebetterthe approximation.Accordingtothesmallangleapproximation,withitunderstoodthat θmustbein radians, sinθ ≈ θ .Substitutingthisintoourexpressionfor a,weobtain: −−− mgLθ a === I Herecomesthepartwherewetreatthebobasapointparticle.Themomentofinertiaofapoint particle,withrespecttoanaxisthatisadistance Laway,isgivenby I = mL2 .Substitutingthis intoourexpressionfor awearriveat:

198 Chapter 28 Oscillations: The Simple Pendulum, Energy in Simple Harmonic Motion

− mgL a = θ mL2 Somethingprofoundoccursinoursimplificationofthisequation.Themassescancelout.The massthatdeterminesthedrivingforcebehindthemotionofthependulum(thegravitational force Fg=mg)inthenumerator,isexactlycanceledbytheinertialmassofthebobinthe denominator.Themotionofthebobdoesnotdependonthemassofthebob!Simplifyingthe expressionfor ayields: g a = − θ L d 2θ Recallingthat a ≡ ,wehave: dt 2 d 2θ g = − θ (281) dt 2 L Hey,thisisthesimpleharmonicmotionequation,which,ingenericform,appearsas 2 d x 2 = − constant x (equation2714)inwhichthe| constant |canbeequatedto 2( πf ) where f dt 2 isthefrequencyofoscillations.Thepositionvariableinourequationmaynotbe x,butwestill havethesecondderivativeofthepositionvariablebeingequaltothenegativeofaconstanttimes thepositionvariableitself.Thatbeingthecase,number1:wedohavesimpleharmonicmotion, g andnumber2:theconstant mustbeequalto 2( πf )2 . L g = 2( πf )2 L Solvingthisfor f,wefindthatthefrequencyofoscillationsofasimplependulumisgivenby 1 g f = (282) 2π L Againwecallyourattentiontothefactthatthefrequencydoesnotdependonthemassofthe bob! 1 T = asinthecaseoftheblockonaspring.Thisrelationbetween Tand fisadefinitionthat f appliestoanyoscillatorymotion(evenifthemotionisnotsimpleharmonicmotion).

199 Chapter 28 Oscillations: The Simple Pendulum, Energy in Simple Harmonic Motion

Alltheotherformulasforthesimplependulumcanbetranscribedfromtheresultsfortheblock onaspringbywriting θinplaceof x, winplaceof v,and ainplaceof a. Thus,

θ = θ max cos(2πf t) (283)

w = −wmax sin(2πft) (284)

a = −amax cos(2πf t) (285)

wmax = 2( πf )θ max (286) 2 amax = 2( πf ) θ max (287)

Energy Considerations in Simple Harmonic Motion Let’sreturnourattentiontotheblockonaspring.Apersonpullstheblockoutawayfromthe walladistance xmax fromtheequilibriumposition,andreleasestheblockfromrest.Atthat instant,beforetheblockpicksupanyspeedatall,(butwhenthepersonisnolongeraffectingthe motionoftheblock)theblockhasacertainamountofenergy E.Andsincewearedealingwith anidealsystem(nofriction,noairresistance)thesystemhasthatsameamountofenergyfrom thenon.Ingeneral,whiletheblockisoscillating,theenergy E=K+U 1 2 1 2 ispartlykineticenergy K === 2 mv andpartlyspringpotentialenergy U === 2 kx .Theamountof eachvaries,butthetotalremainsthesame.Attime0,the Kin E=K+Uiszerosincethe velocityoftheblockiszero.So,attime0: E === U 1 2 E === 2 k xmax Anendpointinthemotionoftheblockisaparticularlyeasypositionatwhichtocalculatethe totalenergysinceallofitispotentialenergy. Asthespringcontracts,pullingtheblocktowardthewall,thespeedoftheblockincreasesso,the 1 2 kineticenergyincreaseswhilethepotentialenergy U === 2 xk decreasesbecausethespring becomeslessandlessstretched.Onitswaytowardtheequilibriumposition,thesystemhasboth kineticandpotentialenergy

200 Chapter 28 Oscillations: The Simple Pendulum, Energy in Simple Harmonic Motion

E=K+U withthekineticenergy Kincreasingandthepotentialenergy Udecreasing.Eventuallytheblock reachestheequilibriumposition.Foraninstant,thespringisneitherstretchednorcompressed andhenceithasnopotentialenergystoredinit.Alltheenergy(thesametotalthatwestarted 1 2 with)isintheformofkineticenergy, K = 2 mv . 0 E=K+U E=K Theblockkeepsonmoving.Itovershootstheequilibriumpositionandstartscompressingthe spring.Asitcompressesthespring,itslowsdown.Kineticenergyisbeingconvertedinto springpotentialenergy.Astheblockcontinuestomovetowardthewall,theeverthesame valueoftotalenergyrepresentsacombinationofkineticenergyandpotentialenergywiththe kineticenergydecreasingandthepotentialenergyincreasing.Eventually,atitsclosestpointof approachtothewall,itsmaximumdisplacementinthe–xdirectionfromitsequilibriumposition, atitsturningpoint,theblock,justforaninstanthasavelocityofzero.Atthatinstant,thekinetic energyiszeroandthepotentialenergyisatitsmaximumvalue: 0 E=K+U E=U Thentheblockstartsmovingoutawayfromthewall.Itskineticenergyincreasesasitspotential energydecreasesuntilitagainarrivesattheequilibriumposition.Atthatpoint,bydefinition, thespringisneitherstretchednorcompressedsothepotentialenergyiszero.Alltheenergyisin theformofkineticenergy.Becauseofitsinertia,theblockcontinuespasttheequilibrium position,stretchingthespringandslowingdownasthekineticenergydecreaseswhile,atthe samerate,thepotentialenergyincreases.Eventually,theblockisatitsstartingpoint,againjust foraninstant,atrest,withnokineticenergy.Thetotalenergyisthesametotalasithasbeen throughouttheoscillatorymotion.Atthatinstant,thetotalenergyisallintheformofpotential energy.Theconversionofenergy,backandforthbetweenthekineticenergyoftheblockand thepotentialenergystoredinthespring,repeatsitselfoverandoveragainaslongastheblock continuestooscillate(with—andthisisindeedanidealization—nolossofmechanicalenergy). Asimilardescription,intermsofenergy,canbegivenforthemotionofanideal(noair resistance,completelyunstretchablestring)simplependulum.Thepotentialenergy,inthecase ofthesimplependulum,isintheformofgravitationalpotentialenergy U === mgy ratherthan springpotentialenergy.Theonevalueoftotalenergythatthependulumhasthroughoutits oscillationsisallpotentialenergyattheendpointsoftheoscillations,allkineticenergyatthe midpoint,andamixofpotentialandkineticenergyatlocationsinbetween.

201 Chapter 29 Waves: Characteristics, Types, Energy

29 Waves: Characteristics, Types, Energy Consideralongtauthorizontalstringofgreatlength.Supposeoneendisinthehandofaperson andtheotherisfixedtoanimmobileobject.Nowsupposethatthepersonmovesherhandup anddown.Thepersoncausesherhand,andherendofthestring,tooscillateupanddown.To discusswhathappens,we,inourmind,considerthestringtoconsistofalargenumberofvery shortstringsegments.Itisimportanttokeepinmindthattheforceoftensionofastring segmentexertedonanyobject,includinganothersegmentofthestring,isdirectedawayfrom theobject alongthestringsegment thatisexertingtheforce.(Thefollowingdiscussionand diagramsareintentionallyoversimplified.Thediscussion does correctlygivethegrossideaof howoscillationsatoneendofatautstringcancauseapatterntomovealongthelengthofthe stringdespitethefactthattheindividualbitsofstringareessentiallydoingnothingmorethan movingupanddown. Thepersonisholdingoneendofthefirstsegment.Shefirstmovesherhandupward. Thistiltsthefirstsegmentsothattheforceoftensionthatitisexertingonthesecondsegment hasanupwardcomponent. This,inturn,tiltsthesecondsegmentsothatitsforceoftensiononthethirdsegmentnowhasan upwardcomponent.Theprocesscontinueswiththe3rd segment,the4 th segment,etc.

202 Chapter 29 Waves: Characteristics, Types, Energy

Afterreachingthetopoftheoscillation,thepersonstartsmovingherhanddownward.She movestheleftendofthefirstsegmentdownward,butbythistime,thefirstfoursegmentshave anupwardvelocity.Duetotheirinertia,theycontinuetomoveupward.Thedownwardpullof thefirstsegmentontheleftendofthesecondsegmentcausesittoslowdown,cometorest, andeventuallystartmovingdownward.Inertiaplaysahugeroleinwavepropagation.“To propagate”means“togo”or“totravel.”Wavespropagatethroughamedium.

203 Chapter 29 Waves: Characteristics, Types, Energy

204 Chapter 29 Waves: Characteristics, Types, Energy

Crest Trough Eachveryshortsegmentofthestringundergoesoscillatorymotionlikethatofthehand,butfor anygivensection,themotionisdelayedrelativetothemotionoftheneighboringsegmentthatis closertothehand.Theneteffectofallthesestringsegmentsoscillatingupanddown,eachwith thesamefrequencybutslightlyoutofsynchronizationwithitsnearestneighbor,istocreatea disturbanceinthestring.Withoutthedisturbance,thestringwouldjustremainontheoriginal horizontalline.Thedisturbancemovesalongthelengthofthestring,awayfromthehand.The disturbanceiscalledawave.Anobserver,lookingatthestringfromthesideseescrestsand troughsofthedisturbance,movingalongthelengthofthestring,awayfromthehand.Despite appearances,nomaterialismovingalongthelengthofthestring,justadisturbance.Theillusion thatactualmaterialismovingalongthestringcanbeexplainedbythetimingwithwhichthe individualsegmentsmoveupanddown,eachaboutitsownequilibriumposition,thepositionit wasinbeforethepersonstartedmakingwaves.

Wave Characteristics Inourpictorialmodelabove,wedepictedahandthatwasoscillatingbutnotundergoingsimple harmonicmotion.Iftheoscillationsthatarecausingthewavedoconformtosimpleharmonic motion,theneachstringsegmentmakingupthestringwillexperiencesimpleharmonicmotion (upanddown).Whenindividualsegmentsmakingupthestringareeachundergoingsimple harmonicmotion,thewavepatternissaidtovarysinusoidallyinbothtimeandspace.Wecan tellthatitvariessinusoidallyinspacebecauseagraphofthedisplacementy,thedistancethata givenpointonthestringisaboveitsequilibriumposition,versus x,howfarfromtheendofthe stringthepointonthestringis;forallpointsonthestring;issinusoidal.

205 Chapter 29 Waves: Characteristics, Types, Energy

y[meters] ABITOFSTRING’S DISPLA CEMENT ABOVEORBELOWTHATBIT’S EQUILIBRIUMPOSITION VS. THE POSITION OFTHEBITOFSTRING ALONGTHELENGTHOFTHESTRING 0 x[meters] Wesaythatthewavevariessinusoidallywithtimebecause,foranypointalongthelengthofthe string,agraphofthedisplacementofthatpointfromitsequilibriumpositionvs.timeis sinusoidal: y[meters] ABITOFSTRING’S DISPLACEMENT ABOVEORBELOWTHATBIT’S EQUILIBRIUMPOSITION VS. TIME 0 t[seconds] Thereareanumberofwaysofcharacterizingthewaveonastringsystem.Youcouldprobably comeupwitharathercompletelistyourself:therateatwhichtheoscillationsareoccurring,how longittakesforagiventinysegmentofthestringtocompleteoneoscillation,howbigthe oscillationsare,thesmallestlengthoftheuniquepatternwhichrepeatsitselfinspace,andthe speedatwhichthewavepatterntravelsalongthelengthofthestring.Physicistshave,ofcourse, givennamestothevariousquantities,inaccordancewiththatimportantlowestlevelofscientific activity—namingandcategorizingthevariouscharacteristicsofthataspectofthenaturalworld whichisunderstudy.Herearethenames:

206 Chapter 29 Waves: Characteristics, Types, Energy

Amplitude Anyparticleofastringwithwavestravelingthroughitundergoesoscillations.Suchaparticle goesawayfromitsequilibriumpositionuntilitreachesitsmaximumdisplacementfromits equilibriumposition.Thenitheadsbacktowarditsequilibriumpositionandthenpassesright throughtheequilibriumpositiononitswaytoitsmaximumdisplacementfromequilibriumon theothersideofitsequilibriumposition.Thenitheadsbacktowardtheequilibriumpositionand passesthroughitagain.Thismotionrepeatsitselfcontinuallyaslongasthewavesaretraveling throughthelocationoftheparticleofthestringinquestion.Themaximumdisplacementofany particlealongthelengthofthestring,fromthatpoint’sequilibriumposition,iscalledthe amplitude ymax ofthewave. Theamplitudecanbeannotatedonbothofthetwokindsofgraphsgivenabove(Displacement vs.Position,andDisplacementvs.Time).HereweannotateitontheDisplacementvs.Position graph: y[meters] DISPLACEMENT VS. POSITION Amplitude y max 0 PeaktoPeakAmplitude x[meters] Thepeaktopeakamplitude,aquantitythatisofteneasiertomeasurethantheamplitudeitself, hasalsobeenannotatedonthegraph.Itshouldbeobviousthatthepeaktopeakamplitudeis twicetheamplitude.

207 Chapter 29 Waves: Characteristics, Types, Energy

Period Theamountoftimethatittakesanyoneparticlealongthelengthofthestringtocompleteone oscillationiscalledtheperiod T.Notethattheperiodiscompletelydeterminedbythesourceof thewaves.Thetimeittakesforthesourceofthewavestocompleteoneoscillationisequalto thetimeittakesforanyparticleofthestringtocompleteoneoscillation.Thattimeistheperiod ofthewave.Theperiod,beinganamountoftime,canonlybeannotatedontheDisplacement vs.Timegraph(notontheDisplacementvs.PositionAlongtheStringgraph). y[meters] DISPLACEMENT VS. TIME Period T 0 t[seconds]

Frequency Thefrequency fisthenumberofoscillationspersecondthatanyparticlealongthelengthof thestringundergoes.Itistheoscillationrate.Sinceitisthenumberofoscillationspersecond andtheperiodisthenumberofsecondsperoscillation,thefrequency fissimplythereciprocal 1 oftheperiod T: f = . T Amplitude,period,andfrequencyarequantitiesthatyoulearnedaboutinyourstudyof oscillations.Here,theycharacterizetheoscillationsofapointonastring.Despitethefactthat thestringasawholeisundergoingwavemotion,thefactthatthepointitself,anypointalongthe lengthofthestring,issimplyoscillating,meansthatthedefinitionsofamplitude,period,and frequencyarethesameasthedefinitionsgiveninthechapteronoscillations.Thus,our discussionofamplitude,period,andfrequencyrepresentsareview.Now,however,itistimeto moveontosomethingnew,aquantitythatdoesnotapplytosimpleharmonicmotionbutdoes applytowaves.

