Density Functional Theory and Nuclear Quantum Effects [.Pdf]

Total Page:16

File Type:pdf, Size:1020Kb

Density Functional Theory and Nuclear Quantum Effects [.Pdf] Density functional theory and nuclear quantum effects Lin Lin A Dissertation Presented to the Faculty of Princeton University in Candidacy for the Degree of Doctor of Philosophy Recommended for Acceptance by the Program in Applied and Computational Mathematics Advisers: Roberto Car and Weinan E September, 2011 c Copyright by Lin Lin, 2011. All Rights Reserved Abstract This dissertation consists of two independent parts: density functional theory (Part I), and nuclear quantum effects (Part II). Kohn-Sham density functional theory (KSDFT) is by far the most widely used electronic structure theory in condensed matter systems. The computational time of KSDFT increases rapidly with respect to the number of electrons in the system, which hinders its practical application to systems of large size. The central quanti- ties in KSDFT are the electron density and the electron energy, which can be fully characterized by the diagonal elements and the nearest off-diagonal elements of the single particle density matrix. However, methods that are currently available require the calculation of the full density matrix. This procedure becomes highly inefficient for systems of large size. Part I of this dissertation develops a new method for solving KSDFT, which directly targets at the calculation of the diagonal and the nearest off- diagonal elements of the single particle density matrix. The new method is developed under the framework of Fermi operator expansion. The new method achieves the optimal expansion cost in the operator level. The electron density and the electron energy is then evaluated from a serires of Green’s functions by a new fast algorithm developed in this dissertation. This dissertation also develops a novel method for discretizing the Hamiltonian of the system that achieves high accuracy with a very small number of basis functions. Combining all these components together, we ob- tain a unified, accurate, efficient method to solve KSDFT for insulating and metallic systems. Nuclear quantum effects play an important role in a large variety of hydrogen bonded systems such as water and ice due to the small mass of protons (the nuclei of hydrogen atoms). The equilibrium proton dynamics is reflected in the quantum momentum distribution and is the focus of intense research. The standard open path integral formalism for computing the quantum momentum distribution requires the iii calculation of quantum momentum distribution for one particle at a time, which is an inefficient process especially when the potential energy surface is generated from Kohn-Sham density functional theory. The information of the proton dynamics is reflected in the momentum distribution in a highly averaged way and the interpre- tation of the momentum distribution can involve significant amount of ambiguity. Part II of this dissertation develops the displaced path integral formalism which al- lows the computation of quantum momentum distribution for all particles at the same time and therefore greatly enhances the computational efficiency. Part II of this dissertation unambiguously interprets the quantum momentum distribution in two representative systems: ice Ih and high pressure ice. For ice Ih in which the potential is quasi-harmonic, this disseration clarifies the previously unclear relation between anisotropic and anharmonic effects in shaping the momentum distribution by analyzing the 3D proton momentum distribution and the associated vibrational dynamics. For high pressure ice in which the potential is strongly anharmonic and proton tunneling occurs, this dissertation assesses the important role of proton corre- lation effects by means of spectral decomposition of the single particle density matrix. The concerted proton tunneling process directly observed and quantified in this study reduces significantly the number of ionized configurations, and avoids the ionization catastrophe predicted by the mean field theory, which was used in previous studies to interpret the path integral simulation results. iv Acknowledgements I would like to thank my thesis advisers Professor Roberto Car and Professor Weinan E. Without their guidance and encouragement, I cannot imagine how I would over- come the problems and difficulties in my research. They have taught me how to ask questions, how to solve problems, and how to think as an applied mathematician and as a computational scientist. Their thoughts have deeply influenced me in the past four years. I would like to thank my collaborators: Professor Carla Andreani, Professor Weiguo Gao, Dr. Juan Meza, Dr. Joseph Morrone, Professor Michele Parrinello, Dr. Antonino Pietropaolo, Dr. Amit Samanta, Dr. Roberto Senesi, and Dr. Chao Yang. Special thanks are given to Dr. Jianfeng Lu and Professor Lexing Ying for their numerous support and the fruitful work and discussions we had together. Without their help, my achievements would not be possible. I would also like to thank the tremendous support and encouragement I re- ceived from other professors at Princeton University, especially from Professor Robert Calderbank and Professor Ingrid Daubechies. Last but not least, my wife Dongxu Lu holds all my gratitude for her patience and for the love that she gives to me every day in my life. This thesis is dedicated to her, together with my beloved parents, my mother Xiaolan Liu and my father Chao Lin. v Contents Abstract..................................... iii Acknowledgements ............................... v I Density functional theory 21 1 Introduction 22 1.1 Overview.................................. 