November 18, 2016 / Rules and Regulations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Gas and Propane Gas High Efficiency (Condensing) Warm Air Furnace
GTHB NATURAL GAS AND PROPANE GAS HIGH EFFICIENCY (CONDENSING) WARM AIR FURNACE INSTALLATION, OPERATION & MAINTENANCE MANUAL ECR International 2201 Dwyer Avenue • Utica • New York • 13504 • USA An ISO 9001-2000 Certified Company R www.ecrinternational.com P/N# 240005603, Rev. H [11/2009] GTHB WARM AIR FURNACE IMPORTANT: THIS MANUAL MUST BE KEPT NEAR THE FURNACE FOR FUTURE REFERENCE!! R 2 GTHB WARM AIR FURNACE 1 - Warnings And Safety Symbols ..........................................................................................................................4 2 - Furnace Dimensions And Clearance To Combustibles ....................................................................................6 3 - Installation Requirements ................................................................................................................................7 4 - Furnace Components ........................................................................................................................................8 5 - Furnace Sizing ....................................................................................................................................................9 6 - Location Of Unit .............................................................................................................................................. 10 7 - Combustible Clearances ................................................................................................................................. 12 8 - Duct work ....................................................................................................................................................... -
Endorser Statements (In Alphabetical Order)
Endorser Statements (in alphabetical order) Rovnag Abdullayev, President, SOCAR (Azerbaijan) “The growing global oil & gas industry has also brought into the global agenda the mitigation of negative effects to the environment and climate change as well as environmental protection. Azerbaijan, as an oil producing country, has undertaken bold actions and achieved significant results during the past several years. SOCAR has joined the World Bank’s initiative “Zero Routine Flaring by 2030” together with global oil giants and was the fifth company to endorse the initiative. Through joining World Bank's initiative on gas flaring, SOCAR has achieved to decrease the ratio of flared gas to 1.7% in 2013 and 1.6% in 2014 accordingly. Moreover, the captured flare gas was channeled into gas transportation network to be delivered to end consumers. This fact highlights once again the importance that Azerbaijan pays to environmental protection and mitigation of climate change risks.” Solomon Asamoah, Vice President, African Development Bank “We welcome this global Initiative to end routine flaring no later than 2030. The African Development Bank’s strategy for the period 2013 – 2022 has inclusive and green growth as the overarching objectives and this initiative is clearly aligned with our strategic focus of sustainable development.” Børge Brende, Minister of Foreign Affairs, Norway “In Norway flaring, except emergency flaring, has been forbidden from the start of our oil production, to avoid wasting resources. Later, global warming reinforced our commitment. Flaring in the Arctic is especially damaging. Carbon from the flaring falls on snow and the glacier, accelerating the melting. We have all seen the disturbing pictures of polar bears without their natural habitat of ice. -
Economic Analysis of Methane Emission Reduction Opportunities in the U.S. Onshore Oil and Natural Gas Industries
Economic Analysis of Methane Emission Reduction Opportunities in the U.S. Onshore Oil and Natural Gas Industries March 2014 Prepared for Environmental Defense Fund 257 Park Avenue South New York, NY 10010 Prepared by ICF International 9300 Lee Highway Fairfax, VA 22031 blank page Economic Analysis of Methane Emission Reduction Opportunities in the U.S. Onshore Oil and Natural Gas Industries Contents 1. Executive Summary .................................................................................................................... 1‐1 2. Introduction ............................................................................................................................... 2‐1 2.1. Goals and Approach of the Study .............................................................................................. 2‐1 2.2. Overview of Gas Sector Methane Emissions ............................................................................. 2‐2 2.3. Climate Change‐Forcing Effects of Methane ............................................................................. 2‐5 2.4. Cost‐Effectiveness of Emission Reductions ............................................................................... 2‐6 3. Approach and Methodology ....................................................................................................... 3‐1 3.1. Overview of Methodology ......................................................................................................... 3‐1 3.2. Development of the 2011 Emissions Baseline .......................................................................... -