208 Chapter 29 Waves: Characteristics, Types, Energy

Wavelength Thedistanceoverwhichthewavepatternrepeatsitselfonce,iscalledthewavelength λofthe wave.Becausethewavelengthisadistancemeasuredalongthelengthofthestring,itcanbe annotatedontheDisplacementvs.PositionAlongtheStringgraph(butnotontheDisplacement vs.Timegraph): DISPLACEMENT VS. POSITON y[meters] Wavelength λ 0 x[meters]

Wave Velocity Thewavevelocityisthespeedanddirectionwithwhichthewavepatternistraveling.(Itis NOTthespeedwithwhichtheparticlesmakingupthestringaretravelingintheirupanddown motion.)Thedirectionpartisstraightforward,thewavepropagatesalongthelengthofthe string,awayfromthecause(somethingoscillating)ofthewave.Thewavespeed(theconstant speedwithwhichthewavepropagates)canbeexpressedintermsofotherquantitiesthatwe havejustdiscussed.

209 Chapter 29 Waves: Characteristics, Types, Energy

Togetatthewavespeed,whatweneedtodoistocorrelatetheupanddownmotionofapoint onthestring,withthemotionofthewavepatternmovingalongthestring.Considerthe followingDisplacementvs.Positiongraphforawavetravelingtotheright.Inthediagram,I haveshadedinonecycleofthewave,markedoffadistanceofonewavelength,anddrawnadot atapointonthestringwhosemotionweshallkeeptrackof. y[meters] Wavelength λ 0 x[meters] Now,let’sallowsometimetoelapse,justenoughtimeforthewavetomoveoveronequarterof awavelength. y[meters] Wavelength λ 0 x[meters] Inthattimewenotethatthepointonthestringmarkedbythedothasmovedfromits equilibriumpositiontoitsmaximumdisplacementfromequilibriumposition.Asthewavehas movedoveronequarterofawavelength,thepointonthestringhascompletedonequarterofan oscillation.

210 Chapter 29 Waves: Characteristics, Types, Energy

Let’sallowthesameamountoftimetoelapseagain,thetimeittakesforthewavetomoveover onequarterofawavelength. y[meters] Wavelength λ 0 x[meters] Atthispoint,thewavehasmovedatotalofahalfawavelengthovertotheright,andthepoint onthestringmarkedbythedothasmovedfromitsequilibriumpositionuptoitspositionof maximumpositivedisplacementandbacktoitsequilibriumposition;thatistosay,ithas completedhalfofanoscillation. Let’sletthesameamountoftimeelapseagain,enoughtimeforthewavepatterntomoveover anotherquarterofawavelength. y[meters] Wavelength λ 0 Thewavehasmovedoveratotaldistanceofthreequartersofawavelengthandthepointonthe stringthatismarkedwithadothasmovedontoitsmaximumnegative(downward) displacementfromequilibriummeaningthatithascompletedthreequartersofanoscillation.

211 Chapter 29 Waves: Characteristics, Types, Energy

Nowweletthesameamountoftimeelapseoncemore,thetimeittakesforthewavetomove overonequarterofawavelength. y[meters] Wavelength λ 0 Atthispoint,thewavehasmovedoveradistanceequaltoonewavelengthandthepointonthe stringmarkedbyadothascompletedoneoscillation.Itisthatpointofthestringwhosemotion wehavebeenkeepingtrackofthatgivesusahandleonthetime.Theamountoftimethatit takesforthepointonthestringtocompleteoneoscillationis,bydefinition,theperiodofthe wave.Nowweknowthatthewavemovesadistanceofonewavelength λinatimeinterval equaltooneperiod T.Forsomethingmovingwithaconstantspeed(zeroacceleration),the speedissimplythedistancetraveledduringaspecifiedtimeintervaldividedbythedurationof thattimeinterval.So,wehave,forthewavespeed v: λ v = (291) T Onetypicallyseestheformulaforthewavespeedexpressedas v = λf (292) 1 wheretherelation f = betweenfrequencyandperiodhasbeenusedtoeliminatetheperiod. T Equation292(v = λf )suggeststhatthewavespeeddependsonthefrequencyandthe wavelength.Thisisnotatallthecase.Indeed,asfarasthewavelengthisconcerned,itisthe otherwayround—theoscillatorthatiscausingthewavesdeterminesthefrequency,andthe correspondingwavelengthdependsonthewavespeed.Thewavespeedispredeterminedbythe characteristicsofthestring—howtautitis,andhowmuchmassispackedintoeachmillimeter ofit.Lookingbackonourdiscussionofhowoscillationsatoneendofatautstringresultin wavespropagatingthroughit,youcanprobablydeducethatthegreaterthetensioninthestring, thefasterthewavewillmovealongthestring.Whenthehandmovestheendofthefirst segmentup,theforceexertedonthesecondsegmentofthestringbythefirstsegmentwillbe greater,thegreaterthetensioninthestring.Hencethesecondsegmentwillexperienceagreater

212 Chapter 29 Waves: Characteristics, Types, Energy acceleration.Thisgoesforallthesegmentsdowntheline.Thegreatertheacceleration,the fasterthesegmentspickupspeedandthefasterthedisturbance,thewave,propagatesalongthe string—thatis,thegreaterthewavespeed.Wesaidthatthewavespeedalsodependsonthe amountofmasspackedintoeachmillimeterofthestring.Thisreferstothelineardensity ,the massperlength,ofthestring.Thegreaterthemassperlength,thegreaterthemassofeach segmentofthestringandthelessrapidlythevelocitywillbechangingforagivenforce.Here weprovide,withnoproof,theformulaforthespeedofawaveinastringasafunctionofthe stringcharacteristics,tension FTandlinearmassdensity : F v === T (293) Notethatthisexpressionagreeswiththeconclusionsthatthegreaterthetension,thegreaterthe wavespeed;butthegreaterthelinearmassdensity,thesmallerthewavespeed.

Kinds of Waves We’vebeentalkingaboutawaveinastring.Lotsofothermedia,besidesstrings,supportwaves aswell.Youhaveprobablyheard,andprobablyheard of ,soundwavesinair.Soundwaves travelthroughothergasesandtheytravelthroughliquidsandsolidsaswell.Perhapsyouhave heardofseismicwavesaswell,thewavesthattravelthroughtheearthwhenearthquakesoccur. Allofthesewavesfallintooneoftwocategories.Whichcategoryisdeterminedbythe orientationofthelinesalongwhichtheoscillationsoftheparticlesmakingupthemediumoccur relativetothedirectionofpropagationofthewaves.Iftheparticlesoscillatealonglinesthatare perpendiculartothedirectioninwhichthewavetravels,thewaveissaidtobeatransversewave (becausetransversemeansperpendicularto).Iftheparticlesoscillatealongalinethatisalong thedirectioninwhichthewavetravels,thewaveissaidtobelongitudinal.Thewaveina horizontalstringthatwediscussedatsuchlengthisanexampleofatransversewave.Callingthe directioninwhichthestringextendsawayfromtheoscillatortheforwarddirection,we discussedthecaseinwhichtheparticlesmakingupthestringwereoscillatingupanddown.The wavetravelsalongthestringandtheupanddowndirectionsareindeedperpendiculartothe forwarddirectionmakingitclearthatweweredealingwithtransversewaves.Itshouldbenoted thattheoscillationscouldhavebeenfromsidetosideoratanyanglerelativetotheverticalas longastheywereperpendiculartothestring.Also,thereisnostipulationthatthestringbe horizontalinorderfortransversewavestopropagateinit.Thestringwassaidtobehorizontal inourintroductiontowavesinordertosimplifythediscussion.

213 Chapter 29 Waves: Characteristics, Types, Energy

Wave Power Consideraverylongstationarystringextendingfromlefttoright.Consideraveryshort segmentofthestring,callitsegmentA,atanarbitrarydistancealongthestringfromtheleft end.Nowsupposethatsomeoneisholdingtheleftendofthelongstringinherhandandthat shestartsoscillatingtheleftendofthestringupanddown.Asyouknow,awavewilltravel throughthestringfromlefttoright.BeforeitgetstosegmentA,segmentAisatrest.Afterthe frontendofthewavegetstosegmentA,segmentAwillbeoscillatingupanddownlikeamass onaspring.SegmentAhasmassandithasvelocitythroughoutmostofitsmotion,soclearlyit hasenergy.Ithadnonebeforethewavegotthere,sowavesmusthaveenergy.Byoscillating theendofthestringthepersonhasgivenenergytothestringandthatenergytravelsalongthe stringintheformofawave.Herewegiveanexpressionfortherateatwhichenergypropagates alongthestringintermsofthestringandwaveproperties.Thatrateistheenergypertime passingthroughanypoint(throughwhichthewaveistraveling)inthestring.Itisthepowerof thewave. Theanalysisthatyieldstheexpressionfortherateatwhichtheenergyofwavesinastring passesapointonthestring,thatis,thepowerofthewave,isstraightforwardbuttoolengthyto includehere.Theresultis: 2 2 P === 2π FT f ymax Asregardswavesinastringwithagiventensionandlinearmassdensity,wenotethat 2 2 P =f ymax (294) Thisrelationappliestoallkindsofwaves.Theconstantofproportionalitydependsonthekind ofwavethatyouaredealingwith,buttheproportionalityitselfappliestoallkindsofwaves.I wasremindedofthisrelationbyaphysicaltherapistwhowasusingultrasoundwavestodeposit energyintomybackmuscles.Shementionedthatadoublingofthefrequencyoftheultrasonic waveswouldprovidedeeperpenetrationofthesoundwaves,butthatitwouldalsoresultina quadruplingoftherateatwhichenergywouldbedepositedinthetissue.Hence,todepositthe sametotalamountofenergythatshedepositedatagivenfrequencyononeoccasion;atreatment atdoublethefrequencywouldeitherlastonefourthaslong(atthesameamplitude)orwouldbe carriedoutforthesameamountoftimeathalftheamplitude.

214 Chapter 29 Waves: Characteristics, Types, Energy

Intensity Consideratinybuzzer,suspendedinairbyastring.Soundwaves,causedbythebuzzer,travel outwardinallawayfromthebuzzerdirections: Thesecircles represent spherical wavefronts. Inthediagramabove,theblackdotrepresentsthebuzzer,andthecirclesrepresentwavefronts— collectionsofpointsinspaceatwhichtheairmoleculesareattheirmaximumdisplacement awayfromthebuzzer.Thewavefrontsareactuallysphericalshells.Ina3Dmodelofthem, theywouldbewellrepresentedbysoapbubbles,oneinsidetheother,allsharingthesamecenter. Notethatsubsequenttotheinstantdepicted,theairmoleculesatthelocationofthewavefront willstartmovingbacktowardthebuzzer,intheirtowardandawayfromthebuzzeroscillations, whereasthewavefrontitselfwillmovesteadilyoutwardfromthebuzzerasthenextlayerofair moleculesachievesitsmaximumdisplacementpositionandthenthenext,etc. Nowconsiderafixedimaginarysphericalshellcenteredonthebuzzer.Thepowerofthewave istherateatwhichenergypassesthroughthatshell.Asmentioned,thepowerobeystherelation 2 2 P =f ymax Notethatthepowerdoesnotdependonthesizeofthesphericalshell;alltheenergydeliveredto theairbythebuzzermustpassthroughanysphericalshellcenteredonthebuzzer.Butthe surfaceofalargersphericalshellisfartherfromthebuzzerandourexperiencetellsusthatthe furtheryouarefromthebuzzerthelesslouditsoundssuggestingthatthepowerdeliveredtoour earissmaller.Sohowcanthepowerforalargesphericalshell(withitssurfacefarfromthe source)bethesameasitisforasmallsphericalshell?Wecansaythatastheenergymoves awayfromthesource,itspreadsout.Sobythetimeitreachesthelargersphericalshell,the powerpassingthrough,say,anysquaremillimeterofthelargersphericalshellisrelativelysmall, butthelargersphericalshellhasenoughmoresquaremillimetersforthetotalpowerthroughitto bethesame.

215 Chapter 29 Waves: Characteristics, Types, Energy

Nowimaginesomebodynearthesourcewiththeireardrumfacingthesource. Thesecircles represent spherical wavefronts. Theamountofenergydeliveredtotheearisthepowerperareapassingthroughtheimaginary sourcecenteredsphericalshellwhosesurfacetheearison,timestheareaoftheeardrum.Since thesphericalshellissmall,meaningithasrelativelylittlesurfacearea,andallthepowerfrom thesourcemustpassthroughthatsphericalshell,thepowerperareaatthelocationoftheear mustberelativelylarge.Multiplythatbythefixedareaoftheeardrumandthepowerdelivered totheeardrumisrelativelylarge. Ifthepersonisfartherfromthesource, Thesecircles represent spherical wavefronts. thetotalpowerfromthesourceisdistributedoverthesurfaceofalargersphericalshellsothe powerperareaissmaller.Multiplythatbythefixedareaoftheeardrumtogetthepower deliveredtotheear.Itisclearthatthepowerdeliveredtotheearwillbesmaller.Thefartherthe earisfromthesource;thesmalleristhefractionofthetotalpowerofthesource,receivedbythe eardrum.

216 Chapter 29 Waves: Characteristics, Types, Energy

Howloudthebuzzersoundstothepersonisdeterminedbythepowerdeliveredtotheear, which,wehavenoted,dependsonthepowerperareaatthelocationoftheear. Thepowerperareaofsoundwavesisgivenaname.Itiscalledthe intensity ofthesound.For wavesingeneral(ratherthanjustsoundwaves)wesimplycallittheintensityofthewave. Whiletheconceptofintensityappliestowavesfromanykindofsource,itisparticularlyeasyto calculateinthecaseofthesmallbuzzerdeliveringenergyuniformlyinalldirections.Forany pointinspace,wecreateanimaginarysphericalshell,throughthatpoint,centeredonthebuzzer. Thentheintensity Iatthepoint(andatanyotherpointonthesphericalshell)issimplythe powerofthesourcedividedbytheareaofthesphericalshell: P I = (295) 4π r 2 wherethe ristheradiusoftheimaginarysphericalshell,butmoreimportantly,itisthedistance 2 2 ofthepointatwhichwewishtoknowtheintensity,fromthesource.Since P =f ymax ,we have 2 2 f ymax I = (296) r 2

Atafixeddistancefromasourceofafixedfrequency,recognizingthat ymax istheamplitudeof thewaveswehave I = (Amplitude)2 (297)

217 Chapter 30 Wave Function, Interference, Standing Waves

30 Wave Function, Interference, Standing Waves Inthattwoofourfivesenses(sightandsound)dependonourabilitytosenseandinterpret waves,andinthatwavesareubiquitous,wavesareofimmenseimportancetohumanbeings. WavesinphysicalmediaconformtoawaveequationthatcanbederivedfromNewton’sSecond Lawofmotion.Thewaveequationreads: 2 2 ∂∂∂ y 1 ∂∂∂ y === (301) ∂∂∂x 2 v 2 ∂∂∂t 2 where:

yisthedisplacementofapointonthemediumfromitsequilibriumposition,

xisthepositionalongthelengthofthemedium,

tistime,and

visthewavevelocity. Takeagoodlookatthisimportantequation.Becauseitinvolvesderivatives,thewaveequation isadifferentialequation.Thewaveequationsaysthatthesecondderivativeofthedisplacement withrespecttoposition(treatingthetime tasaconstant)isdirectlyproportionaltothesecond derivativeofthedisplacementwithrespecttotime(treatingtheposition xasaconstant).When youseeanequationforwhichthisisthecase,youshouldrecognizeitasthewaveequation. Ingeneral,whentheanalysisofacontinuousmedium,e.g.theapplicationofNewton’ssecond lawtotheelementsmakingupthatmedium,leadstoanequationoftheform 2 2 ∂∂∂ y ∂∂∂ y === constant , ∂∂∂x 2 ∂∂∂t 2 theconstantwillbeanalgebraiccombinationofphysicalquantitiesrepresentingpropertiesofthe medium.Thatcombinationcanberelatedtothewavevelocityby 1 constant = v 2 Forinstance,applicationofNewton’sSecondLawtothecaseofastringresultsinawave equationinwhichtheconstantofproportionalitydependsonthelinearmassdensity andthe stringtension FT: ∂∂∂ 2y ∂∂∂ 2y 2 === 2 ∂∂∂x FT ∂∂∂t Recognizingthattheconstantofproportionality hastobeequaltothereciprocalofthe FT squareofthewavevelocity,wehave