22 1.2 Quantum many body problem and electronic structure . 26 1.3 Kohn-ShamDensity functional theory (KSDFT) . 30 1.4 KSDFT:pseudopotentialframework. 36 1.5 MathematicalpropertiesofKSDFT . 38 1.6 Existing methods and software packages for solving KSDFT . 42 1.6.1 Cubic scaling methods . 42 1.6.2 Linear scaling methods . 44 1.6.3 All-electron methods . 46 1.7 Unified, accurate and efficient method for solving KSDFT . 47 2 Discretization of the Hamiltonian matrix: adaptive local basis func- tions 52 2.1 Introduction................................ 52 vi 2.2 Discontinuous Galerkin framework for Kohn-Sham density functional theory ................................... 55 2.3 Basis functions adapted to the local environment . 58 2.4 Implementationdetails .......................... 63 2.4.1 Grids and interpolation . 63 2.4.2 Implementation of the discontinuous Galerkin method . 65 2.4.3 Parallelization . 66 2.5 Numericalexamples............................ 68 2.5.1 Setup ............................... 69 2.5.2 Periodic Quasi-1D system . 71 2.5.3 Quasi-1Dsystemwithrandomperturbation . 73 2.5.4 Quasi-2Dand3DBulksystem. 74 2.5.5 Thepenaltyparameter . .. .. 76 2.5.6 Computationalefficiency . 78 2.6 Conclusion................................. 80 3 Representation of the Fermi operator: Pole expansion 82 3.1 Introduction................................ 82 3.2 Multipole expansion . 84 3.2.1 Formulation............................ 84 3.2.2 Numerical calculation and error analysis . 88 3.2.3 Numericalexamples ....................... 91 3.3 Poleexpansion .............................. 96 3.3.1 Pole expansion: basic idea . 96 3.3.2 Gappedcase: insulatingsystem . 98 3.3.3 Gapless case: metallic system . 100 3.3.4 Numericalexamples ....................... 104 3.4 Discussion................................. 108 vii 3.5 Conclusion................................. 112 4 Evaluation of the Fermi operator: Selected inversion 113 4.1 Introduction................................ 113 4.2 Selected inversion: Basic idea . 116 4.2.1 Densematrix ........................... 116 4.2.2 Sparsematrix ........................... 119 4.3 SelInv – An algorithm for selected inversion of a sparse symmetric matrix122 4.3.1 BlockAlgorithmsandSupernodes. 122 4.3.2 Implementation details . 125 4.3.3 Performance............................ 130 4.3.4 Application to electronic structure calculation of aluminum . 135 4.4 Parallel selected inversion algorithm . 137 4.4.1 Algorithmic and implementation . 137 4.4.2 Performance of the parallel selected inversion algorithm . 148 4.4.3 Application to electronic structure calculation of 2D rectangu- larquantumdots ......................... 159 4.5 Conclusion................................. 161 5 Fast construction of matrix 164 H 5.1 Introduction................................ 164 5.1.1 Motivation and applications . 165 5.1.2 Randomized singular value decomposition algorithm . 166 5.1.3 Top-down construction of -matrix............... 167 H 5.1.4 Relatedworks........................... 172 5.2 Algorithm ................................. 175 5.2.1 Geometricsetupandnotations . 175 5.2.2 Hierarchical matrix . 178 viii 5.2.3 Peeling algorithm: outline and preparation . 181 5.2.4 Peeling algorithm: details . 185 5.2.5 Peeling algorithm: variants . 192 5.3 Numericalresults ............................. 193 5.4 Conclusion................................. 199 6 Conclusion of Part I 202 II Nuclear quantum effects 205 7 Introduction 206 8 Displaced path integral formalism 212 8.1 Introduction................................ 212 8.2 Displaced path integral formalism . 216 8.3 Application of the displaced path integral formalism to water . 228 8.4 A new way of interpreting the momentum distribution . 231 8.5 Semiclassical limit of displaced path integral formalism . 235 8.6 Anewkineticestimator ......................... 244 8.7 Displacedpathformalismforbosons . 252 8.8 Conclusion................................. 254 9 Momentum distribution, vibrational dynamics and the potential
Recommended publications
  • Introducing ONETEP: Linear-Scaling Density Functional Simulations on Parallel Computers Chris-Kriton Skylaris,A) Peter D