Routine Gas Flaring Is Wasteful, Polluting and Undermeasured 29 July 2020, by Gunnar W
Routine gas flaring is wasteful, polluting and undermeasured 29 July 2020, by Gunnar W. Schade new oil exploration has plummeted and production is running at reduced levels. But the industry can rapidly resume activities as demand and prices recover. And so will flaring. Regulatory agencies, under pressure from environmental groups and parts of the industry, are finally considering rules to curb flaring. But can this wasteful and polluting practice be stopped? Economic expediency Each operating shale oil well produces variable amounts of "associated" or "casinghead" gas, a raw The nonprofit Skytruth posts time series views of gas gas mixture of highly volatile hydrocarbons, mostly flares seen from space, from 2012 to the present. methane. Producers often don't want this gas Above, how flares looked in mid-July 2020. Credit: unless it can be collected through an existing Skytruth.org network of pipelines. Even when that's possible, they may decide to dispose of the gas anyway because the cost of If you've driven through an area where companies collecting and moving it can initially be higher than extract oil and gas from shale formations, you've the value of the gas. This is where flaring comes in. probably seen flames dancing at the tops of vertical pipes. That's flaring—the mostly Routine flaring is common in the Bakken shale uncontrolled practice of burning off a byproduct of formation in North Dakota, the Eagle Ford shale in oil and gas production. Over the past 10 years, the south-central Texas and the Permian Basin in U.S. shale oil and gas boom has made this country northwest Texas and New Mexico. -
Vast Energy Resources Wasting Away in the Texas Permian Basin a Special Report on Natural Gas Flaring FLARING REPORT 2
Vast energy resources wasting away in the Texas Permian Basin A special report on natural gas flaring FLARING REPORT 2 I Introduction 3 II Trends in the Texas Permian 5 III Regulatory solutions 7 IV On-site gas capture opportunities 8 V Conclusion 10 Table of contents FLARING REPORT 3 I. Introduction A new Texas oil boom is in full swing. Oil isn’t the only resource in abundant The United States Geological Survey supply. There’s also ample natural gas (USGS) estimates 20 billion barrels of (known as associated gas), freed from untapped oil reserves in one single area underground shale during hydraulic of the Permian, an oil and gas basin fracturing, the process of pumping contained largely by the western part of millions of gallons of chemicals, sand and Texas and extending into southeastern water down a well to break apart rock and New Mexico 1. release the fuel. A rush to produce higher Earlier this year 2, the Energy value oil, however, has some Permian Information Administration (EIA) drillers simply throwing away the gas. predicted the Permian Basin would Lack of access to gas pipelines, low gas experience the country’s highest growth prices, and outmoded regulations are in oil production, and in August EIA driving this waste. reported the Permian has more operating A new analysis of the amount of Texas rigs than any other basin in the nation, Permian gas lost due to intentional with oil production exceeding 2.5 million releases (venting) and burning of the gas barrels per day 3. Meanwhile, companies (flaring) by the top 15 producers in recent including ExxonMobil are investing billions boom years reveals a wide performance in leases 4, and oilfield services giant gap. -
Reducing Methane Emissions: Best Practice Guide Venting November 2019 Disclaimer This Document Has Been Developed by the Methane Guiding Principles Partnership
