<<

GEOLOŠKI ANALI BALKANSKOGA POLUOSTRVA Volume 80 (2), December 2019, 65–85 – https://doi.org/10.2298/GABP1902065S Original scientific paper Intraoceanic subduction of the Оригинални научни рад northwestern Neotethys and geodynamic interaction with Serbo-Macedonian foreland: Descending vs. overriding near-trench dynamic constraints (East Vardar Zone, Jastrebac Mts., )

1 2 Arko PAhić iVADAr AUDENyi D S & T G Abstract.

A composite paleogeographic and plate kinematic spatiotemporal reconstruction of the exhumed Neotethyan cross-lithospheric footwall amal - gamation (Jastrebac dome) incorporates the two (fio) rmerly underplating oceanic entities, West Vardar- and East Vardar Zone. These ophiolite-bearing agglomerations are unroofevds .within the accretionary Paleogene to Miovcse. ne core-complex, beneath the Serbo-Macedonian overri(diiin) g plate. The exposed Neotethyan crustal amalgamation is comprised of: an folded trench assem - blage of uncertain Mesozoic? Paleogeographic affinity m(eitiai) morphosed under a greenschist-grade (West- East Vardar Zone or Neotethyan crust- its back-arc system?) sandwiched beneath the overlying late Cretaceous – Pa - leogene (meta)turbidites. To make matters more intricate, at the closest proxim - ity of the dome (Mali Jastrebac Mountain) there is a similar greensc hi st-facies amalgamation comprised of the Neoproterozoic – Lower Paleozoic ocean-floor assembly (Supragetic basement). vs The interpretations of this rather controversial cross-lithospheric structure include a reassessment of the obduction sequencves., and are underpinned by Key words: the restoration of the near-trench microplate motions. The study addresses Jastrebac metamorphic complex, the (1) local finite configuration (Serbo-Macedonian hanging wall . Neo - East Vardar Zone, intraoceanic tethyan intraoceanic arc) and the (2) spatiotemporal geometry of the principal subduction, retreating collision, (micro)plate boundaries (Serbo-Macedonian Unit Apulia/Adria). Unlike the west-vergent . earlier proposal of the ophiolite obduction onto the Serbo-Macedonian Unit onto the Apulia/Adria hinterland (or external segment of the “Dacia mega-ter - rane”), we here propose a west-vergent obduction of the East Vardar Zone ophiolites onto the descending Neotethyan lithosphere (West Vardar ophio - lites) - a similar scenario to its continuation in Greece (Peonias subzone). Апстракт .

Временско-просторна структурно-геол oшка и палеогеограф - ска реконструкција неотетиског литосферног океанског система на примеру Јастребачког тектонског прозора обједињује два литосферна члана представљених офиолитима мезозојске старости: периферне Источне вардарске зоне (ИВЗ) и главне Западне вардарске зоне (ЗВЗ). Амалгамација две литосферске океанске јединице се одиграла пре сту - пања у конвергентне односе Алпског индентера (Апуљско-јадранск a микроплоч a) и Европског промонторијума тј. од горње јуре до доње кре - де. Овај литосферни агломерат је током, (и после) касноалпске конвер - 1 Geological Survey of Serbia, Rovinjska 12, 11000 , Serbia. E-mails: [email protected]; [email protected] 2 Geographical Institute “Jovan Cvijić” of the Serbian Academy of Sciences and Arts, Djure Jakšića 9, 11000 Belgrade, Serbia.

65 DARko SPAhIć & T IVADAR GAuDEnyI

генције ексхумиран и раскровљен у виду Јастребачке доме. Ја стребачка дома представља сегмент акретоване коре која се налази унутар нека - дашње маргине Неотетиса тј. у оквиру Српско-македонске јединице (СМЈ). Ексхумација Великојастребачког мезозојског(?) комплек са указује на подински однос према некадашњој Српско-македонској континентал - ној маргини. Великојастребачки поликристаласти стенски комплекс је састављен од: (1) набраних јурских офиолитских асемблажа деформи - саних до фације зелених шкриљаца унутар некадашњег оке анског шава, са још увек нејасним мезозојским палеогеогафским афини тетом ових стена. Изнад наведеног Великојастребачког пакета утврђени су анхиме - таморфни (2) горњокредни до палеогени (мета)турбидити (“сенонски флиш” / “Савска зона”). Даљој стратиграфско-структурно-палеогеограф - ској конфузији јастребачких зелених шкриљаца доприноси сличност са (3) фацијом истог нивоа метаморфизма (Супрагетик), која међутим припада некадашњем океанском асемблажу неопротерозојсreкtоr-eдaоtiњngе cпoаlлliеsiоoзn ојске старости (откривена на подручју Малог Јастрепца, источни део). Током конвергенције поменутих микроплоча долазило је до више кратног повлачења субдукционог рова и саме подинске литосфере ( или ‘колизија субдукционим повлачењем’) што је утицало на син- Кључне речи колизионо истезање ригидног блока повлатне Српско-македонске Јастребачки полиметаморфни маргине. Осим тектонског модела, изнети су закључци о дужини трајања комплекс, Источна вардарска и правцима обдуковања поменутих офиолита на Српс ко-македонску је - зона, интраокеанска субдукција, диницу (деформациона фаза D1 ) тј. на залеђе Апуљско-јадранске микро - „колизија субду: кционим плоче је: (1) иниreцtиreјаaлtнinаg п cрoоllсiтsiоoрn но ограничена, са лимитираном дужином подвлачењем“, западно-вергентно западно-вергентног обдуковања офиолита ИВЗ преко доњег- или навлачење. Неотетиcoсrкeо-гc o(mЗаpпlаexдно вардарског тј. ЗВЗ) океанског литоферног сегмента (слично као и у наставку Вардарске зоне у Грчкој; Пеониас зона). Такође, предложеним системом се објашњава ексхумација тј. екстензија повлатног блока у конвергентном односу и резултујућим ства - рањем доме Великог Јастрепца (фаза D4 ).

Introduction

flicting structural-tectonic and paleogeographic re - constructions. The East Vardar Zone ophiolites can The conflicting Jastrebac accretionary assembly either be identified as (i) oceanic system overl ain by (central Serbia; Fig. 1a) have been interpreted either a Serbo-MacedoniAaknić margin (gneiMssiT-drioJEmViić nating as a tectonic window exposing formerly underplating crystalliEnTer oroVicć ks; r et. al., 1969; D et. al., distal paleogeographicr dAok mains of the African Apu - 2001 ; P et al., 2015) or (ii) as oph iolite entity sen - lia/Adria microplate ( E et al., 2016) or an outcrop - which overrode the Serbo-Macedonian continental su ping segment of the Sava-VAarrodVairć back system of the margin. The latter concept is elaborated by the ophi - main Neotethyan ocean ( M et al., 2007). There olite obduction oChnM tioD p N–S to NW–SE trendrAink g sub - is alsroU Nan opinion that the latter core-complex ( duction zAoFnFieo N( SE VAN et aiNl.S, B2E0r0GE8N , 2019; E et al., B et al., 2018) exporUsiBnić g the greenschist level 2016; M & h , 2018). There is elements confirmed ( G et al., 1999) for the also an opinion that this zone can be qualified as a nearby Supragetic basement. Moreover, the intri - segment of mixed exoteknoLsional and compressional cacy multiplies because the nearby ophiolite-bear - pull-apart systems ( S et al., 2019). Such uncer - ing segment of the East Vardar Zone (including tainty of the reconstructed former cross-lithos - 6U6 pper Cretaceous turbidites of western Veliki Jas - pheric orientations mGeaolk. aens. Batlhk.e p olpuoasl.e, 2o0g19e, o80g (r2a), p65h–i8c5 trebac; Fig.1; red question mark) has a set of con - inheritance of the exhumed Jastrebac agglomeration Intraoceanic subduction of the northwestern Neotethys and geodyamic interaction with Serbo-Macedonian foreland: ...

ArAMATA ChMiD e.g 2001; k , 2006; S et. al., 2008, 2019; Figs. 1, 2). Several essential outcrops allowing a bet - ter understanding ofT AhMigPhLli y compleSxo MNTeosS ozoicö rpöa S - leogeogTrAaMpPhFyL i ( ., oS ChArD , 2001;V CAN iNSB&Er VGEN , 2004; S & h , 2009; h et e.g al ., 2019 ) and associated cross-lithospheric config - urations are those elevating the Neotethyan oceanic crust (exhumation viaA proVsitć -accretionary TcoJrAeD-icNoomVić- plex formation; ., M et al., 2007; S et al., 2013). The lithospheric remnants of north - western Vardar/Neotethyan ocean are consisting of the two elongated NNW–SSE-directed ophiolite- belts: West Vardar Zone or the main Vardar/Neo - and the adjoining heavily disrupted East Vardar Zone reipMriTersieJEnVtiić ng itsiM miTarrigJEiVniać l basin (hereinaiMftieTr iEJEVViZć ; D ArAM&AT DA rE,ć 1ko9V7i3ć , 19A T7o5ć;A DNiN , 2001; k , 2006; S - B et. al., 2012; Fig. 2). The investigated cross-lithospheric segment (vicinity of Jastrebac), in addition to these Upper Cretaceous to Paleogene turbidites has the record of late Jurassic - Lower Cretaceous shallow marine, clastic sequence with some turbidite ifMeia TtruirJEeVsi ć re - feirMrieTdri JtEoV ićas the “paraflysch” (after D & Fig. 1 . a. North Mediterranean including Alpine-Dinaride-Carpa - D , 2009). thian mobile belt and Jastrebac location; b. Geographical map The aims of this study are the (i) reassessment showing position of the Jastrebac tectonic window protruding be - of the conflicting cross-lithospheric orientations re - tween the two arcuate morphotectonic systems (Dinarides and porting the interaction between the Neote thyan-, Serbo-Macedonian as European foreland including the Carpatho- EVZ ophiolites and S erbo-Macedonian accretio nary Balkanides). The Vardar Zone includes its marginal system referred margin, whereas we further propose (ii) a geodynamic to as the East Vardar Zone stretching into North Macedonia and concept based on the intraoceanic subduction model Greece . (main West Vadar plate beneath the back-arc sys - tem). importantly, the suggested cross-lithospheric kinematic model is autono mous of the uncertain age of the highly deformed Jastrebac greenschist pack - age, which we moreover describe as the segment of e.g. oEV oRceeganioicn liathl ogsepohleo reg bicealoln fgriangm toe wthoe rEk VZ. and this segment of the East Vardar Zone (B et al., 2018) highly ambiguous. kAy ürTyhSüeZ MediterraEnNGeoarn crustal mACoCtEiNoNnA s ( , o & TürEr , 2009; Ş EN, A2N0T 09; F eEt alr.,E T2o0N 14; G et al., 2016; M et al., 2016; L B et The Dinarides-hellenides sector extends N–S al., 2017) formerly controlling the complex geody - throughout former yugoslavia, connecting Slovenia, namic processess of Neotethyan (=Vardar) ocean Croatia, Bosnia and herzegovina, Serbia, North are best revealed in an controversial geotectonic Macedonia crossing over in Greece. This Alpine fold- Gseotlt. ianng. B oalfk .W poelusotse.,r 2n0 1B9,a 8li0kM (a2iT)n, r6 c5iJo–E8uV5 nić tries (W–SW-vergent and-th rust belt emerged at the expense of Meso67- system of ; D , 1992, 1997, 1999, zoic- Tertiary convergence between south European DARko SPAhIć & T IVADAR GAuDEnyI