    THE JOURNAL OF CHEMICAL PHYSICS 122, 084119 ͑2005͒ Introducing ONETEP: Linear-scaling density functional simulations on parallel computers Chris-Kriton Skylaris,a) Peter D. Haynes, Arash A. Mostofi, and Mike C. Payne Theory of Condensed Matter, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom ͑Received 29 September 2004; accepted 4 November 2004; published online 23 February 2005͒ We present ONETEP ͑order-N electronic total energy package͒, a density functional program for parallel computers whose computational cost scales linearly with the number of atoms and the number of processors. ONETEP is based on our reformulation of the plane wave pseudopotential method which exploits the electronic localization that is inherent in systems with a nonvanishing band gap. We summarize the theoretical developments that enable the direct optimization of strictly localized quantities expressed in terms of a delocalized plane wave basis. These same localized quantities lead us to a physical way of dividing the computational effort among many processors to allow calculations to be performed efficiently on parallel supercomputers. We show with examples that ONETEP achieves excellent speedups with increasing numbers of processors and confirm that the time taken by ONETEP as a function of increasing number of atoms for a given number of processors is indeed linear. What distinguishes our approach is that the localization is achieved in a controlled and mathematically consistent manner so that ONETEP obtains the same accuracy as conventional cubic-scaling plane wave approaches and offers fast and stable convergence. We expect that calculations with ONETEP have the potential to provide quantitative theoretical predictions for problems involving thousands of atoms such as those often encountered in nanoscience and biophysics.
    [Show full text]
  • Natural Bond Orbital Analysis in the ONETEP Code: Applications to Large Protein Systems Louis P
    WWW.C-CHEM.ORG FULL PAPER Natural Bond Orbital Analysis in the ONETEP Code: Applications to Large Protein Systems Louis P. Lee,*[a] Daniel J. Cole,[a] Mike C. Payne,[a] and Chris-Kriton Skylaris[b] First principles electronic structure calculations are typically Generalized Wannier Functions of ONETEP to natural atomic performed in terms of molecular orbitals (or bands), providing a orbitals, NBO analysis can be performed within a localized straightforward theoretical avenue for approximations of region in such a way that ensures the results are identical to an increasing sophistication, but do not usually provide any analysis on the full system. We demonstrate the capabilities of qualitative chemical information about the system. We can this approach by performing illustrative studies of large derive such information via post-processing using natural bond proteins—namely, investigating changes in charge transfer orbital (NBO) analysis, which produces a chemical picture of between the heme group of myoglobin and its ligands with bonding in terms of localized Lewis-type bond and lone pair increasing system size and between a protein and its explicit orbitals that we can use to understand molecular structure and solvent, estimating the contribution of electronic delocalization interactions. We present NBO analysis of large-scale calculations to the stabilization of hydrogen bonds in the binding pocket of with the ONETEP linear-scaling density functional theory package, a drug-receptor complex, and observing, in situ, the n ! p* which we have interfaced with the NBO 5 analysis program. In hyperconjugative interactions between carbonyl groups that ONETEP calculations involving thousands of atoms, one is typically stabilize protein backbones.
    [Show full text]
  • Density Functional Theory (DFT)
    Herramientas mecano-cuánticas basadas en DFT para el estudio de moléculas y materiales en Materials Studio 7.0 Javier Ramos Biophysics of Macromolecular Systems group (BIOPHYM) Departamento de Física Macromolecular Instituto de Estructura de la Materia – CSIC [email protected] Webinar, 26 de Junio 2014 Anteriores webinars Como conseguir los videos y las presentaciones de anteriores webminars: Linkedin: Grupo de Química Computacional http://www.linkedin.com/groups/Química-computacional-7487634 Índice Density Functional Theory (DFT) The Jacob’s ladder DFT modules in Maretials Studio DMOL3, CASTEP and ONETEP XC functionals Basis functions Interfaces in Materials Studio Tasks Properties Example: n-butane conformations Density Functional Theory (DFT) DFT is built around the premise that the energy of an electronic system can be defined in terms of its electron probability density (ρ). (Hohenberg-Kohn Theorem) E 0 [ 0 ] Te [ 0 ] E ne [ 0 ] E ee [ 0 ] (easy) Kinetic Energy for ????? noninteracting (r )v (r ) dr electrons(easy) 1 E[]()()[]1 r r d r d r E e e2 1 2 1 2 X C r12 Classic Term(Coulomb) Non-classic Kohn-Sham orbitals Exchange & By minimizing the total energy functional applying the variational principle it is Correlation possible to get the SCF equations (Kohn-Sham) The Jacob’s Ladder Accurate form of XC potential Meta GGA Empirical (Fitting to Non-Empirical Generalized Gradient Approx. atomic properties) (physics rules) Local Density Approximation DFT modules in Materials Studio DMol3: Combine computational speed with the accuracy of quantum mechanical methods to predict materials properties reliably and quickly CASTEP: CASTEP offers simulation capabilities not found elsewhere, such as accurate prediction of phonon spectra, dielectric constants, and optical properties.