218 Chapter 30 Wave Function, Interference, Standing Waves

1 = 2 FT v F v === T (302) relatingthewavevelocitytothepropertiesofthestring.Thesolutionofthewaveequation ∂ 2 y 1 ∂ 2 y = canbeexpressedas ∂x2 v 2 ∂t 2 2π 2π y = ymax cos( λ x ± T t + φ ) (303) where:

yisthedisplacementofapointinthemediumfromitsequilibriumposition,

ymax istheamplitudeofthewave, xisthepositionalongthelengthofthemedium, λisthewavelength,

tistime, Tistheperiod,and φisaconstanthavingunitsofradians. φiscalledthephaseconstant. A“ −“inthelocationofthe“ ±”isusedinthecaseofawavetravelinginthe+xdirectionanda “+”foronetravelinginthe–xdirection.Equation303,thesolutiontothewaveequation 2 ∂∂∂ 2 y 1 ∂∂∂ y === ,isknownasthewavefunction.Substitutethewavefunctionintothewave ∂∂∂x 2 v 2 ∂∂∂t 2 equationandverifythatyouarriveat λ v = , T λ anecessaryconditionforthewavefunctiontoactuallysolvethewaveequation. v = isthe T statementthatthewavespeedisequaltotheratioofthewavelengthtotheperiod,arelationthat wederivedinaconceptualfashioninthelastchapter. Atposition x=0inthemedium,attime t=0,thewavefunction,equation303,evaluatesto

y === ymax cos(φ) .

Thephaseofthecosineboilsdowntothephaseconstant φwhosevaluethusdeterminesthe valueof yat x=0, t=0.(Notethatthe“phase”ofthecosineistheargumentofthecosine—that whichyouaretakingthecosineof.)Thevalueofthephaseconstant φisofnorelevancetoour

219 Chapter 30 Wave Function, Interference, Standing Waves

presentdiscussionsowearbitrarilyset φ =0.Also,onyourformulasheet,wewritethewave functiononlyforthecaseofawavetravelinginthe+xdirection,thatis,wereplacethe“ ±”with a“ −”.Thewavefunctionbecomes 2π 2π y = ymax cos( λ x − T t) (304) Thisisthewayitappearsonyourformulasheet.Youaresupposedtoknowthatthis correspondstoawavetravelinginthe+xdirectionandthattheexpressionforawavetraveling inthe–xdirectioncanbearrivedatbyreplacingthe“ −“witha“+”.

Interference Consideracaseinwhichtwowaveformsarriveatthesamepointinamediumatthesametime. We’lluseidealizedwaveformsinastringtomakeourpointshere.Inthecaseofastring,the onlywaytwowaveformscanarriveatthesamepointinthemediumatthesametimeisforthe waveformstobetravelinginoppositedirections: b v h • A h v b Thetwowaveformsdepictedinthediagramaboveare“scheduled”toarriveatpoint A atthe sametime.Atthattime,basedonthewaveformontheleftalone,point A wouldhavea displacement+h,andbasedonthewaveformontherightalone,point A wouldhavethe displacement–h.So,whatistheactualdisplacementofpoint A whenbothwaveformsareat point A atthesametime?Toanswerthat,yousimplyaddthewouldbesinglewaveform displacementstogetheralgebraically(takingthesignintoaccount).Onedoesthispointforpoint overtheentirelengthofthestringforanygiveninstantintime.Inthefollowingseriesof diagramsweshowthepointforpointadditionofdisplacementsforseveralinstantsintime.

220 Chapter 30 Wave Function, Interference, Standing Waves

1 2 3 +++ +++ +++ ====== 4 5 6 +++ +++ +++ ======

221 Chapter 30 Wave Function, Interference, Standing Waves

Thephenomenoninwhichwavestravelingindifferentdirectionssimultaneouslyarriveatone andthesamepointinthewavemediumisreferredtoas interference .Whenthewaveformsadd togethertoyieldabiggerwaveform, +++ === theinterferenceisreferredtoas constructive interference.Whenthetwowaveformstendto canceleachotherout, +++ === theinterferenceisreferredtoas destructive interference.

222 Chapter 30 Wave Function, Interference, Standing Waves

Reflection of a Wave from the End of a Medium Uponreflectionfromthefixedendofastring,thedisplacementofthepointsonatraveling waveformisreversed. v WavePulseApproachingFixedEnd WavePulseRecedingFromFixedEndAfterReflection v Thefixedend,bydefinition,neverundergoesanydisplacement. Nowweconsiderafreeend.Afixedendisanaturalfeatureofatautstring.Afreeend,onthe otherhand,anidealization,isatbestanapproximationinthecaseofatautstring.We approximateafreeendinaphysicalstringbymeansofadrasticandabruptchangeinlinear density.Considerarope,oneofwhichisattachedtothewavesource,andtheotherendof whichisattachedtooneendofapieceofthin,butstrong,fishingline.Assumethatthefishing lineextendsthroughsomelargedistancetoafixedpointsothatthewholesystemofropeplus fishinglineistaut.Awavetravelingalongtherope,uponencounteringtheendoftherope attachedtothethinfishingline,behavesapproximatelyasifithasencounteredafreeendofa tautrope. FishingLine Rope v Inthecaseofsoundwavesinapipe,afreeendcanbeapproximatedbyanopenendofthepipe. Enoughsaidabouthowonemightsetupaphysicalfreeendofawavemedium,whathappens whenawavepulseencountersafreeend?Theansweris,asinthecaseofthefixedend,the waveformisreflected,butthistime,thereisnoreversalofdisplacements.

223 Chapter 30 Wave Function, Interference, Standing Waves

v WavePulseApproachingFreeEnd v WavePulseRecedingFromFreeEndAfterReflection

Standing Waves Considerapieceofstring,fixedatbothends,intowhichwaveshavebeenintroduced.The configurationisrichwithinterference.Awavetravelingtowardoneendofthestringreflectsoff thefixedendandinterfereswiththewavesthatweretrailingit.Thenitreflectsofftheotherend andinterfereswiththemagain.Thisistrueforeverywaveanditrepeatsitselfcontinuously. Foranygivenlength,lineardensity,andtensionofthestring,therearecertainfrequenciesfor which,at,atleastonepointonthestring,theinterferenceisalwaysconstructive.Whenthisis thecase,theoscillationsatthatpoint(orthosepoints)onthestringaremaximalandthestringis saidtohave standingwaves init.Again,standingwavesresultfromtheinterferenceofthe reflectedwaveswiththetransmittedwavesandwitheachother.Apointonthestringatwhich theinterferenceisalwaysconstructiveiscalledan antinode .Anystringinwhichstandingwaves existalsohasatleastonepointatwhichtheinterferenceisalwaysdestructive.Suchapointon thestringdoesnotmovefromitsequilibriumposition.Suchapointonthestringiscalleda node . Itmightseemthatitwouldbeadauntingtasktodeterminethefrequenciesthatresultinstanding waves.Supposeyouwanttoinvestigatewhetherapointonastringcouldbeanantinode. Consideraninstantintimewhenawavecrestisatthatposition.Youneedtofindtheconditions thatwouldmakeitsothatinthetimeittakesforthecresttotraveltoonefixedendofthestring, reflectbackasatroughandarrivebackatthelocationinquestion;atrough,e.g.onethatwas trailingtheoriginalcrest,propagatesjusttherightdistancesothatitarrivesatthelocationin questionatthesametime.Asillustratedinthenextchapter,theanalysisthatyieldsthe frequenciesofstandingwavesiseasierthanthesetimingconsiderationswouldsuggest.

224 Chapter 31 Strings, Air Columns

31 Strings, Air Columns Becarefulnottojumptoanyconclusionsaboutthewavelengthofastanding wave.FolkswilldoanicejobdrawingagraphofDisplacementvs.Position AlongtheMediumandtheninterpretitincorrectly.Forinstance,lookatthe diagramonthispage.Folksseethatahalfwavelengthfitsinthestringsegment 1 andquicklywritethewavelengthas λ = 2 L .Butthisequationsaysthatawhole wavelengthfitsinhalfthelengthofthestring.Thisisnotatallthecase.Rather 1 thanrecognizingthatthefraction 2 isrelevantandquicklyusingthatfractionin anexpressionforthewavelength,oneneedstobemoresystematic.Firstwrite whatyousee,intheformofanequation,andthensolvethatequationforthe wavelength.Forinstance,inthediagrambelowweseethatonehalfa

wavelength λfitsinthelengthLofthestring.Writingthisinequationform 1 yields 2 λ = L .Solvingthisfor λyields λ = 2L . Onecandeterminethewavelengthsofstandingwavesinastraightforwardmannerandobtain thefrequenciesfrom v = λf wherethewavespeed visdeterminedbythetensionandlinearmassdensityofthestring.The methoddependsontheboundaryconditions—theconditionsattheendsofthewavemedium. (Thewavemediumisthesubstance[string,air,water,etc.]throughwhichthewaveistraveling. Thewavemediumiswhatis“waving.”)Considerthecaseofwavesinastring.Afixedend forcestheretobeanodeatthatendbecausetheendofthestringcannotmove.(Anodeisa pointonthestringatwhichtheinterferenceisalwaysdestructive,resultinginnooscillations. Anantinodeisapointatwhichtheinterferenceisalwaysconstructive,resultinginmaximal oscillations.)Afreeendforcestheretobeanantinodeatthatendbecauseatafreeendthewave reflectsbackonitselfwithoutphasereversal(acrestreflectsasacrestandatroughreflectsasa trough)soatafreeendyouhaveoneandthesamepartofthewavetravelinginbothdirections alongthestring.Thewavelengthconditionforstandingwavesisthatthewavemust“fit”inthe stringsegmentinamannerconsistentwiththeboundaryconditions.Forastringoflength L fixedatbothends,wecanmeettheboundaryconditionsifhalfawavelengthisequaltothe lengthofthestring. L Suchawave“fits”thestringinthesensethatwheneverazerodisplacementpartofthewaveis alignedwithonefixedendofthestringanotherzerodisplacementpartofthewaveisaligned withtheotherfixedendofthestring.

225 Chapter 31 Strings, Air Columns

Sincehalfawavelengthfitsinthestringsegmentwehave: 1 λ = L 2 λ = 2L Giventhewavespeed v,thefrequencycanbesolvedforasfollows: v = λf v f = λ v f = 2L Itshouldbenotedthatdespitethefactthatthewaveiscalledastandingwaveandthefactthatit istypicallydepictedataninstantintimewhenanantinodeonthestringisatitsmaximum displacementfromitsequilibriumposition,allpartsofthestring(exceptthenodes)dooscillate abouttheirequilibriumposition. Notethat,whiletheinterferenceattheantinode,thepointinthemiddleofthestringinthecase athand,isalwaysasconstructiveaspossible,thatdoesnotmeanthatthestringatthatpointis alwaysatmaximumdisplacement.Attimes,atthatlocation,thereisindeedacrestinterfering withacrest,butatothertimes,thereisazerodisplacementpartofthewaveinterferingwitha zerodisplacementpartofthewave,attimesatroughinterferingwithatrough,andattimes,an intermediatedisplacementpartofthewaveinterferingwiththesameintermediatedisplacement partofthewavetravelingintheoppositedirection.Allofthiscorrespondstotheantinode oscillatingaboutitsequilibriumposition.

226 Chapter 31 Strings, Air Columns

The λ = 2L waveisnottheonlywavethatwillfitinthestring.Itis,however,thelongest wavelengthstandingwavepossibleandhenceisreferredtoas thefundamental .Thereisan entiresequenceofstandingwaves.Theyarenamed:thefundamental,thefirstovertone,the secondovertone,thethirdovertone,etc,inorderofdecreasingwavelength,andhence, increasingfrequency. Fundamental L 1 λ = L so λ = 2L 2 1st Overtone λ = L nd 2 Overtone 3 2 λ = L so λ = L 2 3 Eachsuccessivewaveformcanbeobtainedfromtheprecedingonebyincludingonemorenode. Awaveintheseriesissaidtobeaharmonicifitsfrequencycanbeexpressedasanintegertimes thefundamentalfrequency.Thevalueoftheintegerdetermineswhichharmonic(1 st ,2 nd ,3 rd , etc.)thewaveis.Thefrequencyofthefundamentalwaveis,ofcourse,1timesitself.The number1isanintegersothefundamentalisaharmonic.Itisthe1 st harmonic.

227 Chapter 31 Strings, Air Columns

Startingwiththewavelengthsintheseriesofdiagramsabove,wehave,forthefrequencies, using v = λf whichcanberearrangedtoread v f = λ The Fundamental

λ FUND = 2L v f FUND = λ FUND v f = FUND 2L The 1 st Overtone

λ 1stO.T. = L v f 1stO.T. = λ 1stO.T. v f = 1stO.T. L The 2 nd Overtone

2 λ = L 2ndO.T. 3 v f 2ndO.T. = λ 2ndO.T. v f = 2ndO.T. 2 3 L 3 v f = 2ndO.T. 2 L

228 Chapter 31 Strings, Air Columns

v Expressingthefrequenciesintermsofthefundamentalfrequency f = wehave FUND 2L v  v  fFUND ======1  === 1fFUND 2L  2L  v  v  f1stO.T. ======2  === 2fFUND L  2L  3 v  v  f2ndO.T. ======3  === 3fFUND 2 L  2L 

Notethatthefundamentalis(asalways)the1 st harmonic;the1 st overtoneisthe2 nd harmonic; andthe2 nd overtoneisthe3 rd harmonic.Whileitistrueforthecaseofastringthatisfixedat bothends(thesystemwehavebeenanalyzing),itis not always truethatthesetofallovertones plusfundamentalincludesalltheharmonics.Forinstance,considerthefollowingexample: Example 31-1 Anorganpipeoflength Lisclosedatoneendandopenattheother.