nental arc opening and subse - quent onset of this seEgLmić ent of the Vardar ocean ( Z et al., 2005, 2010). The eastern mar - gin of the Vardar Zone is a (4) Serbo-Macedonian Unit or westernmost terrane of Dacia mega-agglomeration. Essen - Fig. 2 . Simplified cross-section of central Serbia and Montenegro, modified from D iMiTriJEVić tially, the Serbo-Macedonian (2001). The section includes the crustal faults taken from V ukAšiNoVić (1973). The investigated Unit represents a segment of area of Jastrebac Mts. is within the central Serbo-Macedonian unit. the European foreland (Me - sozoic ) positioned in front of the Carpa thian-Balkan fold-and- thrust belt (Fig. 1b). in its central segmen t, this former foreland and Apulia /Adria indenter. Across the West margin exposesiM ai TcroiJmEVpićlex interpolaEyV of local Mesozoic e.g Balkan countries, a shortlived Neotethyan ocean left microplates ( D , 2001; B et al.,S 2o0NT1o8S ) later several episodes of oceanic crust production and its displaceCdh bMyiD the Alpine nappe stakjing ( C et al., e.g sensu de batab le eiMmipTrlaiJcEeVimć ent on loAcraAlM cAoTAntinental CmhMariD - 2004; S et al., 2008; Fig. 2). The cross-lithos - gins ( ., D , 1997; k , 2006; S pheric agglomeration (Dinarides and Vardar Zone) e.g. et al., 2008). in addition, its unconstrained base - was unconformably sealed by the late CretaceCohuMsiD su - mVAeN nt irNeSmBEariGnEsN to be a highly cPoAnhtićroversial topic ( ., ture referred to as the “Sava oceiaMniT” r( iJEVić S et h et al., 2019; S et al., 2019b). The al., 2008) or “senonian flysch” ( D , 1997; Fig. evidence of a principal Mesozoic- Cenozoic shorten - 4)E.S TiMhieć EVArZi ć represents actuAaClClyA Nai marginal basin ( ing event is best exposed in what is now SE Europe r -Š et alA.,L 2Lh0o0F5E;r S et al., 2008), an in - (SEE). The SEE is crosscut by a lariMgieT rmiJeEVgiać -suture traoceanic arc ( G et al., 2017) probably de - reAfreArMreAdTA to as theV VEaTkrodVairć Zone ( D , 1997; veloped on top of formerly subducting West Vardar k , 2006; C et al., 2014). This contro - plate. The EVZ or intraoceanic arcA-FrFeiloaNteE d oVpAhN iolitNeS s versial suture is comprised of the remnants of the cBoErnGtEaN in no metamorphic sole ( M & h - Neotethys or WAersotV Vić ardar Zone, ando LEJVić Z or its back- , 2018 and references therein). The geochem - arocL Jsićystem ( M et al., 2007; T et al ., 2016 ; ical composition of the East Vardar ophiolites varies T , 2018). The Vardar (suture) Zone is sand - from Serbia to Greece, exhibiting Back-Arc-Basin, wiched between the four distinct Neoproterozoic to mixture of Mid-oceanic-ridge- and Supra-Subduc - Paleozoic-Mesozoic crystalline systems: (1) Drina- tion-Zone-affinity includ ing the confirmed presence sensu bClhoMcikD (segment of Adria/Apulia passive of boninites. margin; S iMeiTt railJ.E, V2ić008) sepaErarZteiNdA by the ‘Zvor - A high-elevated site in central Serbia (horst nik suture’ ( D , 1997; G ,i L2iP0o1V0ić ) from structure of Jastrebac Mts.) is positioned just a few the peculiar (2) Jadar terrane ( F et al., kilometers from the interface of the EVZ and former 2003). Towards the south, the Va rdar Zone narrows Serbo-Macedonian continental margin. The men - near the intriguing “continental ridge-like” Triassic tioned margin provides an exceptional exposuAroeV oić f polymetamorphiAcr AeMnAtiTtA y referred to aAsr AthMeA T(A 3) “ko - the former NeroAtk ethyan trench assemblage ( M paooBEnrikTS bolN ock” ( k EeLti ćal ., 1994; k , 2006; et al., 2007; E et al., 2016; Fig. 1a, b). The Jastre - r et al., 2009; Z et al ., 2008 ). This entity bac tectonic window represents unique opportunity is characterized by Upper Triassic metalimestones, to glimpse into the complex subsurface configura - m68 etarenites, metapelites and metado lomi tes, basaltic tion of the plate juncGteiol.n a nc. Boanlkn. peoclutoins.,g 2 0N19W, 80 N(2)e, 6o5t–e85 - magmas connecting this area with the Alpine conti - thyan lithosphere sandwiched between: (1) the Intraoceanic subduction of the northwestern Neotethys and geodyamic interaction with Serbo-Macedonian foreland: ...

lower positioned passive margin of the Apu - lia/Adria microplate aAnLdL h(o2F)E Er VZ or former baocLkJi-ć arc to fore-arc system ( G et al., 2017; T et al., 2018), including the (3) Serbo-Macedonian Unit (accretionary margin). The investigated cross-lithos - pheric assembly is unroofed in the central portion of the Serbo-Macedonian Unit (Figs. 2, 3) characterized by a ~15 km-wide tectonic window A(rFoiVgi.ć 4). An array of extensional detacPhAmhieć nts ( M rAk et al., 2007) and shear zones ( S , 2006; E et al., 2016) uplifted a Jurassic (?) to Paleogene crustal se - Gqueeonlcoe goyf doisfp tuhted J paaslteroegbeoagcr amphoicu innthaerinitas nce.

Jastrebac is a prominent mountain of Central Ser - bia, positioned between the Dinarides and Serbo- Velika Đulica and Tri sestrice Macedonian/Carpatho-Balkanides (Fig. 1a,b). The mountain ridge consists of the two discrete segments, Veliki- and Mali Jastrebac (Fig. 1a). The most elevated peaks ( ; Fig. 5) reach an elevation of 1.491 m and 1.482 m respectively. The investigated system of Veliki Jastrebac com - prises of rocks of PAakleić ozoic, Jurassic, and Cretaceous– Paleogene age ( r et al., 1969). A Miocene and Pleistocene veneer covers the immediate surround - ings of the mountain. The Eocene granodiorite core of Veliki Jastrebac unroofed Serbo-Macedonian Unit (Fig. 5, lithology#1) and several other formations. Ve - liki Jastrebac granodiorite haivVeL JAaN radiometric age varying from 37 Ma (rb-Sr; D rAk , 1979) to 47.59 Ma (LA-iCPMS U-Pb zircon age; E et al., 2016). The dominant late Cretaceous - Paleogene metaturbidites surrounding the core (Fig. 5, lithology #2) have an unclear relationship with the greenschist-Afakicć ies as - sembly (Fig. 2; Fig. 5, lithologies #3,4,5; r et al., 1969). Greenschist assembly consists of actinolite-, Fig. 3 . Position of the Jastrebac Mts. relative to the main ophio - chlorite-, epidote schists, chlorite-sericite-, sericite lite-bearing and mélange zones in the central and western Serbia. schists, calcschists, marbles, and metagabbro. The Towards the East Vardar zone, this oceanic entity is in a form of smaller-scale granitoid intrusion of Mali JastirVeLbJAaN c the narrow belt making the plate boundary with the Serbo-Mace - identified as Triassic age (229–192 Ma; rb-Sr, D , donian unit (inlet modified after DiMiTriJEVić &DiMiTriJEVić , 1973; 1979; Fig. 5, lithology#7). Eastern edge of Mali Jas - modified). trebac is another set of greenschist-facies rocks (Fig. 5, lithologryA#k 9; Supragetic) which is in the tectonic Geol. an. Balk. poluos., 2019, 80 (2), 65–85 contact ( E et al., 2016) with the Serbo-Macedon69- ian Unit (Fig. 5, lithology #10). DARko SPAhIć & T IVADAR GAuDEnyI

consits of dominant mica schists, gneisses with local miAgkmić atites, amphibolites and occasional marbles (r et al., 1969). Locally, this crystalline base - ment unit overrides the entire Jastrebac system bearing the record of the late Alpine shortening (D3 – deformation phase; Fig. 5). in addition to the medium-to high-grade crystalline gneisses (Fig. 5, lithology #10, light yellow) and mica schist’s (Fig. 5, lithology #10, dark yellow) this unit is coAmkpić rised of amphibLoElkitSeić s and graphitic schists ( r et al., 1969; A , 1977; Fig. 5, lithology #14). The thick - neEsLsE ofN this NeoproteArLoozGoh ic - early PaleoNzToićic unit (D et al., 1972; B et iaMli.T, r1i9JE9V4ić ; A et al., 2016) reaches max 1800 m ( D , 1997). The mylonitized roPAchkisć near the rvAilk lage Vukanja (major shear zone; S , 2006; E et al., 2016; Fig. 5, Protoleosphaeridium conglutinaum Leiolig - lithology #8) exposed in the southeastern realm of otriletum minutissimus the Veliki Jastrebac dome (Fig. 5) is abundant with the following late Neoproterozoic (EdiaciaM rian) flora: AUMoVA iMoTFEE.V, LEkSić ALENić (N ) T (A & k , 197r5A)k . The Vukanja shear-zone is of MSuiopcreangee atgiec (bEasemete anl.t, 2(0M1a6l)i. Jastrebac)

sensu The Supragetic basement is a crystalline rock as - sembly comprised of dPoAhmić inant greenschist-grade metamorphics ( S et al., 2019a and refer - ences therein; Fig. 5, lithology#9). in eastern Serbia, the l ower part of this unit is comprised of chlorite- muscovite-albite, chlorite-albite and biotite-chlorite- mica-albite gneisses, which are transitioning into the Fig. 4 . The Jastrebac segment of the map “Major tectonic units of greenschist-facies rocks (actinoAVliLtoeV, ićactinolite-epi - the , Carpathians and Dinarides” (modified after SChMiD et al., dote, albite-chlorite schist etc.; P , 1975, 1977). 2008). The vertical succession of the Supra getic basement continues by a presence of quartzite layers and a Trachyoligotrilletum magnetum stratigraphically uppermost part, calcschist and mar - Stenozonoligotriletum Stenozonoligotriletum so - Serbo-Macedonian Unit (Veliki- and bles. The following spora associations characterize Mali Jastrebac) ko lovi Trachyoligotrilletum laminarium the younger stratigraphic sections of the SupirMaogFeEtEiV c . basement: T , Stenozonolig - iMoFEEV sp., cf. otriletum validum , Ste nozonoligotriletum T , cf. Timofeev in the intervening part of the succession, 70 The Serbo-Macedonian Unit (“LiMoiwTreirJE CVioć mplex” spores reflect a MiddleiGM eCoalF. mEanEb.V Brailak.n p oalugoes:., 2019, 80 (2), 65–85 of the Serbo-Macedonian Unit D , 1997) cf. T Intraoceanic subduction of the northwestern Neotethys and geodyamic interaction with Serbo-Macedonian foreland: ...

Fig. 5. Geological map highlighting the essential metamorphic lithotypes of the Jastrebac tectonic window (Veliki Jastrebac Mt., modified after A LEkSić , 1975 and references therein). Metamorphic facies: 1. Granodiorite of the Eocene age; 2. Metaturbidites of Veliki Jastrebac (please note that for simplification purposes we use the same color and hatching for western Veliki Jastrebac upper Cretaceous flysch- bearing system); 3. Calcschists and marbles; 4. Greenschists: Actinolite schists, phillites, marbles, calcschists, sericite schists, quartzites; 5. Metagabbro; 6. Amphibolite and amphibolitic schists; 7. Granitoid of Triassic age; 8. Mylonitic rocks; 9. Greenschists: chloritic schists; 10. Gneiss, mica schist with garnet and migmatite; 11 . Minor faults; 12. Mica-rich quartzite; 13. Gneiss with staurolite and mica schists; 14. Graphite-bearing gneiss. red rectangle white question mark denotes the issues of the paleogeographic inheritance of the “VJG” – whether the latter belong to the EVZ or not. Lithologic column of East Vardar ophiolites (top left corner) modified from MAffioNE & VAN hiNSBErGEN , (2018), for details see rESiMić -š Arić et al., (2005). The lithostratigraphic and kinematic data (the latter are exclusively displayed for Veliki Jastrebac Mt.) depict four principal deformation phases: D1. Development of the ophiolites and mélange formation (see fig.6 for configuration details); D2. Tight folding of former oceanic segment (VJG); D3. Tight folding and E–W compression and the formation a number of antoforms and synforms in Serbo-Macedonian; D4. Extension exhumation whereas the preserved layering around granodiorite core (JM) delineates a domal emplacement (periclinal distributing of direction-dip measurements).