Reducing Methane Emissions: Best Practice Guide Venting November 2019 Disclaimer This document has been developed by the Methane Guiding Principles partnership. The Guide provides a summary of current known mitigations, costs, and available technologies as at the date of publication, but these may change or improve over time. The information included is accurate to the best of the authors’ knowledge, but does not necessarily reflect the views or positions of all Signatories to or Supporting Organisations of the Methane Guiding Principles partnership, and readers will need to make their own evaluation of the information provided. No warranty is given to readers concerning the completeness or accuracy of the information included in this Guide by SLR International Corporation and its contractors, the Methane Guiding Principles partnership or its Signatories or Supporting Organisations. This Guide describes actions that an organisation can take to help manage methane emissions. Any actions or recommendations are not mandatory; they are simply one effective way to help manage methane emissions. Other approaches might be as effective, or more effective in a particular situation. What readers choose to do will often depend on the circumstances, the specific risks under management and the applicable legal regime. Contents Summary .............................................................................................................................................................2 Introduction ........................................................................................................................................................3 -
1 Hydrocarbon Emissions Characterization in the Colorado Front Range – a Pilot 2 Study 3 4 Gabrielle Pétron1,2, Gregory Frost1,2, Benjamin R
1 Hydrocarbon Emissions Characterization in the Colorado Front Range – A Pilot 2 Study 3 4 Gabrielle Pétron1,2, Gregory Frost1,2, Benjamin R. Miller1,2, Adam I. Hirsch1,3, Stephen A. 5 Montzka2, Anna Karion1,2, Michael Trainer2, Colm Sweeney1,2, Arlyn E. Andrews2, 6 Lloyd Miller5, Jonathan Kofler1,2, Amnon Bar-Ilan4, Ed J. Dlugokencky2, Laura 7 Patrick1,2, Charles T. (Tom) Moore Jr.6, Thomas B. Ryerson2, Carolina Siso1,2, William 8 Kolodzey7, Patricia M. Lang2, Thomas Conway2, Paul Novelli2, Kenneth Masarie2, 9 Bradley Hall2, Douglas Guenther1,2, Duane Kitzis1,2, John Miller1,2, David Welsh2, Dan 10 Wolfe2, William Neff2, and Pieter Tans2 11 12 13 1 Cooperative Institute for Research in Environmental Sciences, University of Colorado, 14 Boulder, Colorado, USA 15 2 National Oceanic and Atmospheric Administration, Earth System Research LaBoratory, 16 Boulder, Colorado, USA 17 3 now at the National RenewaBle Energy LaBoratory, Golden, Colorado, USA 18 4 ENVIRON International Corporation, Novato, California, USA 19 5 formerly with Science and Technology Corporation, Boulder, Colorado, USA 20 6Western Governors' Association, Fort Collins, Colorado, USA 21 7NOAA Hollings Scholar now at Clemson University 22 23 24 1 25 Abstract 26 The multi-species analysis of daily air samples collected at the NOAA Boulder 27 Atmospheric Observatory (BAO) in Weld County in northeastern Colorado since 2007 28 shows highly correlated alkane enhancements caused by a regionally distributed mix of 29 sources in the Denver-Julesburg Basin. To further characterize the emissions of methane 30 and non-methane hydrocarbons (propane, n-butane, i-pentane, n-pentane and benzene) 31 around BAO, a pilot study involving automobile-based surveys was carried out during 32 the summer of 2008. -
Reducing Gas Flaring in Arab Countries a Sustainable Development Necessity
Reducing Gas Flaring in Arab Countries A Sustainable Development Necessity Shared Prosperity Dignified Life VISION ESCWA, an innovative catalyst for a stable, just and flourishing Arab region MISSION Committed to the 2030 Agenda, ESCWA’s passionate team produces innovative knowledge, fosters regional consensus and delivers transformational policy advice. Together, we work for a sustainable future for all. E/ESCWA/SDPD/2019/TP.9 Economic and Social Commission for Western Asia Reducing Gas Flaring in Arab Countries A Sustainable Development Necessity United Nations Beirut © 2019 United Nations All rights reserved worldwide Photocopies and reproductions of excerpts are allowed with proper credits. All queries on rights and licenses, including subsidiary rights, should be addressed to the United Nations Economic and Social Commission for Western Asia (ESCWA), e-mail: [email protected]. The findings, interpretations and conclusions expressed in this publication are those of the authors and do not necessarily reflect the views of the United Nations or its officials or Member States. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Links contained in this publication are provided for the convenience of the reader and are correct at the time of issue. The United Nations takes no responsibility for the continued accuracy of that information or for the content of any external website. References have, wherever possible, been verified. -
Natural Gas Flaring and Venting: State and Federal Regulatory Overview, Trends, and Impacts