Giventhatthespeedofsoundinairis vs ,findthefrequenciesofthe fundamentalandthefirstthreeovertones. Solution L Fundamental 1 λ = L so λ = 4L 4 L 1st Overtone 3 4 λ = L so λ = L 4 3

229 Chapter 31 Strings, Air Columns

L 2nd Overtone 5 4 λ = L so λ = L 4 5 L

3rd Overtone

7 4 λ = L so λ = L 4 7 Intheprecedingsequenceofdiagrams,agraphofdisplacementvs.positionalongthepipe,for aninstantintimewhentheairmoleculesatanantinodeareattheirmaximumdisplacementfrom equilibrium,isamoreabstractrepresentationthenthecorrespondinggraphforastring.The soundwaveinairisalongitudinalwave,so,asthesoundwavestravelbackandforthalongthe lengthofthepipe,theairmoleculesoscillatebackandforth(ratherthanupanddownasinthe caseofthestring)abouttheirequilibriumpositions.Thus,howhighuponthegraphapointon thegraphis,correspondstohowfartotheright(usingtheviewpointfromwhichthepipeis depictedinthediagrams)ofitsequilibriumpositionthethinlayerofairmolecules,atthe correspondingpositioninthepipe,is.Itisconventionaltodrawthewaveformrightinsidethe outlineofthepipe.Theboundaryconditionsarethataclosedendisanodeandanopenendis anantinode. Startingwiththewavelengthsintheseriesofdiagramsabove,wehave,forthefrequencies, using vs = λf whichcanberearrangedtoread v f === s λ The Fundamental

λ FUND = 4L

vs f FUND === λ FUND v f === s FUND 4L

230 Chapter 31 Strings, Air Columns

The 1 st Overtone 4 λ === L 1stO.T. 3

vs f1stO.T. === λ 1stO.T. v f === s 1stO.T. 4 3 L 3 v f === s 1stO.T. 4 L The 2 nd Overtone λ === 4 L 2ndO.T. 5

vs f 2ndO.T. = λ 2ndO.T. v f = s 2ndO.T. 4 5 L 5 v f === s 2ndO.T. 4 L The 3 rd Overtone

4 λ === L 3rdO.T. 7

vs f 3rdO.T. = λ 3rdO.T. v f = s 3rdO.T. 4 7 L 7 v f === s 3rdO.T. 4 L

231 Chapter 31 Strings, Air Columns

v Expressingthefrequenciesintermsofthefundamentalfrequency f = s wehave FUND 4L

vs  vs  f FUND ======1  === 1f FUND 4L  4L 

3vs  vs  f 1stO.T. ======3  === 3f FUND 4 L  4L 

5vs  vs  f 2ndO.T. ======5  === 5f FUND 4 L  4L 

7vs  vs  f 3rdO.T. ======7  === 7f FUND 4 L  4L 

Notethatthefrequenciesofthestandingwavesareoddintegermultiplesofthefundamental frequency.Thatistosaythatonlyoddharmonics,the1 st ,3 rd ,5 th ,etc.occurinthecaseofapipe closedatoneendandopenattheother.

Regarding, Waves, in a Medium that is in Contact with a 2 nd Medium Consideraviolinstringoscillatingatitsfundamentalfrequency,inair.Forconvenienceof discussion,assumetheviolintobeorientedsothattheoscillationsareupanddown. Eachtimethestringgoesupitpushesairmoleculesup.Thisresultsinsoundwavesinair.The violinwiththestandingwaveinitcanbeconsideredtobethe“somethingoscillating”thatisthe causeofthewavesinair.Recallthatthefrequencyofthewavesisidenticaltothefrequencyof thesource.Thus,thefrequencyofthesoundwavesinairwillbeidenticaltothefrequencyof thewavesinthestring.Ingeneral,thespeedofthewavesinairisdifferentfromthespeedof wavesinthestring.From v = λf ,thismeansthatthewavelengthswillbedifferentaswell.

232 Chapter 32 Beats, The Doppler Effect

32 Beats, The Doppler Effect SomepeoplegetmixedupabouttheDopplerEffect.Theythinkit’saboutposition ratherthanaboutvelocity.(Itisreallyaboutvelocity.)Ifasinglefrequencysound sourceiscomingatyouatconstantspeed,thepitch(frequency)youhear is higher thanthefrequencyofthesource.Howmuchhigherdependsonhowfastthesource iscomingatyou.Folksmakethemistakeofthinkingthatthepitchgetshigheras thesourceapproachesthereceiver.No.Thatwouldbethecaseifthefrequency dependedonhowclosethesourcewastothereceiver.Itdoesn’t.Thefrequency staysthesame.TheDopplerEffectisaboutvelocity, not position.Thewholetime thesourceismovingstraightatyou,itwillsoundlikeithasonesingleunchanging pitchthatishigherthanthefrequencyofthesource. Now duck! Oncetheobject passesyourpositionanditisheadingawayfromyouitwillhaveonesingle unchangingpitchthatislowerthanthefrequencyofthesource.

Beats Considertwosoundsources,inthevicinityofeachother,eachproducingsoundwavesatitsown singlefrequency.Anypointintheairfilledregionofspacearoundthesourceswillreceive soundwavesfromboththesources.Theamplitudeofthesoundatanypositioninspacewillbe theamplitudeofthesumofthedisplacementsofthetwowavesatthatpoint.Thisamplitude willvarybecausetheinterferencewillalternatebetweenconstructiveinterferenceand destructiveinterference.Supposethetwofrequenciesdonotdifferbymuch.Considerthe displacementsataparticularpointinspace.Let’sstartataninstantwhentwosoundwavecrests arearrivingatthatpoint,onefromeachsource.Atthatinstantthewavesareinterfering constructively,resultinginalargetotalamplitude.Ifyourearwereatthatlocation,youwould findthesoundrelativelyloud.Let’smarkthepassageoftimebymeansoftheshorterperiod,the periodofthehigherfrequencywaves.Oneperiodaftertheinstantjustdiscussed,thenextcrest (callitthesecondcrest)fromthehigherfrequencysourceisatthepointinquestion,butthepeak ofthenextcrestfromthelowerfrequencysourceisnotthereyet.Ratherthanacrestinterfering withacrest,wehaveacrestinterferingwithanintermediatedisplacementpartofthewave.The interferenceisstillconstructivebutnottothedegreethatitwas.Whenthethirdcrestfromthe higherfrequencysourcearrives,thecorrespondingcrestfromthelowerfrequencysourceiseven fartherbehind.Eventually,acrestfromthehigherfrequencysourceisarrivingatthepointin questionatthesametimeasatroughfromthelowerfrequencysource.Atthatinstantintime, theinterferenceisasdestructiveasitgets.Ifyourearwereatthepointinquestion,youwould findthesoundtobeinaudibleorofverylowvolume.Thenthetroughfromthelowerfrequency sourcestarts“fallingbehind”until,eventuallyacrestfromthehigherfrequencysourceis interferingwiththecrestprecedingthecorrespondingcrestfromthelowerfrequencysourceand theinterferenceisagainasconstructiveaspossible. Toapersonwhoseearisatalocationatwhichwavesfrombothsourcesexist,thesoundgets loud,soft,loud,soft,etc.Thefrequencywithwhichtheloudnesspatternrepeatsitselfiscalled thebeatfrequency.Experimentally,wecandeterminethebeatfrequencybytiminghowlongit takesforthesoundtogetloud Ntimesandthendividingthattimeby N(where Nisanarbitrary

233 Chapter 32 Beats, The Doppler Effect integerchosenbytheexperimenter—thebiggerthe Nthemoreprecisetheresult).Thisgivesthe beatperiod.Takingthereciprocalofthebeatperiodyieldsthebeatfrequency. Thebeatfrequencyistobecontrastedwiththeordinaryfrequencyofthewaves.Insound,we hearthebeatfrequencyastherateatwhichtheloudnessofthesoundvarieswhereaswehearthe ordinaryfrequencyofthewavesasthepitchofthesound.

Derivation of the Beat Frequency Formula Considersoundfromtwodifferentsourcesimpingingononepoint,callitpoint P ,inair occupiedspace.Assumethatonesourcehasashorterperiod TSHORT andhenceahigher frequency fHIGH thantheother(whichhasperiodandfrequency TLONG and fLOW respectively). Theplanhereistoexpressthebeatfrequencyintermsofthefrequenciesofthesources—weget therebyrelatingtheperiodstoeachother.Asinourconceptualdiscussion,let’sstartatan instantwhenacrestfromeachsourceisatpoint P .When,afteranamountoftime TSHORT passes,thenextcrestfromtheshorterperiodsourcearrives,thecorrespondingcrestfromthe longerperiodsourcewon’tarriveforanamountoftime T = TLONG − TSHORT .Infact,withthe arrivalofeachsuccessiveshortperiodcrest,thecorrespondinglongperiodcrestisanother T behind.Eventually,aftersomenumber nofshortperiods,thelongperiodcrestwillarriveafull longperiod TLONG afterthecorrespondingshortperiodcrestarrives.

nT = TLONG (321) Thismeansthatastheshortperiodcrestarrives,thelongperiodcrestthatprecedesthe correspondinglongperiodcrestisarriving.Thisresultsinconstructiveinterference(loud sound).Thetimeittakes,startingwhentheinterferenceismaximallyconstructive,forthe interferencetoagainbecomemaximallyconstructiveisthebeatperiod

TBEAT = nTSHORT (322) Let’suseequation321toeliminatethe ninthisexpression.Solvingequation321for nwefind that T n = LONG T Substitutingthisintoequation322yields T T = LONG T BEAT T SHORT

T isjust TLONG − TSHORT so

TLONG TBEAT = TSHORT TLONG − TSHORT

234 Chapter 32 Beats, The Doppler Effect

TLONG TSHORT TBEAT = TLONG − TSHORT

Dividingtopandbottombytheproduct TLONG TSHORT yields 1 T = BEAT 1 1 − TSHORT TLONG Takingthereciprocalofbothsidesresultsin 1 1 1 = − TBEAT TSHORT TLONG 1 Nowweusethefrequencyperiodrelation f = toreplaceeachreciprocalperiodwithits T correspondingfrequency.Thisyields:

f BEAT =f HIGH −f LOW (323) forthebeatfrequencyintermsofthefrequenciesofthetwosources.

The Doppler Effect Considerasinglefrequencysoundsourceandareceiver.Thesourceissomethingoscillating.It producessoundwaves.Theytravelthroughair,atspeed v,thespeedofsoundinair,tothe receiverandcausesomepartofthereceivertooscillate.(Forinstance,ifthereceiverisyourear, thesoundwavescauseyoureardrumtooscillate.)Ifthereceiverandthesourceareatrest relativetotheair,thenthereceivedfrequencyisthesameasthesourcefrequency. v S R Source

Receiver

235 Chapter 32 Beats, The Doppler Effect

Butifthesourceismovingtowardorawayfromthereceiver,and/orthereceiverismoving towardorawayfromthesource,thereceivedfrequencywillbedifferentfromthesource frequency.Supposeforinstance,thereceiverismovingtowardthesourcewithspeed v . R v v S R R Source Receiver Thereceivermeetswavecrestsmorefrequentlythanitwouldifitwerestill.Startingatan instantwhenawavefrontisatthereceiver,thereceiverandthenextwavefrontarecoming togetherattherate v + v (where v isthespeedofsoundinair).Thedistancebetweenthe R wavefrontsisjustthewavelength λwhichisrelatedtothesourcefrequency fby v = λf v meaningthat λ = .Fromthefactthat,inthecaseofconstantvelocity,distanceisjustspeed f timestime,wehave:

λ = (v +v R )T′ λ T′ = (324) v +v R 1 v fortheperiodofthereceivedoscillations.UsingT′ = and λ = equation324canbe f ′ f writtenas: 1 v /f = f ′ v +v R 1 v 1 === f ′′′ v +++v R f v +++v f ′′′ === R f (ReceiverApproachingSource ) v

Thisequationstatesthatthereceivedfrequency f ′isafactortimesthesourcefrequency.The expression v +v R isthespeedatwhichthesoundwaveinairandthereceiverareapproaching eachother.Ifthereceiverismovingawayfromthesourceatspeed v R ,thespeedatwhichthe

236 Chapter 32 Beats, The Doppler Effect

soundwavesare“catchingupwith”thereceiverisv −v R andourexpressionforthereceived frequencybecomes v −−−v f ′′′ === R f (ReceiverRecedingfromSource ) v Nowconsiderthecaseinwhichthesourceismovingtowardthereceiver. v v S S R Thesourceproducesacrestwhichmovestowardthereceiveratthespeedofsound.Butthe sourcemovesalongbehindthatcrestsothenextcrestitproducesisclosertothefirstcrestthan itwouldbeifthesourcewasatrest.Thisistrueofallthesubsequentcrestsaswell.Theyare allclosertogetherthantheywouldbeifthesourcewasatrest.Thismeansthatthewavelength ofthesoundwavestravelinginthedirectionofthesourceisreducedrelativetowhatthe wavelengthwouldbeifthesourcewasatrest. Thedistance dthatthesourcetravelstowardthereceiverinthetimefromtheemissionofone cresttotheemissionofthenextcrest,thatisinperiod Tofthesourceoscillations,is

d =vS T where vS isthespeedofthesource.Thewavelengthiswhatthewavelengthwouldbe( λ)ifthe sourcewasatrest,minusthedistance d =vS T thatthesourcetravelsinoneperiod λ′ = λ − d

λ′ = λ −vS T (325) v 1 Nowwe’lluse v = λf solvedforwavelength λ = toeliminatethewavelengthsand f = f T 1 solvedfortheperiod T = toeliminatetheperiod.Withthesesubstitutions,equation325 f becomes

237 Chapter 32 Beats, The Doppler Effect

v v 1 === −−−v f ′′′ f S f v 1 === (v −−−v ) f ′′′ f S f ′′′ 1 === f v v −−−vS v f ′′′ === f (SourceApproachingReceiver ) v −−−vS Ifthesourceismovingawayfromthereceiver,thesigninfrontofthespeedofthesourceis reversedmeaningthat v f ′′′ === f (SourceRecedingfromReceiver ) v +++vS Thefourexpressionsforthereceivedfrequencyasafunctionofthesourcefrequencyare combinedonyourformulasheetwheretheyarewrittenas: v ±±±v f ′′′ === R f (326) v ∓vS InsolvingaDopplerEffectproblem,ratherthancopyingthisexpressiondirectlyfromyour formulasheet,youneedtobeabletopickouttheactualformulathatyouneed.Forinstance,if thereceiverisnotmovingrelativetotheairyoushouldomitthe ±±±v R .Ifthesourceisnot movingrelativetotheair,youneedtoomitthe ∓vS . Togettheformulajustrightyouneedtorecognizethatwheneitherthesourceismovingtoward thereceiverorthereceiverismovingtowardthesource,theDopplershiftedreceivedfrequency ishigher(andyouneedtorecognizethatwheneitherismovingawayfromtheother,the Dopplershiftedreceivedfrequencyislower).Youalsoneedenoughmathematicalsavvyto knowwhichsigntochoosetomakethereceivedfrequency f ′comeoutright.

238 Chapter 33 Fluids: Pressure, Density, Archimedes’ Principle

33 Fluids: Pressure, Density, Archimedes’ Principle Onemistakeyouseeinsolutionstosubmergedobjectstaticfluidproblems,isthe inclusion,inthefreebodydiagramfortheproblem,inadditiontothebuoyantforce,ofa

pressuretimesareaforcetypicallyexpressedas FP = PA.Thisisdoublecounting. Folksthatincludesuchaforce,inadditiontothebuoyantforce,don’trealizethatthe buoyantforceisthenetsumofallthepressuretimesareaforcesexerted,onthe submergedobjectbythefluidinwhichitissubmerged. Gasesandliquidsarefluids.Unlikesolids,theyflow.Afluidisaliquidoragas.