, Stenozonoligotriletum soko lovi ., Protole- Upper Jurassic ophiolitic mélange and iosphaeridium , Dyctiotidium Cretaceous turbidites (western and central . Veliki Jastrebac Mt.) iMoFEEV sp. T LEkSić ALENić obolus Lingulella sp. sp ( A & k , 1975) Biostratigraphic discoveries within sericite schists (upper stratigraphic levels) of brachiopod fauna, sApV.L aonVidć sp. outlined an or - The western slopes of the Veliki Jastrebac (Fig. dovician age ( P , 1975 and references therein). 5) expose a typical accretionary wedge assemblage Chlorite schirsAtsk are a dominant lithology in the Mali of the Middle–UAkpipć er Jurassic to late Cretaceous–Pa - Jastrebac ( E et al., 2016). it is to note that calc - leogene age ( r et al., 1969). This Neotethyan ac - schist/marbles are a constitutive segment oPfA hbioć th, cretionary assemblage is in the contact (farther to the Supragetic basement in eastern Serbia ( S et the west) with late Jurassic–LowerA Ckirć eatceous clays, Gael.o, l2. a0n1. B9aalkA). k paionć ludo sg.,r 2e0e19n, s8c0 h(2i)s, 6t5s–-A8fra5 ocVieić s rocks of Veliki Jas - sandstones, marls, turbidites ( r et al., 19697)1 . trebac ( r et al., 1969; M et al., 2007). This Lower Cretaceous affinity predates the Upper DARko SPAhIć & T IVADAR GAuDEnyI

sensu

iMiTriJEVić CretiaMciTeroiuJEsV itć urbites (“paraflysch”, D ferred to as the “” and “Vukanja subunits”). & D , 2009 ). VJG systAermoV iisć comprised of the following two pack - The investigated portion of the Neotethyan mar - ages ( M et al., 2007): (1) lower sequence com - gin is comprised of EVZ segment including a Jastre - prised of epidote-actinolite, albite-chlorite schists bac system. The EVZ in its central segment (to the with large and (ii) small lenses of metagabbro west of the Serbo-Macedonian Unit; Fig. 5) is com - (southern and southeastern parts of the Veliki Jas - prised of: trebac dome). The upper part consists of albite- (1) heavily disrupted ophiolites and its mélange sericite schists, calcschists and marbles. heavily (a section of the fossilized Jurassic back-arc system; deformed areas are associated with its interface Fig. 5 and Fig. 6; D1 deformation phase) uncom - with the lower sequence. The age of thiAsr uoVpipć er se - formably overlEaTinro bVyić the laAtNek JićuErVaisć sic Tithonian reef quence remains ambiguous, though M et al. limestones ( P & J , 1990) and late (2007) indicate presence of PaleorgAek ne paleopaly - Jurassic–Lower Cretaceous “paraflysch”. The Jastre - nomorphs. Based on calcschists, E et al. (2016) bac segment of the EVZ is in a relationship with a indicate a similarity with the Triassic of Adria mi - better-constrained crustal segment exposed near croplate. These rocks are intensely folded (D2 de - Ždraljica (Fig. 2). The ŽdraESljiiMciać syAsrteić m is a metamor - formation phase) . The exact age and geotectonic phosed tholeiitic suite ( r -Š et al., 2005) ex - inheritance of these rocks remains undocumented. posing nearly a complete section of the EVZ oceanic Thus, the “VJG” could either belong to a Neoprotero - crust (serpentinized peridotites, gabbros, (meta)ba- zoic–Lower Paleozoic Supragetic basreAmk ent, or to be salts and quite rare plagiogranites embedded into a segment of the West Vardar ZAo rnoeV (ić E et al., 2016), the matrix of the mélange, occasionally achieving or to have the EVZ affinity (M et al., 2007). To greenschist-facies). The Neothetyan oceanic crust is make this segment of Neote thyan margin more intri - characterized by Mid-oceanic ridge-basalts/Vol - cate, there is a presence of thPeA hlaić te Paleozoic poly - canic-Arc signatures. An emplaced quartz diorite metamorphic ‘Veles Series’ ( S et al., 2019b and body within basic rocks reflects a Volcanic-Arc-affi - references therein) characterized by a lithological nity magma signature. The age of quartz diorite is similarity. This peculiar Paleotethyan assembly in - 168.4±6.7 Ma implying that the magmatic activity clude amphibolites, greenschist-facies rocks, mar - within this part of the EVZ predates the Middle bles, metalimestones accommodated along this Jurassic (beforeE 1L6ić 8.4 Ma), even going in Triassic as segment of the EVZ in central North Macedonia. suggested by Z et al. (2005). Similar tholeiitic (4) ‘Jastrebac metaturbidites’ (herein after “JM”; Mor-type ophEiSoiMlitiće suAritieć probably formed in a mar - Fig. 5, lithology #2; Fig. 5) of the Upper Cretaceous– ginal basin ( r -Š et al., 2005) areA eLxLhteonFEdr ing Paleogene age (probably a sutured flysch assemblage to south (romania; G et of the EVZ),r iUnB lićiterature referrerdAk to as the “Lomnica al., 2017). Akić subunit” (G etC haMl.,i D 1999; E et al., 2016) or as (2) Late Cretaceous turbidites ( r et al., 1969) the “Sava Zone” (S et al., 2008). Sedimentary to incAurdoiVnigć late Cretaceous–Paleogene black phyllites low-grade metamorphic rocks abutting the granodi - (M et al., 2007) r ecently constrained as the orite core of VAekliić ki Jastrebac (Fig. 5; lithology#2). Ac - seAgMmićent of theC h“MSiaD va Zone” or Sava–VarrdEaLrE Vzioć ne cording to r et al. (1969), this unit has a mild (P , 2002; S et al., 2008; also in P et bending induced by the emplacement of the Jastrebac al., 2017). granodiorite (Fig. 5). The dip direction measure - Central Veliki Jastrebac configuration consists of ments clearly indicate periclinal distribution of strata Con - the following anchizone to greenschist-facies forma - due to the granodiorite emplacement (D4 – deforma - tusotruncana cf. fornicata Globotruncana tions: tion phase). The biostratigraphical record indicate arca Globotruncana linneiana (3) ‘Veliki Jastrebac greenschists’, (herein after the late Cretaceous - Paleogene age for the anchizonal “VJG”; Fig. 5, lithologies #3,4,5; Fig. 5) comprised turbidite succession reporting globotruncanids: 7s2ericite-, actinolite-, chlorite-schists, calcschists, me - Geol(. Panl.u Bmalkm. peolru)o,s ., 2019, 80 (2), 65–85 tagabbros, marbles of unknown age (formerly re - (Cushman), (D’or - Intraoceanic subduction of the northwestern Neotethys and geodyamic interaction with Serbo-Macedonian foreland: ...

Triporopol - lenites coryloides Pityosporites cedroides bigny) and palynomorph association with 1) is bournUdBieć d by the Peri-Adriatic dextral strike-slip (Pflug in ThomsoAnN Tainć d Pflug) and fault ( G , 2002) including a complex fault sys - NđELkoVić (Thierg) ( P et al., 1967; tem in western SiMeriTbriiaJE rVeifć erred to asE rtZhieN A ‘Zvornik su - A , 1975). These metaturbidriAtek s seem to be ture’ (Serbia; D , 1997; G , 2010). To Isnomteer pprorxeitmaatli torenn crhe esquulitvs alents ( E et al., 2016). remind, NE limb is referred to as the referred to as the Vardar-Mureş zone in romania, central and southern parts are referred to as the Vardar Zone in Serbia, North Macedonia and Greece cMorni tinuing into thNeD iEzrmS ir-Ankara sutTuArMeP iFnLi TurkoeCyh A( ArD et al., 1996; in order to better understand the investigated A et al., 2005; S & h , 2009). its pe - cross-lithospheric amalgamation exposed on Jastre - culiar nortweAsMtieć rn segmenCth iMs itD he “Sava” or Sava-Var - bac Mts., the initial step is the review the structural- dar Zone ( P , 2002; S et al.o, B2E0r0TS8o)N or the tectonic relationship of the entire interface zone western belt of the Vardar Zone ( r et al., (romania to Greece) between the Neotethys and the A20lo0n9)g. -strike configuration of the East Vardar ECuornofpigeaunr amtaiorgnin o (fF tihg.e 1 n).o rthern Neotethyan Zone (Romania-Greece) margin with its European foreland (Apulia/Adria hinterland), short review

The EVZ interface with the Serbo-Macedonian Unit and its analogue basement units is in the form The Vardar megasuture zone arose at the ex - of a principal fault zone striking from SW romania pense of N–S-directed (in Mesozoic reference) con - crossing into Central Serbia, extending farther to - vergence between the Apulia/Adria microplate and wards south, reaching the inner hellenides. in the e.g the former Eurasian margin (locally, Eurasian mar - Apuseni Mts. (romania; Fig. 1b), the basement of gin is represented by the Serbo-Macedonian Unit the Transylvanian Depression is comprised of the and Tisza microplate). The pre-convergence hEiNgAhNlyT East Vardar Zone obducted onto the BihaArNiaD UnLaEpSCpU e complex NeotreGtNhAyNai n paleogPeAohgić raphy ( ., M systemo dNEuSrCiUng thöeC kUpper CrAeCtCaAcNei ous ( S , e.g et al., 2016; A , 2018; S et al., 2020) is best 1984; i & h , 2004; S et al., 2011). The vs illustrated by a conceptual debate revolving around obducted South Apuseni ophiolites show the trace the MediterraneaSonN TgoeSodynöarmöS ics: one oChpMhiDolite – element signatures typifying a subduction-enrich - one oceaonr T( oLo.T, TCi & V , 2004; S et al., ment and noAL cLohnotFaEmr ination from the local continen - 2008; B eto BaElr.,T 2So0N 13) . two opihMiioTrliitJEeVsi – tal crust ( G et al., 2017). one oceaTnAM mPFoLdi el ( roZUr et al., 1996; D ć, An underplating position of the EVZ (Central Ser - 2001; S & k , 2006). Similarly, the com - bia) beneath the Serbo-Macedonian Unit is pre - plex Neotethyan plate motions towards the inter - ferred interpretatioAnk oić f some early anAdLE aŠ EmViać jority vening EVZ and Serbo-Macedonian Unit including of recentA aruAMthAoTArs ( r et al., 19ET6r9o;V Mić et al., the interaction of the West Vardar ophiolites and 19oE7V 4; k et aiMl.i, T1r9iJE9V4ić; P iMiTriJeEtV iać l., 2015; Drina-ivanjica block remain to be another topic of B et al., 2019). D & D (1975), discussions. moreover, indicated that a highly-tectonized mélan - The Vardar Zone as a cryptic Neotethyan mega - ge reflects the strike-slip nature of this suture. A suture traverses SEE, extending over 1000 km (Fig. northern seogLmJićent of the Vardar Zone (vicinity of the 1). in SEE, the suture emerges from Aegean Sea in Belgrade; T et al., 2018; Fig. 1b) is outlined hav - Greece, strikes towards North Macedonia, crossing in ing an overriding position relative to the Serbo-Mace - Serbia and splitting near Belgrade. NW limb strikes donian Unit. Gfueorlt. hane. rB atlko. wpoalurods.s, 2 0B1o9,s 8n0 i(a2) , a65n–d85 herzegovina/Croat ia, Meager late Jurassic peraluminous granite ma7g 3- and at north towards romania. The NW limb (Fig. mas were emplaced into the ophiolitic mélange near DARko SPAhIć & T IVADAR GAuDEnyI