Office of Oil and Natural Gas Office of Fossil Energy Natural Gas Flaring and Venting: State and Federal Regulatory Overview, Trends, and Impacts June 2019 NATURAL GAS FLARING AND VENTING: STATE AND FEDERAL REGULATORY OVERVIEW, TRENDS, AND IMPACTS 1 Executive Summary The purpose of this report by the Office of Fossil that is permitted, as described in the “Analysis of Energy (FE) of the U.S. Department of Energy State Policies and Regulations” section of this report. (DOE) is to inform the states and other stakeholders Domestically, flaring has become more of an issue on natural gas flaring and venting regulations, the with the rapid development of unconventional, level and types of restrictions and permissions, tight oil and gas resources over the past two and potential options available to economically decades, beginning with shale gas. Unconventional capture and utilize natural gas, if the economics development has brought online hydrocarbon warrant. While it is unlikely that the flaring and resources that vary in their characteristics and limited venting of natural gas during production proportions of natural gas, natural gas liquids and and handling can ever be entirely eliminated, both crude oil. While each producing region flares gas for industry and regulators agree that there is value in various reasons, the lack of a direct market access developing and applying technologies and practices for the gas is the most prevalent reason for ongoing to economically recover and limit both practices. flaring. Economics can dictate that the more valuable FE’s objective is to accelerate the development of oil be produced and the associated gas burned modular conversion technologies that, when coupled (or reinjected) to facilitate that production. -
Flaring in Canada: Overview and Strategic Considerations – Cap-Op Energy to ECCC
Flaring in Canada: Overview and Strategic Considerations – Cap-Op Energy to ECCC Cap-Op Energy Inc. Suite 610, 600 6 Ave SW Calgary, AB T2P 0S5 403.457.1029 www.CapOpEnergy.com Flaring in Canada: Overview and Strategic Considerations Part 2 March 31, 2017 Flaring in Canada: Overview and Strategic Considerations – Cap-Op Energy to ECCC Table of Contents List of Tables / Figures................................................................................................................................... 3 Flaring in Canada: Overview and Strategic Considerations .......................................................................... 4 Review of Part 1 ............................................................................................................................................ 4 Definitions ..................................................................................................................................................... 5 GGFR Flaring Definitions ........................................................................................................................... 5 Expanded Flaring Definitions .................................................................................................................... 6 Gas and Gas Release System Definitions .................................................................................................. 6 Facility Definitions .................................................................................................................................... -
How to Fix Flaring for a Quick Emissions Win
How to fix flaring for a quick emissions win A thought piece by This thought piece was co-authored by the Rocky Moutain Institute and Capterio Thomas Kirk (RMI), Raghav Muralidharan (RMI), Mark Jonathan Davis and John-Henry Charles 27 January, 2021 1600 words, reading time 5 minutes. HOW TO FIX FLARING FOR A QUICK EMISSIONS WIN Introduction A new year has arrived, and with the new presidential administration, climate change is again on the agenda in the United States, the world’s largest gas producer. The oil and gas industry has a quick win within reach to cut emissions—by putting out the fire of natural gas flaring. Oil and gas producers too often resort to burning off, or flaring, their unwanted gas. This practice not only wastes valuable natural gas, it also warms the planet by releasing CO2, methane, black carbon, and other greenhouse gases (GHGs). The resulting CO2 emissions alone are equivalent to more than 6 million passenger vehicles. Poorly maintained flares, in particular, cause a significant increase in emissions and are proving to be more of a concern than previously assumed. Inefficient or unlit flares release excess amounts of methane, a powerful pollutant with a warming potential that is 86 times greater than carbon dioxide. However, there are several actions that industry actors and policymakers all around the globe can take to accelerate changes in flaring practices. State of US Gas Flaring US natural gas production has surged from 20 trillion cubic feet (tcf) in 2009 to over 33 tcf in 2019. In 2011 the United States became the top global producer of natural gas, a position it has held ever since. -