Pressure Afluidexertspressureonthesurfaceofanysubstancewithwhichthefluidisincontact. Pressureisforceperarea.Inthecaseofafluidincontactwithaflatsurfaceoverwhichthe pressureofthefluidisconstant,themagnitudeoftheforceonthatsurfaceisthepressuretimes 2 theareaofthesurface.Pressurehasunitsof N/m . Neversaythatpressureistheamountofforceexertedonacertainamountofarea.Pressureis notanamountofforce.Eveninthespecialcaseinwhichthepressureoverthe“certainamount ofarea”isconstant,thepressureisnottheamountofforce.Insuchacase,thepressureiswhat youhavetomultiplytheareabytodeterminetheamountofforce. 2 Thefactthatthepressureinafluidis5 N/m innowayimpliesthatthereisaforceof5Nacting onasquaremeterofsurface(anymorethanthefactthatthespeedometerinyourcarreads 35mphimpliesthatyouaretraveling35 milesorthatyouhavebeentravelingforanhour).In fact,ifyousaythatthepressureataparticularpointunderwaterinaswimmingpoolis 2 15,000 N/m (fifteenthousandnewtonspersquaremeter),youarenotspecifyinganyarea whatsoever.Whatyouaresayingisthatanyinfinitesimalsurfaceelementthatmaybeexposed tothefluidatthatpointwillexperienceaninfinitesimalforceofmagnitude dF thatisequalto 2 15,000 N/m timesthearea dAofthesurface.Whenwespecifyapressure,we’retalkingabouta wouldbeeffectonawouldbesurfaceelement. Wetalkaboutaninfinitesimalareaelementbecauseitisentirelypossiblethatthepressurevaries 2 withposition.Ifthepressureatonepointinaliquidis15,000 N/m itcouldverywellbe 2 2 16,000 N/m atapointthat’slessthanamillimeterawayinonedirectionand14,000 N/m ata pointthat’slessthanamillimeterawayinanotherdirection. Let’stalkaboutdirection.Pressureitselfhasnodirection.Buttheforcethatafluidexertsona surfaceelement,becauseofthepressureofthefluid,doeshavedirection.Theforceis perpendicularto,andtoward,thesurface.Isn’tthatinteresting?Thedirectionoftheforce resultingfromsomepressure(let’scallthatthepressuretimesareaforce)onasurfaceelementis determinedbythevictim(thesurfaceelement)ratherthantheagent(thefluid).

239 Chapter 33 Fluids: Pressure, Density, Archimedes’ Principle

Pressure Dependence on Depth Forafluidnearthesurfaceoftheearth,thepressureinthefluidincreaseswithdepth.Youmay havenoticedthis,ifyouhaveevergonedeepunderwater,becauseyoucanfeeltheeffectofthe pressureonyoureardrums.Beforeweinvestigatethisphenomenonindepth,Ineedtopointout thatinthecaseofagas,thispressuredependenceondepthis,formanypracticalpurposes, negligible.Indiscussingacontainerofagasforinstance,wetypicallystateasinglevaluefor thepressureofthegasinthecontainer,neglectingthefactthatthepressureisgreateratthe bottomofthecontainer.Weneglectthisfactbecausethedifferenceinthepressureatthebottom andthepressureatthetopissoverysmallcomparedtothepressureitselfatthetop.Wedothis whenthepressuredifferenceistoosmalltoberelevant,butitshouldbenotedthatevenavery smallpressuredifferencecanbesignificant.Forinstance,aheliumfilledballoon,releasedfrom restnearthesurfaceoftheearthwouldfalltothegroundifitweren’tforthefactthattheair pressureinthevicinityofthelowerpartoftheballoonisgreater(albeitonlyslightlygreater) thantheairpressureinthevicinityoftheupperpartoftheballoon. Let’sdoathoughtexperiment.(Einsteinwasfondofthoughtexperiments.Theyarealsocalled Gedankenexperiments.GedankenistheGermanwordforthought.)Imaginethatweconstruct apressuregaugeasfollows:Wecaponeendofapieceofthinpipeandputaspringcompletely insidethepipewithoneendincontactwiththeendcap.Nowweputadiskwhosediameteris equaltotheinsidediameterofthepipe,inthepipeandbringitintocontactwiththeotherendof thespring.Wegreasetheinsidewallsofthepipesothatthediskcanslidefreelyalongthe lengthofthepipe,butwemakethefitexactsothatnofluidcangetpastthedisk.Nowwedrilla holeintheendcap,removealltheairfromtheregionofthepipebetweenthediskandtheend cap,andsealupthehole.Thepositionofthediskinthepipe,relativetoitspositionwhenthe springisneitherstretchednorcompressed,isdirectlyproportionaltothepressureontheouter surface,thesidefacingawayfromthespring,ofthedisk.Wecalibrate(markascaleon)the pressuregaugethatwehavejustmanufactured,anduseittoinvestigatethepressureinthewater ofaswimmingpool.Firstwenotethat,assoonasweremovedtheair,thegaugestartedto 5 2 indicateasignificantpressure(around1 .013 ×10 N/m ),namelytheairpressureinthe atmosphere.Nowwemovethegaugearoundandwatchthegaugereading.Whereverweput thegauge(wedefinethelocationofthegaugetobethepositionofthecenterpointontheouter surfaceofthedisk)onthesurfaceofthewater,wegetoneandthesamereading,(theair pressurereading).Nextweverifythatthepressurereadingdoesindeedincreaseaswelowerthe gaugedeeperanddeeperintothewater.Thenwefind,thepointIwrotethisparagraphtomake, thatifwemovethegaugearoundhorizontallyatoneparticulardepth,thepressurereadingdoes notchange.That’stheexperimentalresultIwanttouseinthefollowingdevelopment,the experimentalfactthatthepressurehasoneandthesamevalueatallpointsthatareatoneandthe samedepthinafluid. Herewederiveaformulathatgivesthepressureinanincompressiblestaticfluidasafunctionof thedepthinthefluid.Let’sgetbackintotheswimmingpool.Nowimagineaclosedsurface enclosingavolume,aregioninspace,thatisfullofwater.I’mgoingtocallthewaterinsucha volume,“avolumeofwater,”andI’mgoingtogiveitanothernameaswell.Ifitwereice,I wouldcallitachunkofice,butsinceitisliquidwater,I’llcallita“slug”ofwater.We’regoing

240 Chapter 33 Fluids: Pressure, Density, Archimedes’ Principle toderivethepressurevs.depthrelationbyinvestigatingtheequilibriumofan“object”whichisa slugofwater. Consideracylindricalslugofwaterwhosetopispartofthesurfaceoftheswimmingpooland whosebottomisatsomearbitrarydepth hbelowthesurface.I’mgoingtodrawtheslughere, isolatedfromitssurroundings.Theslugitselfis,ofcourse,surroundedbytherestofthewater inthepool. Po W=mg P Inthediagram,weusearrowstoconveythefactthatthereispressuretimesareaforceonevery elementofthesurfaceoftheslug.Nowthedownwardpressuretimesareaforceonthetopof theslugiseasytoexpressintermsofthepressurebecausethepressureoneveryinfinitesimal areaelementmakingupthetopoftheslughasoneandthesamevalue.Intermsofthe determinationofthepressuretimesarea,thisistheeasycase.Themagnitudeoftheforce, Fo,is justthepressure Potimesthearea Aofthetopofthecylinder.

Fo === Po A Asimilarargumentcanbemadeforthebottomofthecylinder.Allpointsonthebottomofthe cylinderareatthesamedepthinthewatersoallpointsareatoneandthesamepressure P.The bottomofthecylinderhasthesamearea Aasthetopsothemagnitudeoftheupwardforce Fon thebottomofthecylinderisgivenby F= PA Astothesides,ifwedividethesidewallsofthecylinderupintoaninfinitesetofequalsized infinitesimalareaelements,foreverysidewallareaelement,thereisacorrespondingarea elementontheoppositesideofthecylinder.Thepressureisthesameonbothelementsbecause theyareatthesamedepth.Thetwoforcesthenhavethesamemagnitude,butbecausethe elementsfaceinoppositedirections,theforceshaveoppositedirections.Twooppositebutequal

241 Chapter 33 Fluids: Pressure, Density, Archimedes’ Principle forcesadduptozero.Insuchamanner,alltheforcesonthesidewallareaelementscanceleach otherout. Nowweareinapositiontodrawafreebodydiagramofthecylindricalslugofwater. Po A W=mg PA Applyingtheequilibriumcondition

∑∑∑ F↑↑↑ === 0 yields

PA −−− mg −−− Po A === 0 (331) Atthispointinourderivationoftherelationbetweenpressureanddepth,thedepthdoesnot explicitlyappearintheequation.Themassoftheslugofwater,however,doesdependonthe lengthoftheslugwhichisindeedthedepth h.Firstwenotethat m === rV (332) where risthedensity,themasspervolume,ofthewatermakinguptheslugand Visthe volumeoftheslug.Thevolumeofacylinderisitsheighttimesitsfaceareasowecanwrite m === rhA Substitutingthisexpressionforthemassoftheslugintoequation331yields

PA −−− rhAg −−− Po A === 0

P −−− rhg −−− Po === 0

P === Po +++ rgh (333)

242 Chapter 33 Fluids: Pressure, Density, Archimedes’ Principle

Whilewehavebeenwritingspecificallyaboutwater,theonlythingintheanalysisthatdepends ontheidentityoftheincompressiblefluidisthedensity r.Hence,aslongasweusethedensity ofthefluidinquestion,equation333( P === Po +++ rgh )appliestoanyincompressiblefluid.It saysthatthepressureatanydepth histhepressureatthesurfaceplus rg h. Afewwordsontheunitsofpressureareinorder.Wehavestatedthattheunitsofpressureare N/m 2.Thiscombinationofunitsisgivenaname.Itiscalledthe pascal ,abbreviatedPa. N 1 Pa === 1 m2 PressuresareoftenquotedintermsofthenonSIunitofpressure,the atmosphere ,abbreviated atmanddefinedsuchthat,ontheaverage,thepressureoftheearth’satmosphereatsealevelis 1atm.Intermsofthepascal, 5 1atm= 1.013×10 Pa

Thebigmistakethatfolksmakeinapplyingequation333( P === Po +++ rgh )istoignoretheunits. They’lluse1atmfor Poandwithoutconvertingthattopascals,they’lladdtheproduct rg htoit. 2 Ofcourse,ifoneusesSIunitsfor r, g,and h,theproduct rg hcomesoutinN/m whichisa pascalwhichisdefinitelynotanatmosphere(butrather,aboutahundredthousandthofan atmosphere).Ofcourseonecan’taddavalueinpascalstoavalueinatmospheres.Thewayto goistoconvertthevalueof Pothatwasgiventoyouinunitsofatmospheres,topascals,and thenaddtheproduct rg h(inSIunits)toyourresultsothatyourfinalanswercomesoutin pascals.

Gauge Pressure Rememberthegaugeweconstructedforourthoughtexperiment?Thatpartaboutevacuatingthe insideofthepipepresentsquitethemanufacturingchallenge.Thegaugewouldbecome inaccurateasairleakedinbythedisk.Asregardsfunction,thedescriptionisfairlyrealisticin termsofactualpressuregaugesinuse,exceptforthepumpingoftheairoutthepipe.Tomakeit morelikeanactualgaugethatonemightpurchase,wewouldhavetoleavetheinterioropento theatmosphere.Inusethen,thegaugereadszerowhenthepressureonthesensorendis 1atmosphere,andingeneral,indicatestheamountbywhichthepressurebeingmeasured exceedsatmosphericpressure.Thisquantity,theamountbywhichapressureexceeds atmosphericpressure,iscalledgaugepressure(sinceitisthevalueregisteredbyatypical pressuregauge.)Whenitneedstobecontrastedwithgaugepressure,theactualpressurethatwe

243 Chapter 33 Fluids: Pressure, Density, Archimedes’ Principle havebeendiscussinguptothispointiscalled absolutepressure .Theabsolutepressureandthe gaugepressurearerelatedby:

P= PG+ PO (334) where: Pistheabsolutepressure,

PGisthegaugepressure,and

POisatmosphericpressure. Whenyouhearavalueofpressure(otherthanthesocalledbarometricpressureoftheearth’s atmosphere)inyoureverydaylife,itistypicallyagaugepressure(eventhoughonedoesnotuse theadjective“gauge”indiscussingit.)Forinstance,ifyouhearthattherecommendedtire pressureforyourtiresis32psi(poundspersquareinch)whatisbeingquotedisagauge pressure.Folksthatworkonventilationsystemsoftenspeakofnegativeairpressure.Again, theyareactuallytalkingaboutgaugepressure,andanegativevalueofgaugepressureina ventilationlinejustmeansthattheabsolutepressureislessthanatmosphericpressure.

Archimedes’ Principle Thenetpressuretimesareaforceonanobjectsubmergedinafluid,thevectorsumoftheforces onalltheinfinitenumberofinfinitesimalsurfaceareaelementsmakingupthesurfaceofan object,is upward becauseofthefactthatpressureincreaseswithdepth.Theupwardpressure timesareaforceonthebottomofanobjectisgreaterthanthedownwardpressuretimesarea forceonthetopoftheobject.Theresultisanetupwardforceonanyobjectthatiseitherpartly ortotallysubmergedinafluid.Theforceiscalledthebuoyantforceontheobject.Theagentof thebuoyantforceisthefluid. Ifyoutakeanobjectinyourhand,submergetheobjectinstillwater,andreleasetheobjectfrom rest,oneofthreethingswillhappen:Theobjectwillexperienceanupwardaccelerationandbob tothesurface,theobjectwillremainatrest,ortheobjectwillexperienceadownward accelerationandsink.Wehaveemphasizedthatthebuoyantforceisalwaysupward.Sowhyon earthwouldtheobjecteversink?Thereasonis,ofcourse,thatafteryoureleasetheobject,the buoyantforceisnottheonlyforceactingontheobject.Thegravitationalforcestillactsonthe objectwhentheobjectissubmerged.Recallthattheearth’sgravitationalfieldpermeates everything.Foranobjectthatistouchingnothingofsubstancebutthefluiditisin,thefreebody diagram(withouttheaccelerationvectorbeingincluded)isalwaysthesame(exceptforthe relativelengthsofthearrows): B Fg andthewholequestionastowhethertheobject(releasedfromrestinthefluid)sinks,staysput, orbobstothesurface,isdeterminedbyhowthemagnitudeofthebuoyantforcecompareswith