ESiMić Arić AChAriADiS AChAriADiS Ždraljica ( r -Š et al., 2005). This granite em - (Z et al., 2006; Z VAN , i2NS0B0E7r)G.E TN his is placement in the vicinity of the Serbo-Macedonian correlative with the opinion of h et al. Unit describes the magma origin as a derivation of (2005) who concluded that the EVZ oceanic litho - parental magma from the local gneiss (meaning that sSpchreurtei nsuizbidnugc ttehde b ceonneafltihc thine gE ucroonpfeiagnu ruantitiso. n s the magma interfered with a local Serbo-Macedon - and peculiar paleogeographic affinities ian crust). Towards the south, the slab polarity di - verts having here a descending configuraUtrioChn, pFioELsitionAekdo V underneath the rhodopean unit ( B - & N , 2015). recently, by the inference of the two “allochthony levels”, the two positions of a sin - A regional-scale tectonic model emphasizes the gle convergence zone arreo oiTuZthliEnieM d by using the two east-vergent ophiolite emplacement (overriding po - different slab angles ( F et al., 2014). De - sition) abovCeh MthiDe Serbo-Macedonian margin/#Dacia spite the documented high-pressure-high-tempera - terrane” (S et al., 2008, Plate #3, profile 5; Fig. ture conditions, another recent study imposes a 4) . This solution become a widely adopted explana - Jurassic East Vardar ophioliteAs FoFbiodNuE ctiVoAnN oniNtoSB tEhr e tion of the East Vardar ophiolite emplCahcMeimD ent in rGEhN odopean paosBsEivrTeS moN argin ( M & h - this segrmAek nt of NeotethyAaFnF isouNtE ureV A( SN iNSBEertG aElN ., , 2018). r et al. (2009, 2013) explain 2019; E et al., 201r6A;k M & h , that the EVZ ophiolites were originally thrusted 2018; Fig. 4). Later, E et al., (2016) attept to au - eastwards over the Serbo-Macedonian Unit and that thenticate an eastward-directed obduction by intro - both initiall thrusts were displaced once again to - ducing a horizontal emplacement of over 70 km. wards the west in a course of late JurassiicL. Ek Lo This concept interprets a Jastrebac phenomenon as WEr The discussion further continues as D & F - an isolated tectonic window of the “Sava Zone” (2003) indicated that the Jurassic Vardar Zone which represents a late Cretaceous–Paleogene su - ophiolites and the volcanic-arc complexes in North ture. Moreover, according to this concept, green - Macedonia and Greece arose above a subduction schist-facies rocks of Veliki Jastrebac (“VJG”) are zone. This zone, according to the authors, disap - interpreted to be of a Western Vardar Zone affinity sensu pears towards NNE, beneath the Eurasian continen - (not EVZ), sruAkggesting an expCohsMuiDre of the main Var - tal margin. however, here there is another neglected, dar slab ( E et al., 2016; S et al., 2019). this time a PaleotethyaPAnh sić ystem, referred to as the rAk in contrary to the configuration proposed by ‘Veles Series’ ( S et al., 2019b and refer - E et al., (2016), the segments of central Veliki Jas - ences therein). Another good illustration of the com - trebac Mt. (Fig.5), were, however, interpreAtekdić to be e.g. plexity of the alternating plate-tectonic stages overlain by the Serbo-Macedonian Unit ( r et al. within the Tethyan trench-type collision is the 1969). The same configuration is imposed for a Guevgueli–Demir kapija ophioUlkitoeč in North Macedo - more southern extension of European forUerlCahnFdiE, L to - nia (Middle–Upper Jurassic, k et al., 2013). This wAakrodV s BalkanidEeNsA NanT d hellenides ( , B & Veliki Jastrebac greenschists: entity is interpreted as both, a thrusEt PsihTekoeVt A overrid - N , 2015; M et al., 2016). ing the Serbo-Macedonian Unit ( L , 2002) Supragetic-, West Vardar- or East Vardar paleogeographic affinity? and as an assembly tectoniiMcMalElryk UoSverlaid by the Serbo-Macedonian Unit ( h et al., 2006). however, a recent study nicely elaborated the em - placemiCehnAti Lof the Fanos granite into the intraocanic arc ( M et al., 2016). Towards the eastern seg - “ ment of inner hellenides (northern Greece), the EVZ The “VJG have a dominant metagabbro body in - ophiolites include the oraeokastro, Thessaloniki terfingered with eApkiidć ote-actinolite, albLEitkeS-icć hlorite- and Chalkidiki massifs (Fig.1b). The oraeokastro seArricoiVtieć rocks ( r et al., 1969; A , 1977; 7o4 phiolites belong to the back-arc setting, whereas M et al., 2007; FiGge.o 5l. )a.n .G Biavlke. npo tluhoes. ,u 2n01k9n, 8o0w (2)n, 6 a5–g8e 5 Chalkidiki characterizes a supra-subduction setting of the “VJG”, there is neither radiometric dating/geo - Intraoceanic subduction of the northwestern Neotethys and geodyamic interaction with Serbo-Macedonian foreland: ...

chemistry of orthobasites nor detrital zircon spectra ceous flysch-bearing sediments (western Veliki Jastre - study of local parametamorphic sequences. on the bac) and the (ii) formerly down-warped trench analogs other hand, there is an analogy of the occurrence of exposed in the Veliki Jastrebac itself (Fig. 5). The EVZ calcschists in the Veliki Jastrebac (Fig. 5; lithology ophiolites/late-Cretaceous flysch-bearing sediments #3) and Fruška MrAtk s. (southern Pannonian of western Veliki Jastrebac are interpreted as the upper Basin, Serbia; Fig. 1b). E et al. (2016) indicated a plate, and at the same time, these Upper Cretaceous similarity of those uncovered in Jastrebac with those turbidites belonging to a lower plate are exposed documented within the meta-Triassic sequence be - within the Veliki jastrebac dome. in contrary to this in - longing to the Apulia/Adria microplate. Neverthe - terpretation, our reconstruction (pre-Neogene config - less, there is also an analogy with a set of much older uration map; Fig. 6) illustrates the contact (and caAlcrsocVhić ists belonging to the Supragetic basement. kinematics) between the (antithetic, westward di - M et al. (2007) indicated a lithological similar - rected; probably late D3 phase) Serbo-Macedonian ity of the Jastrebac late Alpine sequences with cer - thrust (overrAikdićing plate) and the underlying EVZ as - tain parts of the Vardar Zone or Vardar–Sava semblage ( r et al., 1969; Fig. 6). The explanation island-arc-backA-aMricć -basin system ofA nMoićrthern Bosnia is as follows: initially, the westernmost Serbo-Mace - anAMdi ć Croatia ( P et al., 1992; P et al. 2000; donian Unit characterized by the elongated NNW–SSE P , 2002). A more conclusive discriminating antiforms/synforms and shallow-dipping N-directed marker is the transgressive- to tectAoknić ic-type inter - b-axes attest the proposed E–W shortening (Figs. 5, 6). face between the “JM” and “VJG” ( r et al., 1969). Secondly, the Jurassic ophiolites/late-Cretaceous tur - The western outskirts of Veliki Jastrebac contain a bidites are exposed within an erosional window be - frontal segment of the west-vergent nappe (partially eroded) which ovAekrilćies the EVZ ophiolites, mélange anAdr otVuirć bidites ( r et al., 1969; Fig. 5 and Fig. 6). M et al. (2007) furthermore indicated that the recorded ductile folds on the eastern slopes of the Veliki Jastrebac have the west-vergence, implying that the principal stress tensor was from the east (in modern-day reference). Se ricite schists, calcschists and marbles appear in the cores of synforms (imply - ing the youngest ager,A ok pposite to the oldest Triassic age suggested by E et al. (2016). Consequently, epidote-actinolite and albite-chlorite schists develop Fini nthitee c Venetlrikali pJarsttsr oefb tahce cloocnafli agnutrifaotrimosn. : Serbo-Macedonian margin over East Vardar ophiolites or vice-versa?

Fig. 6 . reconstruction of the pre-Neogene geological configura - tion of western Veliki Jastrebac erosional window and its sur - rounding (inlet from rAkić et al., 1969; position also in fig. 5). The The complex local configuration of the investi - construction is based upon the geometry of the surface geological gated (former) cross-lithosperic plates boundary boundaries. The map exhibits the configuration of local Paleozoic (western Veliki Jastrebac; Fig. 5) is reconstructed by and Mesozoic formations positioned underneath the Neogene removing a Askuirć rounding Neogene cover (basement cover (pale shadowed area). map from r et al., 1969; Fig. 6). (1) The contrasting geological/geotectonic config - Gueroal.t iaon.n B iaslk a. pso fluoolslo., w20s19: ,( 8i0) (T2)h, 6e5r–e8 5 is structural (kinematic) 75 disagreement between the EVZ ophiolites/late-Creta - DARko SPAhIć & T IVADAR GAuDEnyI

“VJG”

neath crystalline Serbo-Macedonian rocks; (light red 1. underwent a ductile reworking (presence rectangle, Fig. 6). The underlying position of the mem - oPf Athhieć sigma- and delta-clasts, stretching lineation; bers of the EVZ can be corroborated by the along-mar - S , 2006) including the isocline folding and cleav - gin regional geology. Approximately 50 km to the age formation subsequently exposed to the tranPAsphio ć - north (vicinity of rekovac) diabase is exposed within sition (sAereo Vpiić ctures with interUrpBirć etations in S , the erosional window beneath the westernmost edge 2006; M et al., 2007); G et al. (1999) indi - of Serbo-Macedonian Unit (Dolić et al., 1980). This cated at least two phases of folding. Accordingly, the mechanism of foreland-directed thrusting of weak con - older phase is characterized by the intense folding tinental cArCuCsEtN iDsA well-known in fully decoupled collision accompanied by transposition and formation of zones ( F et al., 2009); axial-plane cleavage, therefore the primary sedimen - (2) Thus, the western Jastrebac and other ophiolite tary fabric can only be assumed in hinges of the in - complexes distributed along the contact with the trafolial rootles folds (cm-dm, rarely of meter scale). Serbo-Macedonian margin appear almost perfectly The hinges of these folds plunge top to the NNW, “trimmed” along the strike of the EVZ in Serbia (Fig. 3). which is in accordance with the observed Alpine de - Such sharp boundary towards the (former) margin foorkmoaVtićions in the lower plate (Drina–ivanjica block; outlines rather a westward-directed thrusting placing đ , 1985). The cleavage planes became the a Serbo-Macedonian in an overriding position (Fig. 6). dominant S-surfaces that were subsequently de - (3) otherwise, if the EVZ ophiolites were presum - formed in the course of the reactivated shortening. 3 “JM” ably thrusted on top of the western Serbo-M2 acedo - The emplacement of the Jastrebac granitoid re - nian , whereas the late Cretaceous flysch ( k ;A Fkićg. 5 shaped trhUeB ićfolded succession into a symmetrical and Fig. 6) has transgressive relationship ( r et dome ( G et al., 1999; Fig. 5). al., 2016) (in both cases these units should overlie a 2. have only mild, domal bending of the layers western Serbo-Macedonian margin), it remains an proAkdiuć ced by the EocPAehnieć granodioArritoeV ieć mplacement issue in what manner the adjoining “JG” (metamor - (rrAk et al., 1969; S , 2006; M et al., 2007; phosed oceanic crust assembly) and proximal tur - E et al., 2016; FigA. 5ro).V Bić lack phyllites have the same bidites (“JM”) are exhumed as the Serbo-Macedonian foliation pattern ( M et al., 2007; Fig. 5). e.g footwall within the Veliki Jastrebac tectonic window; Briefly, the main deformation of (former) oceanic (4) in general, o bducted suprasubduction setting crust assembly occurred at least before the late Cre - ophiolites can often be characterizedo BbEyr TaS owN ell pre - taceous, more likely before Lower Cretaceous served, solid-body configuration ( . r , 2012), “paraflysch” depicting a tentative Jurassic- to earliest sensu unlike those exposed along western Veliki Jastrebac Lower Cretaceous age of the VJG. sensu (Fig. 5). These ultramafics distributed in the contact Assuming the derived Jurassic to early Lower Cre - zone with the Serbo-Macedonian gneisses (Fig. 6), in - taceous age of the VJG which somewhaEtS fiMitisć wiAtrhi ć the cluding those of the Ždraljica complex (Fig. 3) experi - age of the Ždraljica complex ( r -Š et eniMceiTdr iJaE Visć ubstainMtiiTarl iJEsyVinć tectonic rEeSwi MoićrkiAnrgi ć ( al., 2005), it needs to be answered by what tectonic D oEV & D , 1975; r -Š et al., means an intraoceanic arc sunk together with the 2005; B et al., 2018). As mentioned earlier, there is late Cretaceous – Paleogene (meta)turbidites (JM). A no metamorphic sole underneath the EVZ ophiolites; recent study proposes a subduction zone activity since (5) The geophysical 3D model surveyed along thEis the Middle Triassic accommodating the closure of the TserogVmić ent of the investigated convergent margin ( P - PalAeFoF-iToeNtEhys VaAnN d thiNeS BbEarcGkE-N arc opening of Neo-Tethys et al., 2015) captured the subsurface configura - (M & h , 2018). The onset of the tion of the plate boundary. The 3D model illustrated a EVZ (at least in the investigated region) is dated to the downwraping configuration of the rock complex po - Middle Jurassic (intraoceanic arc) aEcSicMoirć dinArgi ć to the sitioned underneath the Serbo-Macedonian Unit. Ždraljica complex (numeric age by r -Š et al., To summarize, the two completely different struc - 2005). in addition, there is no any documented Trias - t7u6 ral imprints outline the “JM” and “VJG” of the Veliki sic record within the ceGnetorl.a aln s. Beaglkm. peonluto sE.,V 20Z1.9 T, 8h0e (2 o), n65s–e85t Jastrebac: of the back-arc spreading was followed by the Intraoceanic subduction of the northwestern Neotethys and geodyamic interaction with Serbo-Macedonian foreland: ...