244 Chapter 33 Fluids: Pressure, Density, Archimedes’ Principle thatofthegravitationalforce.Ifthebuoyantforceisgreater,thenetforceisupwardandthe objectbobstowardthesurface.Ifthebuoyantforceandthegravitationalforceareequalin magnitude,theobjectstaysput.Andifthegravitationalforceisgreater,theobjectsinks. Sohowdoesonedeterminehowbigthebuoyantforceonanobjectis?First,thetrivialcase:If theonlyforcesontheobjectarethebuoyantforceandthegravitationalforce,andtheobject remainsatrest,thenthebuoyantforcemustbeequalinmagnitudetothegravitationalforce. Thisisthecaseforanobjectsuchasaboatoralogwhichisfloatingonthesurfaceofthefluidit isin. Butsupposetheobjectisnotfreelyfloatingatrest.Consideranobjectthatissubmergedina fluid.Wehavenoinformationontheaccelerationoftheobject,butwecannotassumeittobe zero.Assumethatapersonhas,whilemaintainingafirmgraspontheobject,submergedthe objectinfluid,andthen,releaseditfromrest.Wedon’tknowwhichwayitisgoingfromthere, butwecannot assumethatitisgoingtostayput. Toderiveourexpressionforthebuoyantforce,wedoalittlethoughtexperiment.Imagine replacingtheobjectwithaslugoffluid(thesamekindoffluidasthatinwhichtheobjectis submerged),wheretheslugoffluidhastheexactsamesizeandshapeastheobject. Fromourexperiencewithstillwaterweknowthattheslugoffluidwouldindeedstayput, meaningthat it isinequilibrium. TableofForces Symbol=? Name Agent Victim B Buoyant TheSurrounding TheSlug B Force Fluid ofFluid a=0 Gravitational TheEarth’s TheSlug F SF = mSFg Forceonthe g GravitationalField ofFluid FgSF SlugofFluid 245 Chapter 33 Fluids: Pressure, Density, Archimedes’ Principle

Applyingtheequilibriumequation F === 0 totheslugof ∑∑∑ ↑↑↑ fluidyields: B F === 0 ∑∑∑ ↑↑↑ a=0 − B FgSF = 0 FgSF

B = FgSF Thelastequationstatesthatthebuoyantforceontheslugoffluidisequaltothegravitational forceontheslugoffluid.Nowgetthis;thisisthecruxofthederivation:Becausetheslugof fluidhastheexactsamesizeandshapeastheoriginalobject,itpresentstheexactsamesurface tothesurroundingfluid,andhence,thesurroundingfluidexertsthesamebuoyantforceonthe slugoffluidasitdoesontheoriginalobject.Sincethebuoyantforceontheslugoffluidis equalinmagnitudetothegravitationalforceactingontheslugoffluid,thebuoyantforceonthe originalobjectisequalinmagnitudetothegravitationalforceactingontheslugoffluid.Thisis Archimedes’principle. B= thebuoyantforce,whichisequalin magnitudetothe gravitationalforcethatwouldbeactingonthatamount offluidthatwouldfitinthespaceoccupiedbythe submergedpartoftheobject . Fgo = mog (Thegravitationalforce) Archimedes’Principlestatesthat:Thebuoyantforceonanobjectthatiseitherpartlyortotally submergedinafluidisupward,andisequalinmagnitudetothegravitationalforcethatwouldbe actingonthatamountoffluidthatwouldbewheretheobjectisiftheobjectwasn’tthere.Foran objectthatistotallysubmerged,the volume ofthatamountoffluidthatwouldbewherethe objectisiftheobjectwasn’tthereisequaltothevolumeoftheobjectitself.Butforanobject thatisonlypartlysubmerged,thevolumeofthatamountoffluidthatwouldbewheretheobject isiftheobjectwasn’tthereisequaltothe(typicallyunknown)volumeofthe submergedpart of theobject.However,iftheobjectisfreelyfloatingatrest,theequilibriumequation(insteadof Archimedes’Principle)canbeusedtoquicklyestablishthatthebuoyantforce(ofafreely floatingobjectsuchasaboat)isequalinmagnitudetothegravitationalforceactingonthe objectitself.

246 Chapter 34 Pascal’s Principle, the Continuity Equation, and Bernoulli’s Principle

34 Pascal’s Principle, the Continuity Equation, and Bernoulli’s Principle Thereareacoupleofmistakesthattendtocropupwithsomeregularityintheapplicationof 1 2 theBernoulliequation P +++ 2 rv +++ rgh === constant .Firstly,folkstendtoforgettocreatea diagraminordertoidentifypoint1andpoint2inthediagramsothattheycanwritethe 1 2 1 2 Bernoulliequationinitsusefulform: P1 +++ 2 rv1 +++ rgh1 === P2 +++ 2 rv 2 +++ rgh2 .Secondly, whenboththevelocitiesinBernoulli’sequationareunknown,theyforgetthatthereisanother

equationthatrelatesthevelocities,namely,thecontinuityequationintheform A1v1 === A2v 2 whichstatesthattheflowrateatposition1isequaltotheflowrateatposition2.

Pascal’s Principle Experimentally,wefindthatifyouincreasethepressurebysomegivenamountatonelocation inafluid,thepressureincreasesbythatsameamounteverywhereinthefluid.Thisexperimental resultisknownasPascal’sPrinciple. WetakeadvantageofPascal’sprincipleeverytimewesteponthebrakesofourcarsandtrucks. Thebrakesystemisahydraulicsystem.Thefluidisoilthatiscalledhydraulicfluid.Whenyou depressthebrakepedalyouincreasethepressureeverywhereinthefluidinthehydraulicline. Atthewheels,theincreasedpressureactingonpistonsattachedtothebrakepadspushesthem againstdisksordrumsconnectedtothewheels. Example 34-1 Asimplehydraulicliftconsistsoftwopistons,onelargerthantheother,in cylindersconnectedbyapipe.Thecylindersandpipearefilledwithwater. Inuse,apersonpushesdownuponthesmallerpistonandthewaterpushes upwardonthelargerpiston.Thediameterofthesmallerpistonis 2.20centimeters.Thediameterofthelargerpistonis21 .0centimeters.On topofthelargerpistonisametalsupportandontopofthatisacar.The combinedmassofthesupportpluscaris998kg.Findtheforcethatthe personmustexertonthesmallerpistontoraisethecarataconstantvelocity. Neglectthemassesofthepistons.

247 Chapter 34 Pascal’s Principle, the Continuity Equation, and Bernoulli’s Principle

Solution Westartoursolutionwithasketch. D =2 .20cm S D =21 .0cm L rd Now,let’sfindtheforce RNexertedonthelargerpistonbythecarsupport.ByNewton’s3

Law,itisthesameasthenormalforce FNexerted by thelargerpiston on thecarsupport.We’ll drawandanalyzethefreebodydiagramofthecarplussupporttogetthat. FN TableofForces Symbol Name Agent Victim Gravitational TheEarth’s The F =m g Forceon Gravitational Support F = m g g g SupportPlusCar Field PlusCar The TheLarge ∑∑∑ F === 0 ¢ F NormalForce Support ↑↑↑ N Piston PlusCar FN − mg = 0

FN = mg  newtons  FN = 998 kg 9.80   kg 

FN = 9780newtons

248 Chapter 34 Pascal’s Principle, the Continuity Equation, and Bernoulli’s Principle

Nowweanalyzetheequilibriumofthelargerpistontodeterminewhatthepressureinthefluid mustbeinorderforthefluidtoexertenoughforceonthepiston(withthecarplussupportonit) tokeepitmovingatconstantvelocity. RN= FN =9780 TableofForces a = 0 Symbol Name Agent Victim Interaction R = F Support(Thatpart, N N Partnerto Large ofthehydrauliclift, =9780 NormalForce Piston newtons thatthecarison.) FPL = PA L (seeabove) PressureRelated Large F ForceonLarge TheWater PL Piston F === 0 Piston ∑∑∑ ↑↑↑ ¢

FPL −−− RN === 0

PAL −−− RN === 0 R P = N (341) AL

AListheareaofthefaceofthelargerpiston.Wecanusethegivenlargerpiston

diameter DL=0 .210mtodeterminetheareaofthefaceofthelargerpistonas follows: D A === π r 2 where r === L istheradiusofthelargerpiston. L L L 2 2  DL  AL = π    2  2  0.210 m  AL = π    2  2 AL === 0.03464 m Substitutingthisandthevalue RN=FN=9780 newtonsintoequation341aboveyields 9780newtons P === 0.03464 m2 N P === 282333 (Weintentionallykeep3toomanysignificantfiguresinthis intermediate result.) m2

249 Chapter 34 Pascal’s Principle, the Continuity Equation, and Bernoulli’s Principle

Nowwejusthavetoanalyzetheequilibriumofthesmallerpistontodeterminetheforcethatthe personmustexertonthesmallerpiston. F PERSON a = 0 FPS = PA S F === 0 ∑∑∑ ↑↑↑ ¢

FPS −−− FPERSON === 0

PAS −−− FPERSON === 0

FPERSON === PAS

Thearea ASofthefaceofthesmallerpistonisjusttimesthesquareofthe D radiusofthesmallerpistonwheretheradiusis S ,halfthediameterofthe 2 smallerpiston.So: 2  DS  FPERSON === Pπ    2  2 N  0.0220 m  FPERSON === 282333 π   m2  2  F =107N PERSON

250 Chapter 34 Pascal’s Principle, the Continuity Equation, and Bernoulli’s Principle

Fluid in Motion—the Continuity Principle TheContinuityPrincipleisafancynameforsomethingthatcommonsensewilltellyouhasto bethecase.Itissimplyastatementofthefactthatforanysectionofasinglepipe,filledwithan incompressiblefluid(anidealizationapproachedbyliquids),throughwhichthefluidwithwhich thepipeisfilledisflowing,theamountoffluidthatgoesinoneendinanyspecifiedamountof timeisequaltotheamountthatcomesouttheotherendinthesameamountoftime.Ifwe quantifytheamountoffluidintermsofthemass,thisisastatementoftheconservationofmass. Havingstipulatedthatthesegmentisfilledwithfluid,theincomingfluidhasnoroomtoexpand inthesegment.Havingstipulatedthatthefluidisincompressible,themoleculesmakingupthe fluidcannotbepackedclosertogether;thatis,thedensityofthefluidcannotchange.Withthese stipulations,thetotalmassofthefluidinthesegmentofpipecannotchange,so,anytimea certainmassofthefluidflowsinoneendofthesegment,thesamemassofthefluidmustflow outtheotherend. Position1 Position2 . . m1 m2 SegmentofPipeFilledwiththeFluidthatis FlowingThroughthePipe Thiscanonlybethecaseifthemassflowrate,thenumberofkilogramspersecondpassinga givenpositioninthepipe,isthesameatbothendsofthepipesegment. . . m1 === m2 (342) Aninterestingconsequenceofthecontinuityprincipleisthefactthat,inorderforthemassflow rate(thenumberofkilogramspersecondpassingagivenpositioninthepipe)tobethesameina fatpartofthepipeasitisinaskinnypartofthepipe,thevelocityofthefluid(i.e.thevelocityof themoleculesofthefluid)mustbegreaterintheskinnypartofthepipe.Let’sseewhythisis thecase.

251 Chapter 34 Pascal’s Principle, the Continuity Equation, and Bernoulli’s Principle

Here,weagaindepictapipeinwhichanincompressiblefluidisflowing. Position1 Position2 m 1 m V v V v 2 2 2 1 1

x 2 x 1 SegmentofPipeBetweenPositions1and2 Keepinginmindthattheentirepipeisfilledwiththefluid,theshadedregionontheleft representsthefluidthatwillflowpastposition1intime tandtheshadedregionontheright representsthefluidthatwillflowpastposition2inthesametime t.Inbothcases,inorderfor theentireslugoffluidtocrosstherelevantpositionline,theslugmusttraveladistanceequalto itslength.Nowthesluglabeled m2hastobelongerthanthesluglabeled m1sincethepipeis skinnieratposition2andbythecontinuityequation m1=m2(theamountoffluidthatflows intothesegmentofthepipebetweenposition1andposition2isequaltotheamountoffluidthat flowsoutofit).So,iftheslugatposition2islongerandithastotravelpastthepositionlinein thesameamountoftimeasittakesfortheslugatposition1totravelpastitspositionline,the fluidvelocityatposition2mustbegreater.Thefluidvelocityisgreaterataskinnierpositionin thepipe. Let’sgetaquantitativerelationbetweenthevelocityatposition1andthevelocityatposition2. Startingwith

m1 = m 2 weusethedefinitionofdensitytoreplaceeachmasswiththedensityofthefluidtimesthe relevantvolume:

rV1 === rV2 Dividingbothsidesbythedensitytellsussomethingyoualreadyknow:

V1 === V2

Asanaside,wenotethatifyoudividebothsidesby tandtakethelimitas tgoesto . . zero,wehave V1 === V2 whichisanexpressionofthecontinuityprincipleintermsof volumeflowrate.Thevolumeflowrateistypicallyreferredtosimplyasthe flowrate . m3 WhileweusetheSIunits s forflowrate,thereadermaybemorefamiliarwithflow rateexpressedinunitsofgallonsperminute.

252 Chapter 34 Pascal’s Principle, the Continuity Equation, and Bernoulli’s Principle

Nowbacktoourgoaloffindingamathematicalrelationbetweenthevelocitiesofthefluidatthe twopositionsinthepipe.Herewecopythediagramofthepipeandadd,tothecopy,adepiction ofthefaceofslug1ofarea A1andthefaceofslug2ofarea A2. Position1 Position2 m1 v1 m V v V 2 2 2 1 x A 2 2 x 1 A 1

Weleftoffwiththefactthat V1= V2.Eachvolumecanbereplacedwiththeareaoftheface ofthecorrespondingslugtimesthelengthofthatslug.So,

A1 x1 === A2 x2

Recallthat x1 isnotonlythelengthofslug1,itisalsohowfarslug1musttravelinorderfor theentireslugoffluidtogetpasttheposition1line.Thesameistrueforslug2andposition2.

Dividingbothsidesbytheonetimeinterval tyields: x x A 1 === A 2 1 t 2 t

Takingthelimitas tgoestozeroresultsin:

A1v1 === A2v 2 (343) Thisistherelation,betweenthevelocities,thatwehavebeenlookingfor.Itappliestoanypair ofpositionsinapipecompletelyfilledwithanincompressiblefluid.Itcanbewrittenas Av = constant (344) whichmeansthattheproductofthecrosssectionalareaofthepipeandthevelocityofthefluid atthatcrosssectionisthesameforeverypositionalongthefluidfilledpipe.Totakeadvantage ofthisfact,onetypicallywrites,inequationform,thattheproduct Avatonelocationisequalto thesameproductatanotherlocation.Inotherwords,onewritesequation343.

253 Chapter 34 Pascal’s Principle, the Continuity Equation, and Bernoulli’s Principle

Notethattheexpression Av,theproductofthecrosssectionalareaofthep ipe,ataparticular position,andthevelocityofthefluidatthatsameposition,havingbeenderivedbydividingan expressionforthevolumeoffluid Vthatwouldflowpastagivenpositionofthepipeintime t,by t,andtakingthelimitas tgoestozero,isnoneotherthanthe flowrate (thevolume flowrate)discussedintheasideabove. FlowRate = Av Furthernotethatifwemultiplytheflowratebythedensityofthefluid,wegetthemassflow rate. . m === r Av (345)

Fluid in Motion—Bernoulli’s Principle ThederivationofBernoulli’sEquationrepresentsanelegantapplicationoftheWorkEnergy Theorem.HerewediscusstheconditionsunderwhichBernoulli’sEquationappliesandthen simplystateanddiscusstheresult. Bernoulli’sEquationappliestoafluidflowingthroughafullpipe.Thedegreetowhich Bernoulli’sEquationisaccuratedependsonthedegreetowhichthefollowingconditionsare met: 1)Thefluidmustbeexperiencingsteadystateflow.Thismeansthattheflowrateatall positionsinthepipeisnotchangingwithtime. 2)Thefluidmustbeexperiencingstreamlineflow.Pickanypointinthefluid.The infinitesimalfluidelementatthatpoint,ataninstantintime,traveledalongacertain pathtoarriveatthatpointinthefluid.Inthecaseofstreamlineflow,every infinitesimalelementoffluidthateverfindsitselfatthatsamepointtraveledthesame path.(Streamlineflowistheoppositeofturbulentflow.) 3)Thefluidmustbenonviscous.Thismeansthatthefluidhasnotendencyto“stickto” eitherthesidesofthepipeortoitself.(Molasseshashighviscosity.Alcoholhaslow viscosity.)