ca mèlange formation outlining the formation of the ing started beneath (i) short-lived early Middle EVZ intraoceanic trench. This stage is most probably Jurassic ( . 180 Ma) inEtLrić aoceanic arc, connecting followed by the forAmkiać tion of, so-calNleDdJE,L “kToiVtihć onian- the “kopa onik block” ( Z et al., 2005) of uncertain cf. Beriassic flysch” ( r et al., 1969; A , 1982; inheritance with the Serbo-Macedonian margin (Fig. FiigM.i T6 r)iJ EaVnić d/ori MLiTorwiJeEVr ić Cretaceous “paraflysch” of 7a). A marginal/back-arc origin is documented for the DSummary& aD nd concl(u2s0i0o9n). s Apuseni section (Mor-type affinities sliAgLhLthlyo FeEnr riched in Th and U, and depleted in Nb; G et al., ca Intraoceanic subduction with the 2017). The West Vardar oceanic lithosphere or Neote - retreating collision elements tyhan plate continue with underplating inducing the production and emplacement of the quartz-diorite Ždraljica complex ( . 168 Ma; Fig. 7b). ongoing shortening and narrowing of the Neotethys led to the obduction of a peripheral East Vardar lithosp here on The retreating collision convergence boundaries top of the West Vardar plate (similiaCrh AtoiL the Peonias or zones of the crustal shortening characterized by zone in northern Greece; Fig. 7b; M et al., 2016; the retreating subduction have the gravity as the see also the position of the interfacing mélange; Fig. principal tool for pulling a dense subducting slab 3). The E-directed subduction of the two stacked (slab puolyl)D EuN ltimately escaping into an oceanic do - plates eventually sutured carrying the two clastic main ( r , 1993). This tectonic model was cred - Cretaceous sequences: (1) Lower Cretaceous “pa - ited to the Carpathians, tohyeD AEN pennines, AthCCeE DNDinA arides, raflysch” (distal position) and (2) the posdating late and theA ChEeNlNleA nicdes ( r Ur, C1h9F9iE3L ; F et al., Cretaceous–Paleogene turbidites. During the termi - 2009; F et al., 2014; B et al., 2018). Es - nal Alpine convergence, these turbidite sequences sentially, this convergence model occurs within the were displaced by the thick-skinned thrusting (Fig. regions witohy DtEhN e incomplete continent-continent 2). The suggested cross-lithospheric configuration collision ( r , 1993). (intraoceanic arc) of the two, now thrusted oceanic The inference of the continent–continent colli - plates may help in the explanation why the Apuseni sion, trench migration and pro per discrimination of ophiolites have no contaminAaLtLihoonF Eor f continental the retreating plate motions is AinCCitEiNaNllA y dependent crust as suggested recently ( G et al., 2017). of the proper reference frame ( F et al., 2018E) A protracted lithospheric warming (at the ex - orr EsTtaobN le reference points for motion trajectories ( L pense of a slow oblique subduction) sourced from B et al., 2017). here we use the Serbo-Mace - the underlying mantle may cause a weakening slab donian (a segment of Apu lia/Adria hinterland) as rheology. The weakened slabs are feeble for the ef - the stable reference point. fective stress transfer, howevero, rUeTsEiLsitEar nt forr aU DsEig N - The investigated segment of even now active Af - nificant down-dip tension ( B & C , rica–Europe convergence system has had been con - 2016). The associated trench retreat (the initial sub - trolled by the interaction of several microplates. duction hinge retreat; Fig. 7b) probably started in Essentialy, the investigated area was shaped by the the course of the ongoing subduction inducing a interaction of the (inner) Dinarides (African pro - limited across-strike width obduction of the West montory, oAGpLuiolNiai /Adria indenter or double-vergent Vardar ophiolites on top of the Drina-ivanjica. Con - orogen, D et al., 2007) and a leading edge seg - tinuous late Mesozoic regional-scale compression at ment of the European foreland; Serbo-Macedonian the expense of approaching Apulia/Adria mi - Unit; Fig. 1b). importantly, the (micro)plates veloc - croplate motions (D3, Fig 7), once again slowed ityi MaisTsroiJcEiVaitć ed wiiMthiT rsiiJmEViilć ar obliquCeh pMliaD te junctions down, but on this occasion compensating a trench (DiCCoU & D UrChFi,E 1L 975;A SkoV et al.,r 1EL9E9V1ić ; clogging caused by a buoyant continental segment r et al., 1998; B & N , 2015; P (Drina-ivanjica; inner Dinarides, Fig. 7c). onset of eGeto al. la.n, .2 B0alk1. 7po)l uhosa.,s 2 0a1 9s, l8o0w (2) ,c 6o5–n8v5 ergence rate. A slow- the retreating crustal motion, followed by the We7s7t paced Vardar ocean (West Vardar Zone) underplat - Vadar slab breakoff (Fig. 7c) caused the already ad - DARko SPAhIć & T IVADAR GAuDEnyI

sensu

led to an efficient rheological weakAeCCnEinNDgA and the onset of bimodal stress regime ( F et al., 2009). sensu A degree of extension efficiency is high; in particular in a thin crustal wedge likewise Serbo-Macedonian Unit. DenAsritTyiN iEnZ version lead the lower-crust extrusion ( M et al., 2001) triggering the repetitive uplift and core-complex emplacement including those of Jastrebac Mts. The proposed extensional exhuma - tion dynamics of buried Tethyan lithosphere are com - parable otoLi VtEhT ose proposed EfNoArN tT he Balkan–AeUgreCah n rFieEgL ion ( J et al., 2013; M et al., 2016; B - ca et al., 2018). Early pre-continent-continent conver - gence retreating motions and subsequent li thospheric delamination accommodated the late Cretaceous ex - humation of Mali Jastrebac block ( . 90 Ma ) and ex - humation post-dartAikng Miocene (20 Ma; fission-track numeric age by E et al., 2016).

key developments: The proposed intraoceanic subduction model, ex - plains a limited time obduction of the East Vardar ophiolites onto the underplating West Vardar oceanic plate. This model is very similar to those ioCfh AthiL e Var - Fig. 7 . Simplified reconstruction of the Jurassic intraoceanic arc formation. Explanation in the main text. a) intraoceanic-arc set - dar-Axios zone in Greece, proposed by MEŠiMić etA railć . ting of the East Vardar ophiolites, very close to the Serbo-Mace - (2016) and is ino EliV ne with observaEtiTornosV ioć f r -Š donian margin. Black question mark denotes uncertainties et al. (2005), B et al. (2019), P et al. (2015); associated with the juvenile contact between West Vardar Zone The interaction of northern Neotethyan/Vardar and NE Apulia/Adria margin. recent authors propose Triassic ocean with its bordering basin and antithetic west subduction and the motions of West Vardar plate and its sinking into E-vergent subduction zone drove rollback ( MAffioNE & VAN vergent Eurasian margin can be characterized by a hiNSBErGEN , 2018). b) Along with the obducted East Vardar in - convergence style controlled by the oblique cross- traoceanic-arc sequence, this system sink. The model emphasizes lithosperic thrusting . oblique motions are in accor - the intraoceanic obduction with the two terminal slabs. c) After dance with the NW Apulia/Adria Alpine indentation the trench retreated, early-subducted crust was metamorphically (overriding plate segment) whereas its NE segment overprinted reaching the anchizone (JM) to greenschist-facies level (VJG). The ongomning lithospric shortening was accompa - (investigated region) uEnderrEpTolaN te beneath a segment nied by the delamination and thinining of the Serbo-Macedonian of European margin ( L B et al., 2017); upper plate ( MiLiVoJEVić , 1993) continue into the Miocene. Locally at Jastrebac, the Serbo-Macedonian Unit is in an overriding position overlying the both, ‘Jastrebac greenschists’ (VJG); and ‘Jastrebac Metaturbidites’ (JM). The latter two successions were exposed by the extensional exhumation and subsequent erosion; ‘VJG’are likely to have a Mezozoic paleogeograhic vanced segment of the E-directed slab to invert a affinity belonging to the oceanic crust of the East Var - down going polarity of subducting lithospheric mo - dar Zone; e.g tions so-called eduction (corroborated by the meta - 'JM' are proximal sutured turbidite equivalent morphic changes affecting both, VJG and JM). which entered the foredeep along with the 'VJG'. 78 in the overriding plate, the proceüsrsE r of syn-colli - The Jastrebac studyG celoel.a arnl.y B ailnk.d piocluaotse., s2 0t1h9a, 8t0 f (u2)r, t6h5–e8r5 sional hanging wall decoupling ( ., G et al., 2016) study of the complex regional geology, precise age Intraoceanic subduction of the northwestern Neotethys and geodyamic interaction with Serbo-Macedonian foreland: ...

Gondwana research and paleocontinental affinities of these controver - 2016. Pre-Alpine evolution of a segment of the North- sAiaclk Nneoowtetlheydagn eemntietinest is a must. Gondwanan margin: Geochronological and geochem - ical evidence from the central Serbo-Macedonian

rGMNAaNsi sif. , 36: 523–544. Tec - A tonic, s A. 2018. Subduction evolution of the Dinarides and the Cretaceous orogeny in the : reviewer #2 This research did not receive any specific grant hints from a new paleotectonic interpretation. Contributions, Section from funding agencies in the public, commercial or oEV .V 3E7Tk (o2V)ić: 621–r6E3LE5V. ić Arić oEV of Natural, Mathematical and Biotechnical Sciences not-for-profit sectors. Authors would like to thank B , B., C , V., P , D., Š , k. & B , i. 2018. anonymous reviewers, in particular the East Vardar ophiolites revisited: A brief synthesis of for a considerable improvement of the initial man - geology and geochemical data. . uscript contenEtV. EWNkeA areE rgirć ateful to the Editor-in- Chief Prof. N đ for guidance during orMToALSoATT, i 39 (1): 5h1A–ir6i 8. ArroNi ANDoLFi riNCiPi References B , V., M. C , M. M , L. P , iP nterna -, manuscript review and publication processes. ACCANi tGi.o &na S l Journa, El o. 2f 0E1a3rt.h G Secoidenynceasm, ic evolution of ophi - olites from Albania and Greece (Dinaric-hellenic Geologija Srbije iii-2 – belt): one, two, or more oceanic basins ?.

LEMkSeić tamorfizam oUTELiEr TerctUoDnEoN physics, 102: 783–811. A , V . 1977E. TMkeotVaićmorfizam [Metamorphism - in Ser - B , D. & C , A. 2016. Slab breakoff: insights bian]. in: P , k. (Ed.). from 3D thermo-mechanical analogue modelling ex -

. Zavod za regionalnu geologiju i pale - rUpN erimentosk. oUTiS TectoniroEpL hy6s9ic4s :U 1E9yD7A–N 213. riESSChE LEoknSitć ologiju, ArLGEFN,i ćUniverzitet u Beogradu, 135pp. B , J.-P., S ESLiEr , D., T , C., G , F., D , A Geol,o Vg.i j&a Sk rbije ii-, 1M: S. t1r9at7i5gr. aPfrijeak –apmrebkraijmumbr–ijkuamm ib pra i - J.V.D. & B , M.-o. 2018. Crustal versus mantle

jlueomz,o oikpšte osobine [General featuresE Tokfo tVhiće Precam - UrcCohrFeiE cLDomplexeGse.Ao ksopV here , 746: 22–45. brian–Cambrian - in Serbian ]. in: P , k. (Ed.). B , B.C. & N , r. 2015. The multiply deformed foreland fold-thrust belt of the Balkan orogen, north -

. Zavod za regionalnu geologiju i paleon - UreCrhnFi EBL ulgaria.o yDEN , 1A1PA (N2ik)o: L4A6Go3Ue–o4sp9h0e. rEe ArCE tologiju, rudarsko-geološki fakultet, Univerzitet u B , B.C., r , L.h., P , D. & P , F.D.

MrBi eograENdoui,T 3–33. EULENEEr 2018. Crustal development within a retreating sub - A , i., EB arth a,n Md .P &la nC etary Scie, nGc.e1 L9e9tt6e.r Ts ectonic setting duction system: The hellenides. , 14 (3):

for the genesis of oceanic plagiogranites: evidence So1NT1o1S 9–1130E.r ZiNA rVAToVić ChMiD from a paleo-spreading structure in the oman ophio - C oML, JELN.,o VG ić , N5t.,h h internati,o nha.,l SSympo,s iSu.mM . o& n NDlEitreS . EiSChMANN oLLEr , 1oS3T9o:P 1o7U7L–o1S 94. TEastern Med, itBer. r2a0n0ea4 n. GSteroulocgtuy,r Talh eesvsoalluontiiokni, Gorfe etchee , th th A , B., r , T., P , JUo.u &rn kal of Geologi,c Dal. iAnptreirl n1a4 l –D2in0 arides: a preliminary study based on 2So0c0i5et. yA Lgoen adnodn origin of granitic rocks of the eastern selected regions. Vardar Zone, Greece: new constraints on the evolu - Palaeogeogra -

tion of the internal hellenidesG. eologija Srbije ii-2 – SoNpThoyS, Palaeocölrimö,S aTt1o1lo-7g.y, Palaeoecology NđMELekzooVzioć ik , 162: 857–870. C , L. & V , A. 2004. Mesozoic plate tectonic re - A , M. 1E9T7k5oV. iSć tratigrafija. [Stratigraphy- in Ser - construction of the Carpathian region. bian]. in: P G, eko. lo(Egdij.a) . Jugoslavije – Tektonika ErVENJAk ErArA oNGiorGi Natur, e210: 1–56. . Zavod za regionalnu geologiju i paleon - č , Ž., F , G. & T , E. 1963. Age determi -

NđtEoLlkoogVijiuć , rGF, Univerzitet u Beogradu, 159–301. nation of some yugoslav granites and Vgriia nkoodnigorreiste gse boy - A , M. 1982. ELtlEohogeN a r SufbridJ,irSuoemkMcN-isjJAatrk monintieurmal omogVeijrtaihć io pde.t rologija , 1Z9a7g:r 8e9b,3 . [Geology of yugoslavia – Tectonics- in Serbian]. Uni - D , G., D , M. & L , A. 1972. Sr age of the

NTvićersity oEyf TBCehlEgVrA ade.V o6N 92 UpApD.T oUNoV riVić Stalać-Juhor metamorphic complex. A , M., P , i., Q , A., k , A., T , B., , Vol. Geol. aEnr. BAaFlikM. pooVlSukosi ., 2019, A8S0E (V2), 65–85 ErDJikoV ETZEL 79 S , T., T , G., G , i. & W , A. ii: 97–112. [in Serbo-Croatian, summary in English]. DARko SPAhIć & T IVADAR GAuDEnyI

Tectono -

iLEk LoWEr physics, D , y. & F oph,i oMli.tFe.sJ. i2n0 E0a3r.t hA rhci-sttroerny ch rollback and contact between the Carpathians and Dinarides – The

forearc accretion: 2. A model templiaLtEek for ophoiBoiNliStoeNs Jastrebac Mountains of Central Serbia. in Albania, Cyprus, aGnedo olomgya nof. iYnu:g Doslav,i ya . & r ACCENNA 710E-C7k1E1r : 162–18U3E. r iLLi oSChi P. T. (Eds.). . Geological So - F rUN , C., B APiTAN, iTo .W., A UN,i CLiE.,L LB o , Ao.r, VB àTh , Lo., iMciTiertiJyE,V Lićondon, Special PuGbeloictaetcitoonnsi,c 2 1m8a: 4p3 –in6 8.scale rBLieVvEiT e,w J.s-P o.i,f r CGoeMoApLhLoysi,c Fs,.Ao.,y FDEN oS, SFE. Th Ti ,E Fr.P, EJ L - D 1:2,000,,0 M00.D. 1997. . Geological LoNi , L., P , C., r , L., r , F. & S - iMiinTrstiJiEtVuitć e - Gemini. Special Publication, Barex. 188 pp. , E . 2014. Mantle dynamics in the Mediterranean. D , M.D. 1999. ACCENNA oLT EC5k2Er: 283–33A2L. LETMeAcNtoD nophysiocy s, . MinistryA fcotar VMuilncainngo loagnidca E, nergetics of F DEN , C., h , A.F., B , T.W., L , S. & r - iMSiTerriJbEViaić and Geomagnetic institute. , L.h. 2018. Dynamics of the ryukyu/izu-Bonin- D , M. 2001. Dinarides and the Vardar Zone: a short Marianas double subduction system.

iMriTerviiJeEwVi ć of the geoloiMgyiT. rTihJEeV iJć ournal of Geol1o3g:y 1, –8. ACC7E4N6D:A 229–23iN8E. LELai rth andE rPyAlanetary Science Letters D , M.D. & D , M.N. 1973. olistostrome F , M., M , G. & G , T.V. 2009. Coupled and Mélange in the yugoslavian Dinarides and Late Meso - decoupled regimes of continental collision: Numeri - zoic Plate Tectonics. 81 (3): cal modeling. ,

iM3iT2r8iJ–E3Vi4ć 0. iMiTriJEVić ro2iT7Z8h:E 3iM 37–349. AhN WE rEi AiNWriGhT D , D.M. & D , N.M. 1975. ofiolitski F AAS , N.E, oSr. GJ iEV -A A,G DEL. F , AL.E NUG. EW r , r. melanž Dinarida i Vardarske Zoiin geo: dGiešnejiz zan ia gnesotvtekn-i M , N. G , T., N , J. & P , J. 2014. Age stoknupsk, Zon zannasčtevnejnei. s[aovpjehti ozlai tnea mftéul aJAnZgue, oSfe tkhceij aD iznaa prridim es- Tanecdt oconmicsp, osition of meta-ophiolite from the rhodope ajenndu tgheeo Vloagridjea,r g Zeoonfiez:i kGee in geesoisk aenmdij ie ts geotectonic im - Middle Allochthon (Satovcha, Bulgaria): A test for the portance -in Serbo-Croatian]. maximum-allochthony hypothesis of the hellenides.

ALLhoFEr 32Vo: N147U7A–D1T 500. ChMiD UiLLoNG iMiTriJEVić GiMeoiTlroišJkEVi ićanali Ba, lskear.n Ask, o5g: a3 9p–o4l6u .- G EyTChE, VDA ., EQGhEDi , A., S , S.A., G , M., D ostrva, M.N. & D , M.D. 2009. The Lower PSwiss Jour,n ia. &l o S f Geosc,i ei. n2c0e1s 7. Magmatic and tectonic Cretaceous Paraflysch of the Vardar Zone: composi - history of Jurassic ophiolites and associated grani - tion and fabric. toids from the South ApuSsterunci tMuroaul nCthaainrasc (treroimstiacn aian)d .

iVLJAN 70: 9–21. radovi Geoinsti - ErTZeiNcA togenesis of Zvornik Sutu,r 1e 1zo0n (e 2): 699–719. D tuta,, S . 1979. Some petrological, mineralogical and G , N., 2010 . Strukturne karakteristike i tekto - geochronological characteristics of granitoid rocks of geneza Zvorničkog šava [ Mali Jastrebac Mts. (central Serbia). – in Serbian]. Un -

oGELaiorNthi 1 S3c:i 1en4Acr1eM– r1iNe6Av0Tii.e ws UFFAro CroCCA publ. PhDT Tehhensikisa, F–a rcuudltayr ostfv Mo,i gneinoglo agnijda Gi meoeltoagluy,r Uginjai -, D , C., C , E., C , M., S , D., 2007. rUvBeićrsity of Belgrade, 142 pp. Subduction kinematics and dynamics constraints. G , A. 1999. Tectonics of Jastrebac and its general

oLić ALENić oN,č 8A7r:E V1i2ć 5–175 . ADŽi UkoVić meaning. Geologica Carpathica D , D., k , M., L , č. & h -V , M . rU5B0ić : 13–17. 1980. osnovna geološka karta SFrJ 1:100 000. List G , A . 2002. Transpressive Periadriatic suture in Ser - Paraćin L34–7 [Basic Geologic Map of SFr yugoslavia bia and SE Europe. , Special

1:100 000. Sheet Paraćin L34-7 – in Serbian]. Savezni üriEsr sue 5V3A: N 141iN–S1B4E2rG. EN ATENCo orFU okgoeVoić loški zavod, Beograd. G AS, CDE.L, LA h , DT.Je.Jc.,t oM nics, , L., C , F. & đ , i . 1985. Primena strukturne analize na rešavaGneje - C , A. 2016. kinematics of a former oceanic ogrloašđkei paanlaeloi zBoajslkkaihn stkvogreav pinoalu Dorsitnrvskao, -ivanjičke oblasti plate of the Neotethys revealed by deformation in the

[Application of structural analysis on the Paleozoic for - iMUMElurkUışS la basEiSnC h(TMuANrkN ey). oSToPoUL3oS5: 2385–2416. mations of the Drina-ivanjica region – in Serbian]. h , F., r , T. & k , D.k. 2006. Late

rAk ATENCo oLJić ToJADiNoV4ić9: 11–N1D6r0iE. SSEN Proterozoic and Silurian basement units witTheicnt otnhiec E , D., M iLiNG, LSh., oT FEr , M., S UCEA , U., A , Serbo-Macedonian Massif, northern Greece: the signifoi - P.A.M., W , E. & D , M.N . 2016. From cance of terrane accretion in the hellenides. in: r - 80 BErTSoN GeooUl.N aTnr. ABkailkS . poluos., 2019, 80 (2), 65–85 nappe stacking to extensional detachments at the , A.h.F. & M , D. (Eds.). Intraoceanic subduction of the northwestern Neotethys and geodyamic interaction with Serbo-Macedonian foreland: ...

Development of the Eastern Mediterranean region

ArAMATA NEŽEVić EMoVić oPoVić . Geo - k , BS.u, lk letin of t,h Ve. ,G M eologica, lE S. o&c iP ety of G,r Aee. c1e9, 94. th iMlMo gEirckaUl S ociety,E LiSoCnhdMoAnN, SN pecial PuobSliTcoaPtiooUnLso, S260: 35–50. The evolution of the northern part of the Vardar Zone h , F., r Tectono, pTh. y&si cks, , D. 2009. in Mesozoic. Proceedings of the 7 Congress, Thessa - Serbo-Macedonian revisited: a Silurian basement ter - loniki. 30

rane from northern Gondwana in the internal hel - Uk(o2č ): 479–o4r8ič6A.N oŠir ELAk ALAMić VAN leniNidSBeEsr, GGErN eece. AFkENSChEiD 473:P A2k0M–A3N 5. EU k r,V ADT.o, VG ić , Š., k , A., B , M., h , J. & LhENkAMP , D.J.J.,o h rTEL Geol,o Eg.y, , S , W., M - h inte,r hn.a 2ti0o1n3a. lM Jiodudrlnea Jlu roafs sEiac ratghe Socf ibeanscael t(sG aenod l , J.E. & W , r. 2005. Nappe stacking re - trhuen dpsocsht) -obduction sedimentary sequence in the sulting from subduction of oceanic and continental Guevgueli ophiolite Complex (republic of Macedo -

oElCitk hospheorNeE bSCeU low Greece. Proceed3i3n(g4s) o: 3f 2th5e– 31288th. nia). h Con, Vg.r &es si of the ,C Ca. r2p0a0th6i:a Bna-Bsiacl kaannd Ginetoelromgiecdaila Atess voocli - E rEToN , 1A0N4D:y 435–447o. LLi STASZEWSki caatinoincsB inel tghrea dEe astern Carpathians (rarau; romania): L B , E., h , M. r., M Tect,o Gn.i c&s , U , k. 2017. are all of them ophiolites? Post-20 Ma motion of the Adriatic plate: New constra - Geophysical Journal inter - ints from surrounding orogens and implications for

oLnT atio,n alo, yDEN , 219–2E2C1kE. r EPciTrkuosVt-A mantle decoupling. 36 (12): 3P1e3t5r–o3lo1g5i4c., h , A.F., r , L.h. & B , T.W. 2017. The dynamics L geoche, mS.ic2a0l 0an2d. Piseottroopleo šstkuid, igeeso ohf ethmei pjsekrii dio itzitoet opustekri of double slab subduction. Dprinoaurčiucv oanpjhai lnoait ep eZroindeo tiinti tree podub vlnica otrfe Msnaicoetd doinniaa rski

oNESCU 2o0E9C k(1): 250–265. ofiolitski pojas vo republika Makedonija. [ i , C. & h , V. 2004. MeBsoezriocihc tveo licnasntiitcust f rEormdw Dies - sleenis-c6h0a4f2t aknadr lo th-ferra dnezepnws e-l lsu ini vtheers Titräatn sGyrlvaazn, ian -in Depression and their relation to those from the South Macedonian].Unpubl.PhD Thesis, kiril and Metodij