254 Chapter 34 Pascal’s Principle, the Continuity Equation, and Bernoulli’s Principle

Considerapipefullofafluidthatisflowingthroughthepipe.Inthemostgeneralcase,the crosssectionalareaofthepipeisnotthesameatallpositionsalongthepipeanddifferentparts ofthepipeareatdifferentelevationsrelativetoanarbitrary,butfixed,referencelevel. Position2 P v 2 2 r Position1 P v h2 1 1 h 1 Pickanytwopositionsalongthepipe,e.g.positions1and2inthediagramabove.(Youalready knowthat,inaccordwiththecontinuityprinciple, A1v1 === A2v 2 .)Considerthefollowing unnamedsumofterms: 1 2 P +++ 2 rv +++ rgh where,atthepositionunderconsideration:

Pisthepressureofthefluid, r(theGreekletterrho)isthedensityofthefluid, visthemagnitudeofthevelocityofthefluid, N g = .9 80 isthenearsurfacemagnitudeoftheearth’sgravitationalfield,and kg histheelevation,relativetoafixedreferencelevel,ofthepositioninthepipe. TheBernoulliPrinciplestatesthatthisunnamedsumoftermshasthesamevalueateachand everypositionalongthepipe.Bernoulli’sequationistypicallywritten: 1 2 P +++ 2 rv +++ rgh === constant (346) buttouseit,youhavetopicktwopositionsalongthepipeandwriteanequationstatingthatthe

255 Chapter 34 Pascal’s Principle, the Continuity Equation, and Bernoulli’s Principle valueoftheunnamedsumoftermsisthesameatoneofthepositionsasitisattheother. 1 2 1 2 P1 +++ 2 rv1 +++ rgh1 === P2 +++ 2 rv 2 +++ rgh2 (347) Aparticularlyinterestingcharacteristicoffluidsisincorporatedinthisequation.Suppose positions1and2areatoneandthesameelevationasdepictedinthefollowingdiagram: Posit ion1 Position2 P 1 v P v 1 2 2

Then h1 = h2 inequation347andequation347becomes: 1 2 1 2 P1 + 2 rv1 = P2 + 2 rv 2

Checkitout.If v2 >>> v1 then P2mustbelessthan P1inorderfortheequalitytohold.This equationissayingthat,wherethevelocityofthefluidishigh,thepressureislow.

256 Chapter 35 Temperature, Internal Energy, Heat, and Specific Heat Capacity

35 Temperature, Internal Energy, Heat, and Specific Heat Capacity Asyouknow,temperatureisameasureofhowhotsomethingis.Rubtwostickstogetherand youwillnoticethatthetemperatureofeachincreases.Youdidworkonthesticksandtheir temperatureincreased.Doingworkistransferringenergy.Soyoutransferredenergytothe sticksandtheirtemperatureincreased.Thismeansthatanincreaseinthetemperatureofa systemisanindicationofanincreaseintheinternalenergy(a.k.a.thermalenergy)ofthesystem. (Inthiscontextthewordsystemisthermodynamicsjargonforthegeneralizationoftheword object.Indeedanobject,sayanironball,couldbeasystem.Asystemisjustthesubjectofour investigationsorconsiderations.Asystemcanbeassimpleasasampleofonekindofgasora chunkofonekindofmetal,oritcanbemorecomplicatedasinthecaseofacanplussomewater inthecanplusathermometerinthewaterplusalidonthecan.Forthecaseathand,thesystem isthetwosticks.)Theinternalenergyofasystemisenergyassociatedwiththemotionof molecules,atoms,andtheparticlesmakingupatomsrelativetothecenterofmassofthesystem, andthepotentialenergycorrespondingtothepositionsandvelocitiesoftheaforementioned submicroscopicconstituentsofthesystemrelativetoeachother.Asusualwithenergy accounting,theabsolutezeroofenergyinthecaseofinternalenergydoesn’tmatter—only changesininternalenergyhaveanyrelevance.Assuch,youorthepublisherofatableof internalenergyvalues(foragivensubstance,publishersactuallylisttheinternalenergypermass ortheinternalenergypermoleofthesubstanceunderspecifiedconditionsratherthattheinternal energyofasampleofsuchasubstance),arefreetochoosethezeroofinternalenergyforagiven system.Inmakinganypredictionsregardingaphysicalprocessinvolvingthatsystem,aslongas youstickwiththesamezeroofinternalenergythroughoutyouranalysis,themeasurableresults ofyourpredictionorexplanationwillnotdependonyourchoiceofthezeroofinternalenergy. Anotherwayofincreasingthetemperatureofapairofsticksistobringthemintocontactwith somethinghotterthanthesticksare.Whenyoudothat,thetemperatureofthesticks automaticallyincreases—youdon’thavetodoanyworkonthem.Again,theincreaseinthe temperatureofeitherstickindicatesanincreaseintheinternalenergyofthatstick.Wheredid thatenergycomefrom?Itmusthavecomefromthehotterobject.Youmayalsonoticethatthe hotterobject’stemperaturedecreasedwhenyoubroughtitintocontactwiththesticks.The decreaseintemperatureofthehotterobjectisanindicationthattheamountofinternalenergyin thehotterobjectdecreased.Youbroughtthehotterobjectincontactwiththesticksandenergy wasautomaticallytransferredfromthehotterobjecttothesticks.Theenergytransferinthis caseisreferredtoastheflowofheat.Heatisenergythatisautomaticallytransferredfroma hotterobjecttoacoolerobjectwhenyoubringthetwoobjectsincontactwitheachother.Heat isnotsomethingthatasystemhasbutratherenergythatistransferredorisbeingtransferred. Onceitgetstothesystemtowhichitistransferredwecallitinternalenergy.Theideaisto distinguishbetweenwhatisbeingdonetoasystem,“Workisdoneonthesystemand/orheatis causedtoflowintoit”,withhowthesystemchangesasaresultofwhatwasdonetoit,“The internalenergyofthesystemincreases.” Thefactthatanincreaseinthetemperatureofanobjectisanindicationofenergytransferredto thatobjectmightsuggestthatanytimeyoutransferenergytoanobjectitstemperatureincreases. Butthisisnotthecase.Tryputtingahotspooninaglassoficewater.(Hereweconsideracase

257 Chapter 35 Temperature, Internal Energy, Heat, and Specific Heat Capacity forwhichthereisenoughicesothatnotalloftheicemelts.)Thespoongetsascoldastheice waterandsomeoftheicemelts,butthetemperatureoftheicewaterremainsthesame(0 °C). Thecoolingofthespoonindicatesthatenergywastransferredfromit,andsincethespoonwas incontactwiththeicewatertheenergymusthavebeentransferredtotheicewater.Indeedthe icedoesundergoanobservablechange;someofitmelts.Thepresenceofmoreliquidwaterand lessiceisanindicationthatthereismoreenergyintheicewater.Againtherehasbeena transferofenergyfromthespoontotheicewater.Thistransferisanautomaticflowofheatthat takesplacewhenthetwosystemsarebroughtintocontactwithoneanother.Evidently,heat flowdoesnotalwaysresultinatemperatureincrease. Experimentshowsthatwhenahighertemperatureobjectisincontactwithalowertemperature object,heatisflowingfromthehighertemperatureobjecttothelowertemperatureobject.The flowofheatpersistsuntilthetwoobjectsareatoneandthesametemperature.Wedefinethe averagetranslationalkineticenergyofamoleculeofasystemasthesumofthetranslational kineticenergiesofallthemoleculesmakingupthesystemdividedbythetotalnumberof molecules.Whentwosimpleidealgassystems,eachinvolvingamultitudeofsingleatom moleculesinteractingviaelasticcollisions,arebroughttogether,wefindthatheatflowsfromthe systeminwhichtheaveragetranslationalkineticenergypermoleculeisgreatertothesystemin whichtheaveragetranslationalkineticenergypermoleculeislesser.Thismeanstheformer systemisatahighertemperature.Thatistosaythatthehigherthetranslationalkineticenergy, ontheaverage,oftheparticlesmakingupthesystem,thehigherthetemperature.Thisistruefor manysystems. Solidsconsistofatomsthatareboundtoneighboringatomssuchthatmoleculestendtobeheld intheirposition,relativetothebulkofthesolid,byelectrostaticforces.Apairofmoleculesthat areboundtoeachotherhasaloweramountofinternalpotentialenergyrelativetothesamepair ofmoleculeswhentheyarenotboundtogetherbecausewehavetoaddenergytotheboundpair atresttoyieldthefreepairatrest.Inthecaseoficewater,thetransferofenergyintotheice waterresultsinthebreakingofbondsbetweenwatermolecules,whichweseeasthemeltingof theice.Assuch,thetransferofenergyintotheicewaterresultsinanincreaseintheinternal potentialenergyofthesystem. Thetwodifferentkindsofinternalenergythatwehavediscussedareinternalpotentialenergy andinternalkineticenergy.Whenthereisanettransferofenergyintoasystem,andthe macroscopicmechanicalenergyofthesystemdoesn’tchange(e.g.forthecaseofanobjectnear thesurfaceoftheearth,thespeedofobjectasawholedoesnotincrease,andtheelevationofthe objectdoesnotincrease),theinternalenergy(theinternalkineticenergy,theinternalpotential energy,orboth)ofthesystemincreases.Insome,butnotall,cases,theincreaseintheinternal energyisaccompaniedbyanincreaseinthetemperatureofthesystem.Ifthetemperature doesn’tincrease,thenweareprobablydealingwithacaseinwhichitistheinternal potential energyofthesystemthatincreases.

258 Chapter 35 Temperature, Internal Energy, Heat, and Specific Heat Capacity

Heat Capacity and Specific Heat Capacity Let’sfocusourattentiononcasesinwhichheatflowintoasampleofmatterisaccompaniedby anincreaseinthetemperatureofthesample.Formanysubstances,overcertaintemperature ranges,thetemperaturechangeis(atleastapproximately)proportionaltotheamountofheatthat flowsintothesubstance. T = Q 1 Traditionally,theconstantofproportionalityiswrittenas sothat C 1 T === Q C wheretheuppercaseCistheheatcapacity.Thisequationismorecommonlywrittenas Q = C T (351) whichstatesthattheamountofheatthatmustflowintoasystemtochangethetemperatureof thatsystemby T istheheatcapacity Ctimesthedesiredtemperaturechange T .Thusthe heatcapacity Cisthe“heatpertemperaturechange.”It’sreciprocalisameasureofasystem’s temperaturesensitivitytoheatflow. Let’sfocusourattentiononthesimplestkindofsystem,asampleofonekindofmatter,suchas acertainamountofwater.Theamountofheatthatisrequiredtochangethetemperatureofthe samplebyacertainamountisdirectlyproportionaltothemassofthesinglesubstance;e.g.,if youdoublethemassofthesampleitwilltaketwiceasmuchheattoraiseitstemperatureby,for instance,1C°.Mathematically,wecanwritethisfactas C = m Itistraditionaltousealowercase cfortheconstantofproportionality.Then C === cm wheretheconstantofproportionality cistheheatcapacitypermassofthesubstancein question.Theheatcapacitypermass cisreferredtoasthemassspecificheatcapacityorsimply the specificheatcapacity ofthesubstanceinquestion.(Inthiscontext,theadjectivespecific means“peramount.”Becausetheamountcanbespecifiedinmorethanonewaywehavethe expression“massspecific”meaning“peramountofmass”andtheexpression“molarspecific” meaning“pernumberofmoles.”Here,sinceweareonlydealingwithmassspecificheat,we canomittheword“mass”withoutgeneratingconfusion.)Thespecificheatcapacity chasa differentvalueforeachdifferentkindofsubstanceintheuniverse.(Okay,theremightbesome coincidentalduplicationbutyougettheidea.)Intermsofthemassspecificheatcapacity,

259 Chapter 35 Temperature, Internal Energy, Heat, and Specific Heat Capacity equation351( Q = C T ),forthecaseofasystemconsistingonlyofasampleofasingle substance,canbewrittenas Q === mcT (352) Thespecificheatcapacity cisapropertyofthekindofmatterofwhichasubstanceconsists.As such,thevaluesofspecificheatforvarioussubstancescanbetabulated. SpecificHeatCapacity* Substance  J   o  kg ⋅C  Ice(solidwater) 2090 LiquidWater 4186 WaterVapor(gas) 2000 SolidCopper 387 SolidAluminum 902 SolidIron 448 *Thespecificheatcapacityofasubstancevarieswithtemperatureandpressure.Thevaluesgivencorrespondto atmosphericpressure.Useoftheserepresentativeconstantvaluesforcasesinvolvingatmosphericpressureand temperaturerangesbetween −100 °Cand+600 °C,asapplicableforthephaseofthematerial,canbeexpectedto yieldreasonableresultsbutifprecisionisrequired,orinformationonhowreasonableyourresultsareisneeded,you shouldconsultathermodynamicstextbookandthermodynamicstablesandcarryoutamoresophisticatedanalysis. NotehowmanymoreJoulesofenergyareneededtoraisethetemperatureof1 kgofliquidwater 1C°thanarerequiredtoraisethetemperatureof1 kgofametal1 C°.