Apuseni Mts. (romania), AFUFinoiNvEersity oVAf NSkoiNpSjeBE, r3G3E3N pp. 9: M T,e Mct.o &n ics, h , D.J.J. 2018. reconstructing

oLi1VE9T 9–20A1C. CENA UET ABroUSSE oUrhiET plate boundaries in the Jurassic Neo-Tethys from the J AC,o LM.,B F E E, CCo.M, h TE , B., UL roV E, NLè.,L P E rU, N L.L., East and West Vardar ophiolites (Greece and Ser - L hiLiPP, oN ., L AUL , E., B ALAüN , E., D ArABU,L UyT., B i,r Jo .- ALbEiŠaE)V. ić Uk3A7N (o3V)ić: 858–88rk7o. Vić ArAJičić J PM.A, PLLo ,o MNi.é, P , AUE.,y S DAN , G.k, kAy B,E hrh., äP NSLi - M BrADi,N MoV.i,ć V TANiS, AMVL.J,E VB ić , TiM.,i Tk riJEVić B,a Lsic., o,U Cr.T, EM AU , P.,U G iEr Te, cFtA.o,D no EoNpNhE , yAsi.ic.s, o riUSSi , oGerolŠoEgVićc Ma, pZ .o, fS former Yugo, srla.,v Dia 1:100 00, 0M. E. x& - r., P , A., A , r., G , L. & D , o . Uplanator,y Mbo. o1k9le7t4 f. oor stnhoe vSnhae egtekoulroššukmal ikjaa rta SFrJ 2013. Aegean tectonics: Strain localisation, slab tear - 1:100 000. Tumač za list kuršumlija k34–31 [ ing and trench retreat. , 5A9m7e–r5ic9a8n :

orDA1A–sN s3o3c. iation of Petroleum Geologists Bulletin, - in Ser - J , T.E. 1981. Thrust loads and foreland basin evo - ArboiVainć ]. SaveozknoiV gićeoGleoošklooiL šJzkićaiv oadn,a BlPieA ohBgiać rlakda.nskoigLaiV opJEoVliu ć - lution, Cretaceous, western United States. M ostrv,a M., đ , i., T , M., S , D. & M , 65: J. 2007. Extensional Unroofing of the Veliki Jastrebac

Ar2A5M0A6TA –2520. Dome (Serbia). k , S. 2006. The geological development of the ArTiNEZ , 68:o 2o1D–L2iF7FE. NAyaLtour re Balkan Peninsula related to the approach, collision M , F., G , A.M. & T , B. 2001. Metamor -

and coo BmErpTSroeN ssion of GonodUwNTarnAak iaS nd Eurasian units. phic core complex formation by density inversion in: r , A.h.F. & M , D. (Eds.). Tectonic ENaAnNdT loweorL-icVrEuT st extrursiEioLynN. Ck , 411: 930–934. Development of the Eastern Mediterranean region. M , A., J , L. & V , B. 2016. kinemTeacttioc nroe - Geological Society London Special Publications, 260: cpohnysitcrsu, ctions and magmatic evolution illuminating

Ar1A5M5A–TA17T8e. rranreSsT oić f Serbia crustal and mantle dynamics of the eastern Mediter - k , S. & k , B. 1996. NTEeŽrErVaićnes of SerrbSiTaić and ranean region since the late Cretaceous. Neighbouring Areas, in: k , V. & k , B. iChAiL 67iP5E:r 1A 03–14o0ro. NEoS iLiAS TAFLoS (Eds.). . Faculty of Mining and Ge - M , M., P , k., k , A., k , A. & N , T. Geol. an. Balk. poluos., 2019, 80 (2), 65–85 81 ology, University of Belgrade, 25–40. 2016. New perspectives on the origin and emplace - DARko SPAhIć & T IVADAR GAuDEnyI

international Journal of Akić ADŽi UkoVić iMiTriJEVić ALBEaNsiić c Emaerntht of Stchie nLcaets e JuGraesosliocg Fisahneo s rguranndistceh, aaussociated Greolo,Ag Mrick. Mo, hVaićp of- fV ormer ,Y Mug.,o D slavia 1:100. M00.,0 k .Explan,a Mto. r& y with an intra-oceanic subduction within the Neote - bMooklet fo,r V th. 1eS9h7e6e.t oksrunšoevvnaac -g eološka karta SFrJ 1: thyan Axios–Vardar ocean. 100 000. Tumač za list kruševac k34–19 [ ( ), 105:

iL1iV9o6JE5V–ić 1983. Studia Geophysica et Geodaet - in Serbian, English and M ica , , M.,1993 . Geothermal model of Earth’s crust ESirMuić ssiAarni ćSummVEaTrkieosV]i.ć SavezniA gLoeGoh loški zavod, Beograd. and lithosphere for the territory of yugoslavia: some r Geo-lŠoški a, kna, Cli Balkans, kVo. g&a B poluos,t krv. a2005. radiomet - tectonic implications. ric k/Ar data as evidence of the geodynamic evolution

kAy 37: 26ü5 Tr–hy2Seü7 MZ 8 .editerranean Basins: Tertiary Exten - of the Ždraljica ophiolitic Complex (central Serbia). o si, oAn. iw. &ith T in thUer A,N lopD .in1e9 o9o9roL. igTVeEntT hyan sourVtAuTrh es of noErrtAhNeNrEn iCoU UrG oDFriAUx V, A6N6o: V73–79. Turkey. in: D . B., J , L., h , E & S , r , L.-E., B ,G Je.-oPd.,i nG amica Act,a i. & i , Z. 1998. M. (Eds.). rhodope and Vardar: the metamorphic and olistostro - . Geological Society, Lon - mic paired belts related to the Cretaceous subduction

AMdić on, SprekcAii al PubliEciaL tions, 15A6N: T4A7i 5–515. oBuEnrTdSeorN Europe. Lithos , 11: 285–309. P , J., Â , P., o’N , J.o. &W L estern, C.a1rp9a9t2h. iVaenrsy, E loawst - r , A.h.F. 2002. overview of the genesis and em - earnnd loAwlpgsr, adDein parroigdrees ssive metamorphism of Upper placement of Mesozoic ophiolites in the Eastern

Cretaceous seodZáimr ents in Mt. Motajica, northern Di - oBMEreTdSiotNerranean region. , 65: 1–68. narides. in: V , J. (Ed.). r , A.h.F. 2012. Late Palaeinotzeorinca–tCioenaolz Goeico ltoegc y- . iGCP No 276, BratiVsiljaevsati, rtoenviice w development of Greece and Albania in the con -

AM1hić r3v1a–t1sk4UoŠ6gi.ć geološEkLoAgS kdA ruštva text of alternative reconstructions of Tethys in the P , J., G , V. & J , V. 2000. Basic geological fea - Eastern Mediterranean region.

tures of the Dinarides and southE clToigsaiae. geolog - oBErTSoN , 54 (4): 373–i4xo5N 4. roWN oLLiNS or AMiicć ae helvetiae , 37 (2): 9–18. r riS ,i CAk. EhT.T F., J.hEA. rD P , SST.A B öMEr , A. C , A. M - P , J. 2002. The Sava-Vardar Zone of the Dinarides and , E. P , i. S & U , T. 1996. Alternative hellenides versus the Vardar ocean. tPeacltaoenoimc amgondeteilssm f oarn dt hTee cLtoanteic Ps aolfa tehoez Moiecd-iEtearrrlya nTeear n -

ANTić Akić , 95: 99A–D1Ž1i Z3a. UpkiosVniić ci Srpskog geološkog trieagryio dn evelopment ofo TrertihS ys in thAer ELiaNsG tern Mediter - P dru, šVt.v, ra za 1, 9M6.6o.. ,g &od h inu -V , M. 1969. Paläogene ranean region. in: M , A. & T , D.h. (Eds.). sedimente und jüngere granodiorite auf den nordhän - gen des Veliki Jastrebac. . Geological Society of London, Special Publi -

ETroVić VETkoV AS,i L6J3EV3i–ć 635 [inV ESTekrobViiać n]. oBcEartTiSoonN 105: 2A3rA9M–A2T6A 3. Arić P , D., C , JVo.u, Vrnal of Ge, oi.d &yn C amics , V. 2015. r , A., k , S. & Š , k. 2009. overview of A new geophysical model of the Serbian part of the oLipthioos lites and related units in the Late Palaeozoic– East Vardar ophiolite: implicGaetoiolonšsk if oarn aitlis Bgaelokdany - Early Cenozoic magmatic and tectonic development

ETnsrkoaoVmgić iac peovloulluoAtsNitokrinvć.aE Vić , 90: 1–13. of Tethys in the northern part of the Balkan region. P , M. & J , J. 1990. Tithonian limestones of oBErTSoN , 108: 1–3r6iV. ić Erić UCUr the kuršumlijska Banja area. r , A.h F., T Te, cBt.o, đnophy, sNic. s& B , i. 2013. Tec -

rELEVić EhrhEiM, 54: 49E–U5T9TE. r oMEr oEV tonic development of the Vardar ocean and its mar - P o, ŽDo.V, ićW oGA,A Sr.D , r V D V, EMTk.,o r Vić , r.LCh.,M B iD , gins: Evidence from the republic of Macedonia Taenc d - B., B , M., B Ter, ra. N. Po.,v Ca , V. & S , S . oyGtDorEneN iecks Macedonia. , 595–596: 25–54. 2017. The Late Cretaceous klepa basalts in Macedonia r , L.h. 1993. Evolution of retreating subduction (FyroM) - Constraints on the final stage of Tethys clo - boundaries formed during continental collision.

Aksiuć re in thAeD ŽBi alkUaknosV.i ć ALBENa, i2sć i9c: G1e4o5l–oA1gr5ikc3o . VMić ap of - ACCANi , 12h (o3Ti)A: D6E2S 9–63o8N. TATo EDA r foi,r LMmoV.eA, rNh YouVigć o-sV laJ via1:1, 0M0. ,0 k00, Shee, tM k.r, uM ševac , V. & S , E., P , A., S , A. & Z , o. 2008. New M , L . 1969. osnovna geološka karta SFrJ evidenocefi ofolirt is, upra-subduction zone ophiolites in the 1:100 000 – list kruševac [ Vardar Zone of northern Greece: implications for the - in Ser - tectono-magmatic evolution. of the Vardar oceanic 82 Geol. an. Balk. poluos., 2019, 80 (2), 65–85 bian]. Savezni geološki zavod, Beograd. basin. 33: 65–85. Intraoceanic subduction of the northwestern Neotethys and geodyamic interaction with Serbo-Macedonian foreland: ...

Marine and Petroleum Geology,

ACCANi ECCALUVA hoTiADES EDA S , E., B , L., P , A. & Z , o. 2011. on the western Circum-rhodope belt (northern

Petrogenesis and tectono-magmatic significance of rEćGkroeVeicć e).A ToćANiN ASkoVić AToV1ić 13: 104A–J1ić 33. basalts and mantle peridotites from the Albanian- S -B , D., V , N., M , V. & G , V. Greek ophiolitLeitsh aons d sub-ophiolite mélanges. New 2012. Correlation of metabasic rocks fGroeomlo mškeit aamnoar l-i constraints forthe Triassic-Jurassic evolution of the pBhalikc asnoslkeosg oaf ptholeu Dositnravra idic and the Western Vardar Triassic-Jurassic evolution of the Neo-Tethys in Di - zone 1175 ophiolites (Serbia): three contrasting

ChnMaiD ride sectoEr. NoULLi , 124 (ü3G–EN4S)C: h2U2h 7–242 ATENCo pressure-temperature-time paths. S Ch,E FMEr.S., B ChUSTEr , D., F iSChLESr wiss, JBo.u,S rTM nASaZlE oWfS kGi,e Lo .-, TAMPFLi orEL A, V7A3Z:Z 6A 1–85. oSAr iEGLEr sSciences , S., S , r., T , M. & U , k. S , G.M., B , G.DE.p, Cisodes, , W., M , J. & Z , 2008. The Alps-Carpathians-Dinarides-connection: a P.A. , 2001. Palaeotectonic and palaeogeographic evo - correlation of tectonic units. lution of the western Tethys and PeriTethyan domain

ChMiD , 10ü1GE (N1S)C:h 1U3h 9–183o.UNoV ATENCo iEV TAM(iPGFCLi P PArnocjiecntt 3oo6rCo9hgA)e.r nD s and Mod2e4r (n4 A)n: a2l2o2g–u2es27. S ErG,E LMTE .S., F BErhäNSLi, B., k LEUGEr, G A., M ChEFEr ; L., NChUS - S , G.M. & h UrP, hCy . 2009. EPPlPaiEte-tectoniycNs EoS f the TEr , Po.M, o LJENoVići , r.,S TP ASZEWSki , J, S VAN iN, SB.,E S rGEND - Alpine realm. in: M , J. B., k , J. D. & h , A. J. , r., T , B., U , k., h , (Eds.). . Geolog -

D.J.J., 2019 . Tectonic units of the Alpine collision zone TAMicPaFl LSi ociety, LondooZnU, r SpeEcuiarlo Ppuebalnic Laittihonosp, 3h2e7re: 8D9y–n1a1m 1-. between Eastern Alps and western Turkey. Gondwanan S ics , G.M. & k , h.W. 2006. Europe EfErom the okroLesearcrhE. LhEtVtipć s://dooiM.oErr g/10.10o1Ž6o/Vji.gć r.201V9AN.0D7E.0N 05 o VTaErPihscEaNnSo tN o the Alpine cycles. 1035 in: G , D.G. & S GA,A krD., P TEFA,N Do.V, A r ,o rST.Lić .L, Bithos o,k MUL.o, V B - S , r.A. (Eds.). , P., S , E., k , B. & č , N., 2019. ToJAD.i NGoeVoićlogical ASToEcNiCeoty, LonNdDorniE, SMSEeN moirs, 32: o5L7Ji–ć 82. CreataceousG uelotrloagpyo toafs esaics tmerang pmaarti osmf V ferloikmi J tahsetr Seabvaac - S oEkEN , U., M , L., A , P.A.M., T , M. Vardar Zone of the Balkans. . https://doi.org/ & F , J.P.T. 2013. The balance beGtwloebeanl aonrdo gPelannic-

PAh1i0ć .1016/j.lithos.2019.10526 8. ebtuairldy icnhga anngde subsequent extension during the Ter - S , D. 2006. . tiary evolution of the NE Dinarides: Constraints from Unpublished M.Sc thesis. rudarsko-geološki fakultet, low-temperature thermochronology.

PAhUinć iverziteAtU uD EBNeyoi gradu,74 pp. [in Serbian] oLJić , 103: 19–38. Transactions on S , D. &P rG oceeding, sT o. f2 G0e1o8lo. Pgirsitms Aorsdsoiacli aGtieoond. ynamics T En, vMir.o 2n0m18en. Tt eacntdo nDice veevlolpumtioent of the European margin of Southern Carpathian-Balkan Basements (Serbo- and Neotethys suture zone in the region of Belgrade Macedonian Mass): Avalonian vs. Cadomian Arc Seg - (Northern Šumadija-Serbia). WSEAS

ments. 130 (2): oLJić ATENCo ToJADiNoVi,ć 12: 268iL–L2iN7G7S. hoFEr PAh1i4ć 2–15L6A.VAŠ rBić AJić AUDENyi T , MJUB., oM Vić BrA, DLo.V, iS ć , U., W , E. S Ge,o Dlo.,š Gki ana-lTi Balk, aBn., sđ kog p, So.l &uo G strva , T . 2018. Neo - G&l oL bal and- oPlanetary ,C Dh.a2n0g1e 8. Understanding fossil proterozoic - late-Variscan geodynamics of the Drina fore-arc basins: inferences from the Cretaceous Formation (Drina-ivanjica metamorphic basement). Adria-Europe convergence in the NE Dinarides.

PAhić LAVAŠ rBić AUDENyi , 79 (2): 57–68. VAN iNSBErGEN orSVik , 17C1h:M 1i6D 7–184. AţENCo S , D., G -T , B. & G Acta Ge,o Tlo. g2i0c1a9 Pao. lTohneic Na eo - h AFFioNDE .J.J., T EiNoU, D T.h., S ürEr, S.M., MPAkMAN , proterozoic – Paleozoic basement in the Alpidic L.C., M , M., r L.M.G, Gondwa, nDa. & r S esearch,. Supragetic/kučaj units of eastern Serbia: a continu - W. 2019. orogenic architecture of the Mediterranean ation of the rheic ocean? , 69 region and kinematic reconstruction of its tectonic

PAh(4ić ): 531A–U5D4EN8 yi LAVAŠ rBić evolution since the Triassic. S , D., G , T., G -PT roce,e Bd.in2g0s1 o9fb G. eAo hloidgdisetns’ sAu s - UkhAtŠtipNso:V/i/ć doi.org/10.1016/j.gr.2019.07.009 . tsuocreia otifo tn he western Palaeotethys: regional geological V , S. 1973 . Prilog geotektonskoj reonizaciji constraints on the late Paleozoic “Veles Series” (Vardar međugraničnog prostora Dinarida, PanoniZdap ii sSnrip c-i Zone, North Macedonia). SskGoD- mzaa k1e9d7o2 nske mase [Towards the geotectonic di -

PAhić LA. VDAoŠ i: r1B0i.ć 1016/AjU.pDgEeNoyila.2019.10.008. vision of the boundaries of the Dinarides, Pannonides S , D., G -T , B., G , T. 2020. The inception and Serbo-Macedonian Mass -in Serbian]. Geol. an. Balk. poluos., 2019, 80 (2), 65–85 83 of the Maliac ocean: regional geological constraints , 1–18. DARko SPAhIć & T IVADAR GAuDEnyI

AChAriADiS oSToPoULoS EiSChMANN iMMErkUS Z ATU,k Po.,V k ErGE,E DV ., r , T., h , као и проблематичну палеогеографију и старост Geo - F., M , D. & S , S. 2006. U–Pb ion-micro - наведених литосферних јединица: physical research Abstracts probe zircon dating of subduction-relatedmagma - Утврђено је да се Српско-македонска једница ophiolites of the eastern Vardar Zone, tism from northern Greece: the ages of the Guevgueli, (СМЈ) налази у западно-вергентно структурном N. Greece Thessaloniki and Chalkidiki igneous complex. положају, тј. да је навучена преко субдуковане AChAriADiS , 8: 55–60. океанске литосфере која највероватније при - Z , P. 2007. пада Источној вардарској зони (ИВЗ). Предло - . Unpublished PhD Thesis. Johannes Guten - жена конфигурација је у супротности са неким ELibć erg-UnivreArZsiiotät, MaiAnLzA, S2o1M9A pp. ArroNi AN мишљењима који позиционирају офиолите ИВЗ Z Do, LMFi ., D’o , M., M , A., M , M. & P - , као систем обдукован преко СrМAkЈ са дужином , L., 2005. The Metabasites from the kopaonik обдукције и од преко 70 km ( E et al., 2A0k1ić 6). ofioliti, Metamorphic complex, Vardar Zone, Southern Ser - Наиме, према ОГК СФРЈ, лист Крушевац ( r et bia: remnants of the rifting-related magmatism of the al . 1969), аутори указују на западно-вергентно Mesotethyan domain or evidence for Paleotethys clo - навлачење Српско-македонског кристалина пре - sure in the Dinaric-hellenic belt? 30 (2): ко Великојастребачког комплекса (зелени шкри - ELi9ć 1–101.ArroNi ANDoLFi riVić љци и горњокредно-палеогени турбидит и). ofioliti, Z , M., M , M., P , L. & T , B., 2010 . Tec - Иницијална горњојурска интеракција са СМЈ као tonic setting of the Vardar suture zone (Dinaric-hel - континенталном маргином ( D1 фаза) се може lenic belt): the example of the kopaonik area документовати старошћу меланжа. Међу тим, Рез(иsoмutеhern Serbia). 35 (1): 33– 47. ова конфигурација је прерађена накнадним et al , структурно-тектонским догађајима. Након ове Интраокеанска субдукција иницијалне интеракције између горњојурско- северозападног Неотетиса (јурски доњокредне океансAкkеi ć литосфере и формирања офиолити Западне- и Источне залучног басена, r . (1969) интер пре - вардарске зоне) и геоди нами чка тирају горњокредне флишеве стављCаhјуMћiDи их у интеракција са Српско-македонском трансгресrиAkвни контакт према СМЈ. S et al. континенталном маргином: (2008), E et al. (2016) истичу супротну или Редефинисање односа подинског или источно-вергентну позицију офиолита ИВЗ пре - повлатног литосферског блока на ма СМЈ, указујући да Јастребачка дома и систем примеру Јастрепца зелених шкриљаца (‘ VJG’) припада глав ном Вар - дарском/Неотетиском океану. Међутим, детаљ- на анализа геолошке конфигурације на потезу западни обронци Великог Јастрепца– централни делови Великог Јастрепца , указује да овај изу - У раду је дата кинематска реконструкција и зетно ком пликовани неотетиски лито сферни тектонска интерпретација Неотетиског подин - океански сегмент се може интерпре тирати и као ског блока на основу анализе регионално-гео - део ИВЗ формиран као ( i) последица интра - лошких карактеристика Јастребачког тектонског океанске субдукције са источно-вергентом За - прозора. Досадашња истраживања указују да се падном вардарском зоном (ЗВЗ) која је ( ii) неотетиски афинитет на истраживаном под - касније под вучена под континенталну маргину ручију може идентификовати као систем који (СМЈ); припада двема тектонским јединицама: Исто - (ii) На основу предложене геолошке конфи - чној- и Западној вардарској зони. Прегледом гурације истраживаног терена (поготову детаљ - структурно-тектонских решења предложених но испитиваног западног дела Великог Јастрепца за истраживани простор (примена аналогије са са широм околином, тј. контакт СМЈ и ИВЗ) као и 8д4 еловима Неотетиса и његове маргине у Грчкој), реконструк ције тек тGоeoнl.с aкn.е B aеlkв. pоoлluуoцs.,и 2ј0е1 9,З 8В0 З(2/), И65В–8З 5 укључујући петролошки састав, палинспастику утврђено је да ‘ VJG’ највероватније припадају Intraoceanic subduction of the northwestern Neotethys and geodyamic interaction with Serbo-Macedonian foreland: ...

back-arc ИВЗ. Реинтерпрета ција структурно-тектонског конфигурацију такође упућује и метаморфни склопа искључује дистални афинитет пасивне тријас Копаоничке об ласти које се најверова - маргине Апуљско-јадранске микроплоче као тније развијао у или залучним усло - екс хумирани део великојастребачке доме. Тако - вима, где га наслеђују већ описани литосферни ђе, обдуковање офиолита ИВЗ је западно-вер - догађаји јурске старости ук ључујући и „па - гентно (преко ЗВЗ) и највероватније се одвијало рафлиш“. Доста каснији, по влатни метатур- под сличним околностима као што је утврђено бидити (‘ JM’) Великог Јастрепца су еквивалент нешто јужније, тј. на примеру Пеониас подзоне горњо кредних турбидита који су благо мета - у Грчкој. Нак надним покретима (наставак су - мор фисани током сутурне фазе (ула зак у жења Неотетиса и субдукције ЗВЗ/ИВЗ под СМЈ) субдукциони ров). Ексхумација ‘ЈМ’ је уследила и терминалним навлачењем (колизија Апуљско- путем екстензије повлатне СМЈ (по влатни ли - јадранске микроплоче и СМЈ), овај офилитски тосферни блок) и еоценског граноди оритског коплекс је подвучен испод СМЈ. Сходно томе, емплејсмента ( D4). У касноалпском контексту зелени шкриљци (‘ VJG’) који су покривени СМЈ (мета )турбидити (‘JM’) потврђују на ставак суб - back-arc на Великом Јастрепцу имају палеогеографску дукције ЗВЗ (и после обдуковања ИВЗ) у источно- Manuscript received September 13, 2019 припадност која указује на део ИВЗ или сред - вергентни субдукциони ров који се налазио Revised manuscript accepted December 06, 2019 њојурско-горњојурског интраокеанског система испод СМЈ током мезозоика и па леогена. у залучној позицији ( ) сада несталог Неотетиског океана, пре ко кога су горњокредно- палеогени (мета )тур бид ити (‘ ЈМ’). На овакву

Geol. an. Balk. poluos., 2019, 80 (2), 65–85 85