Temperature Despitethefactthatyouarequitefamiliarwithit,somemorediscussionoftemperatureisin order.Wheneveryoumeasuresomething,youarereallyjustcomparingthatsomethingwithan arbitrarilyestablishedstandard.Forinstance,whenyoumeasurethelengthofatablewitha meterstick,youarecomparingthelengthofthetablewiththemoderndayequivalentofwhat washistoricallyestablishedasonetenthousandthofthedistancefromtheearth’snorthpoleto theequator.Inthecaseoftemperature,astandard,nowcalledthe“degreeCelsius”was establishedasfollows:At1atmosphereofpressure,thetemperatureatwhichwaterfreezeswas definedtobe0 °Candthetemperatureatwhichwaterboilswasdefinedtobe100 °C.Thena substancewithatemperaturedependentmeasurablecharacteristic,suchasthelengthofa columnofliquidmercury,wasusedtointerpolateandextrapolatethetemperaturerange.(Mark thepositionoftheendofthecolumnofmercuryonthetubecontainingthatmercurywhenitis atthetemperatureoffreezingwaterandagainwhenitisatthetemperatureofboilingwater. Dividetheintervalbetweenthetwomarksintoahundredparts.Usethesamelengthofeachof thosepartstoextendthescaleinbothdirectionsandcallitatemperaturescale.) NotethearbitrarymannerinwhichthezerooftheCelsiusscalehasbeenestablished.The choiceofzeroisirrelevantforourpurposessinceequations351(Q = C T )and352

260 Chapter 35 Temperature, Internal Energy, Heat, and Specific Heat Capacity

(Q === mcT )relatetemperature change ,ratherthantemperatureitself,totheamountofheat flow.AnabsolutetemperaturescalehasbeenestablishedfortheSIsystemofunits.Thezeroof temperatureonthisscaleissetatthegreatestpossibletemperaturesuchthatitistheoretically impossibleforthetemperatureofanysysteminequilibriumtobeaslowasthezeroofthe Kelvinscale.TheunitoftemperatureontheKelvinscaleisthekelvin,abbreviatedK.Notethe absenceofthedegreesymbolintheunit.TheKelvinscaleissimilartotheCelsiusscaleinthat achangeintemperatureof,say,1K,isequivalenttoachangeintemperatureof1 C°.(Note regardingunitsnotation:Theunits °Careusedfora temperature ontheCelsiusscale,butthe unitsC °areusedfora temperaturechange ontheCelsiusscale.) OntheKelvinscale,atapressureofoneatmosphere,waterfreezesat273 .15K.So,a temperatureinkelvinisrelatedtoatemperaturein °Cby 1K  TemperatureinK= (Temperaturein °C)⋅  +273 .15K  O   C 

261 Chapter 36 Heat: Phase Changes

36 Heat: Phase Changes Thereisatendencytobelievethatanytimeheatisflowingintoice,theiceismelting. NOTSO.Whenheatisflowingintoice,theicewillbemeltingonlyiftheiceis alreadyatthemeltingtemperature.Whenheatisflowingintotheicethatisbelow themeltingtemperature,thetemperatureoftheiceisincreasing. Asmentionedintheprecedingchapter,therearetimeswhenyoubringahotobjectintocontact withacoolersample,thatheatflowsfromthehotobjecttothecoolersample,butthe temperatureofthecoolersampledoes not increase,eventhoughnoheatflowsoutofthecooler sample(e.g.intoanevencolderobject).Thisoccurswhenthecoolersampleundergoesaphase change.Forinstance,ifthecoolersamplehappenstobeH 2OiceorH 2Oiceplusliquidwater,at 0°Candatmosphericpressure,whenheatisflowingintothesample,theiceismeltingwithno increaseintemperature.Thiswillcontinueuntilalltheiceismelted(assumingenoughheat flowsintothesampletomeltalltheice).Then,afterthelastbitoficemeltsat0 °C,ifheat continuestoflowintothesample,thetemperatureofthesamplewillbeincreasing1. Letsreviewthequestionabouthowitcanbethatheatflowsintothecoolersamplewithout causingthecoolersampletowarmup.Energyflowsfromthehotterobjecttothecoolersample, buttheinternalkineticenergyofthecoolersampledoesnotincrease.Again,howcanthatbe? Whathappensisthattheenergyflowintothecoolersampleisaccompaniedbyanincreaseinthe internal potential energyofthesample.Itisassociatedwiththebreakingofelectrostaticbonds betweenmoleculeswherethenegativepartofonemoleculeisbondedtothepositivepartof another.Theseparatingofthemoleculescorrespondstoanincreaseinthepotentialenergyof thesystem.Thisissimilartoabookrestingonatable.Itisgravitationallyboundtotheearth. Ifyouliftthebookandputitonashelfthatishigherthanthetabletop,youhaveaddedsome energytotheearth/booksystem,butyouhaveincreasedthepotentialenergywith no netincrease inthekineticenergy.Inthecaseofmeltingice,heatflowintothesamplemanifestsitselfasan increaseinthepotentialenergyofthemoleculeswithoutanincreaseinthe kinetic energyofthe molecules(whichwouldbeaccompaniedbyatemperatureincrease). Theamountofheatthatmustflowintoasinglesubstancesolidsamplethatisalreadyatits meltingtemperatureinordertomeltthewholesampledependsonapropertyofthesubstanceof whichthesampleconsists,andonthemassofthesubstance.Therelevantsubstancepropertyis calledthelatentheatofmelting.Thelatentheatofmeltingistheheatpermassneededtomelt thesubstanceatthemeltingtemperature.Notethat,despitethename,thelatentheatisnotan amountofheatbutratheraratioofheattomass.Thesymbolusedtorepresentlatentheatin generalis L,andweusethesubscript mformelting.Intermsofthelatentheatofmelting,the amountofheat, Q,thatmustflowintoasampleofasinglesubstancesolidthatisatthemelting temperature,inordertomelttheentiresampleisgivenby: 1Inthisdiscussion,wearetreatingthesampleasifithadonewelldefinedtemperature.Thisisanapproximation. Whenthesampleisincontactwithahotterobjectsothatheatisflowingfromthehotterobjecttothesample,the partofthesampleindirectcontactwithandinthenearvicinityofthehotterobjectwillbeatahighertemperature thanotherpartsofthesample.Thehottertheobject,thegreaterthevariationinthetemperatureofthelocalbitof thesamplewithdistancefromtheobject.Weneglectthistemperaturevariationsoourdiscussionisonly appropriatewhenthetemperaturevariationissmall.

262 Chapter 36 Heat: Phase Changes

Q= mLm

Notetheabsenceofa Tintheexpression Q= mLm.Thereisno Tintheexpressionbecause thereisnotemperaturechangeintheprocess.Thewholephasechangetakesplaceatone temperature. Sofar,wehavetalkedaboutthecaseofasolidsample,atthemeltingtemperature,whichisin contactwithahotterobject.Heatflowsintothesample,meltingit.Nowconsiderasampleof thesamesubstancein liquid formatthe same temperaturebutincontactwitha colder object.In thiscase,heatwillflow from thesampletothecolderobject.Thisheatlossfromthesample doesnotresultinadecreaseinthetemperature.Rather,itresultsinaphasechangeofthe substanceofwhichthesampleconsists,fromliquidtosolid.Thisphasechangeiscalled freezing.Italsogoesbythenameofsolidification.Thetemperatureatwhichfreezingtakes placeiscalledthefreezingtemperature,butitisimportanttorememberthatthefreezing temperaturehasthesamevalueasthemeltingtemperature.Theheatpermassthatmustflow outofthesubstancetofreezeit(assumingthesubstancetobeatthefreezingtemperature already)iscalledthelatentheatoffusion,or Lf .Thelatentheatoffusionforagivensubstance hasthesamevalueasthelatentheatofmeltingforthatsubstance:

Lf= Lm Theamountofheatthatmustflowoutofasampleofmass minordertoconverttheentire samplefromliquidtosolidisgivenby:

Q= mLf Again,thereisnotemperaturechange. Theothertwophasechangesweneedtoconsiderarevaporizationandcondensation. Vaporizationisalsoknownasboiling.Itisthephasechangeinwhichliquidturnsintogas.It too(asinthecaseoffreezingandmelting),occursatasingletemperature,butforagiven substance,theboilingtemperatureishigherthanthefreezingtemperature.Theheatpermass thatmustflowintoaliquidtoconvertittogasiscalledthelatentheatofvaporization Lv.The heatthatmustflow into mass mofaliquidthatisalreadyatitsboilingtemperature(a.k.a.its vaporizationtemperature)toconvertitentirelyintogasisgivenby:

Q= mLv Condensationisthephasechangeinwhichgasturnsintoliquid.Inorderforcondensationto occur,thegasmustbeatthecondensationtemperature,thesametemperatureastheboiling temperature(a.k.a.thevaporizationtemperature).Furthermore,heatmustflow out ofthegas,as itdoeswhenthegasisincontactwitha colder object.Condensationtakesplaceatafixed temperatureknownasthecondensationtemperature.(Themeltingtemperature,thefreezing temperature,theboilingtemperature,andthecondensationtemperaturearealsoreferredtoasthe meltingpoint,thefreezingpoint,theboilingpoint,andthecondensationpoint,respectively.) Theheatpermassthatmustbeextractedfromaparticularkindofgasthatisalreadyatthe

263 Chapter 36 Heat: Phase Changes condensationtemperature,toconvertthatgastoliquidatthesametemperature,iscalledthe latentheatofcondensation Lc.Foragivensubstance,thelatentheatofcondensationhasthe samevalueasthelatentheatofvaporization.Forasampleofmass mofagasatits condensationtemperature,theamountofheatthatmustflow out ofthesampletoconvertthe entiresampletoliquidisgivenby:

Q= mLc Itisimportanttonotethattheactualvaluesofthefreezingtemperature,theboilingtemperature, thelatentheatofmelting,andthelatentheatofvaporizationaredifferentfordifferent substances.For water wehave: PhaseChange Temperature LatentHeat Melting MJ 0°C 0.334 Freezing kg BoilingorVaporization MJ 100 °C 2.26 Condensation kg Example 36-1 Howmuchheatdoesittaketoconvert444gramsofH 2Oiceat–9.0°Cto steam(H 2Ogas)at128 .0°C? Discussion of Solution Ratherthansolvethisoneforyou,wesimplyexplainhowtosolveit. Toconverttheiceat–9.0°Ctosteamat128 .0°C,wefirsthavetocauseenoughheattoflowinto theicetowarmituptothemeltingtemperature,0°C.Thisstepisaspecificheatcapacity problem.Weuse

Q1= mcice T where Tis[0 °C–(–9.0°C)]=9 .0C°. Nowthatwehavetheiceatthemeltingtemperature,wehavetoaddenoughheattomeltit.This stepisalatentheatproblem.

Q2= mLm

After Q1+ Q2flowsintotheH 2O,wehaveliquidwaterat0 °C.Next,wehavetofind

264 Chapter 36 Heat: Phase Changes

howmuchheatmustflowintotheliquidwatertowarmituptotheboilingpoint,100 °C.

′ Q3= mcliquidwater T where T ′=(100 °C–0 °C)=100 °C.

After Q1+ Q2+ Q3flowsintotheH 2O,wehaveliquidwaterat100 °C.Next,wehavetofind howmuchheatmustflowintotheliquidwaterat100 °Ctoconvertittosteamat100 °C.

Q4= mLv

After Q1+ Q2+ Q3+ Q4flowsintotheH 20,wehavewatervapor(gas)at100 °C.Now,allwe needtodoistofindouthowmuchheatmustflowintothewatergasat100 °Ctowarmitupto

128 °C.

′′ Q5= mcsteam T where T ′′=128 °C −100 °C=28 °C.

Sotheamountofheatthatmustflowintothesampleofsolidiceat–9.0°Cinorderforsampleto becomesteamat128 °C(theanswertothequestion)is:

Qtotal = Q1+ Q2+ Q3+ Q4+ Q5

265 Chapter 37 The First Law of Thermodynamics

37 The First Law of Thermodynamics WeusethesymbolUtorepresentinternalenergy.Thatisthesamesymbolthat weusedtorepresentthemechanicalpotentialenergyofanobject.Donot confusethetwodifferentquantitieswitheachother.Inproblems,questions,and discussion,thecontextwilltellyouwhethertheUrepresentsinternalenergyorit representsmechanicalpotentialenergy. Weendthisphysicstextbookaswebeganthe physics partofit(Chapter1wasa mathematics review),withadiscussionofconservationofenergy.BackinChapter2,thefocuswasonthe conservationofmechanicalenergy;herewefocusourattentiononthermalenergy. Inthecaseofadeformablesystem,itispossibletodosomenetworkonthesystemwithout 1 1 causingitsmechanicalkineticenergy mv 2 +++ Iw 2 tochange(where misthemassofthe 2 2 system, visthespeedofthecenterofmassofthesystem, Iisthemomentofinertiaofthe system,and wisthemagnitudeoftheangularvelocityofthesystem).Examplesofsuchwork wouldbe:thebendingofacoathanger,thestretchingofarubberband,thesqueezingofalump ofclay,thecompressionofagas,andthestirringofafluid. Whenyoudoworkonsomething,youtransferenergytothatsomething.Forinstance,consider acaseinwhichyoupushonacartthatisinitiallyatrest.Withinyourbody,youconvert chemicalpotentialenergyintomechanicalenergy,which,bypushingthecart,yougivetothe cart.Afteryouhavebeenpushingonitforawhile,thecartismoving,meaningthatithassome kineticenergy.So,intheend,thecarthassomekineticenergythatwasoriginallychemical potentialenergystoredinyou.Energyhasbeentransferredfromyoutothecart. Inthecaseofthecart,whathappenstotheenergythatyoutransfertothecartisclear.Buthow aboutthecaseofadeformablesystemwhosecenterofmassstaysput?Whenyoudoworkon suchasystem,youtransferenergytothatsystem.Sowhathappenstotheenergy? Experimentally,wefindthattheenergybecomespartoftheinternalenergyofthesystem.The internalenergyofthesystemincreasesbyanamountthatisequaltotheworkdoneonthe system. Thisincreaseintheinternalenergycanbeanincreaseintheinternalpotentialenergy,an increaseintheinternalkineticenergy,orboth.Anincreaseintheinternalkineticenergywould manifestitselfasanincreaseintemperature. Doingworkonasystemrepresentsthesecondway,whichwehaveconsidered,ofcausingan increaseintheinternalenergyofthesystem.Theotherwaywasforheattoflowintothesystem. Thefactthatdoingworkonasystemand/orhavingheatflowintothatsystemwillincreasethe internalenergyofthatsystem,isrepresented,inequationform,by:

U=Q +WIN

266 Chapter 37 The First Law of Thermodynamics whichwecopyhereforyourconvenience:

U =Q+ WIN (371) Inthisequation, Uisthechangeintheinternalenergyofthesystem, Qistheamountofheat thatflowsintothesystem,and WIN istheamountofworkthatisdoneonthesystem.This equationisreferredtoasthe FirstLawofThermodynamics .Chemiststypicallywriteitwithout thesubscript IN onthesymbolWrepresentingtheworkdoneonthesystem.(Thesubscript IN is theretoremindusthatthe WIN representsatransferofenergy into thesystem.Inthechemistry convention,itisunderstoodthatW representstheworkdoneonthesystem—nosubscriptis necessary.) Historically,physicistsandengineershavestudiedanddevelopedthermodynamicswiththegoal ofbuildingabetterheatengine,adevice,suchasasteamengine,designedtoproduceworkfrom heat.Thatis,adeviceforwhichheatgoesinandworkcomesout.Itisprobablyforthisreason thatphysicistsandengineersalmostalwayswritethefirstlawas:

U= Q−W (372) wherethesymbolWrepresentstheamountofworkdone by thesystemontheexternalworld. (Thisisjusttheoppositeofthechemistryconvention.)Becausethisisaphysicscourse,this

(U=Q−W )istheforminwhichthefirstlawappearsonyourformulasheet.Isuggest

makingthefirstlawasexplicitaspossiblebywritingitas U=QIN −WOUT or,betteryet:

U = QIN +WIN (373) Inthisform,theequationissayingthatyoucanincreasetheinternalenergyofasystemby causingheattoflowintothatsystemand/orbydoingworkonthatsystem.Notethatanyoneof thequantitiesintheequationcanbenegative.Anegativevalueof Q IN meansthatheatactually flowsoutofthesystem.AnegativevalueofWIN meansthatworkisactuallydonebythesystem onthesurroundings.Finally,anegativevalueofUmeansthattheinternalenergyofthe systemdecreases. Again,therealtiphereistousesubscriptsandcommonsense.WritetheFirstLawof Thermodynamicsinamannerconsistentwiththefactsthatheatorwork into asystemwill increase theinternalenergyofthesystem,andheatorwork outof thesystemwill decrease the internalenergyofthesystem.

267