    [Show full text]
  • Compact Orbitals Enable Low-Cost Linear-Scaling Ab Initio Molecular Dynamics for Weakly-Interacting Systems Hayden Scheiber,1, A) Yifei Shi,1 and Rustam Z
    Compact orbitals enable low-cost linear-scaling ab initio molecular dynamics for weakly-interacting systems Hayden Scheiber,1, a) Yifei Shi,1 and Rustam Z. Khaliullin1, b) Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada Today, ab initio molecular dynamics (AIMD) relies on the locality of one-electron density matrices to achieve linear growth of computation time with systems size, crucial in large-scale simulations. While Kohn-Sham orbitals strictly localized within predefined radii can offer substantial computational advantages over density matrices, such compact orbitals are not used in AIMD because a compact representation of the electronic ground state is difficult to find. Here, a robust method for maintaining compact orbitals close to the ground state is coupled with a modified Langevin integrator to produce stable nuclear dynamics for molecular and ionic systems. This eliminates a density matrix optimization and enables first orbital-only linear-scaling AIMD. An application to liquid water demonstrates that low computational overhead of the new method makes it ideal for routine medium-scale simulations while its linear-scaling complexity allows to extend first- principle studies of molecular systems to completely new physical phenomena on previously inaccessible length scales. Since the unification of molecular dynamics and den- LS methods restrict their use in dynamical simulations sity functional theory (DFT)1, ab initio molecular dy- to very short time scales, systems of low dimensions, namics (AIMD) has become an important tool to study and low-quality minimal basis sets6,18–20. On typical processes in molecules and materials. Unfortunately, the length and time scales required in practical and accurate computational cost of the conventional Kohn-Sham (KS) AIMD simulations, LS DFT still cannot compete with DFT grows cubically with the number of atoms, which the straightforward low-cost cubically-scaling KS DFT.
    [Show full text]
  • Quantum Chemistry (QC) on Gpus Feb
    Quantum Chemistry (QC) on GPUs Feb. 2, 2017 Overview of Life & Material Accelerated Apps MD: All key codes are GPU-accelerated QC: All key codes are ported or optimizing Great multi-GPU performance Focus on using GPU-accelerated math libraries, OpenACC directives Focus on dense (up to 16) GPU nodes &/or large # of GPU nodes GPU-accelerated and available today: ACEMD*, AMBER (PMEMD)*, BAND, CHARMM, DESMOND, ESPResso, ABINIT, ACES III, ADF, BigDFT, CP2K, GAMESS, GAMESS- Folding@Home, GPUgrid.net, GROMACS, HALMD, HOOMD-Blue*, UK, GPAW, LATTE, LSDalton, LSMS, MOLCAS, MOPAC2012, LAMMPS, Lattice Microbes*, mdcore, MELD, miniMD, NAMD, NWChem, OCTOPUS*, PEtot, QUICK, Q-Chem, QMCPack, OpenMM, PolyFTS, SOP-GPU* & more Quantum Espresso/PWscf, QUICK, TeraChem* Active GPU acceleration projects: CASTEP, GAMESS, Gaussian, ONETEP, Quantum Supercharger Library*, VASP & more green* = application where >90% of the workload is on GPU 2 MD vs. QC on GPUs “Classical” Molecular Dynamics Quantum Chemistry (MO, PW, DFT, Semi-Emp) Simulates positions of atoms over time; Calculates electronic properties; chemical-biological or ground state, excited states, spectral properties, chemical-material behaviors making/breaking bonds, physical properties Forces calculated from simple empirical formulas Forces derived from electron wave function (bond rearrangement generally forbidden) (bond rearrangement OK, e.g., bond energies) Up to millions of atoms Up to a few thousand atoms Solvent included without difficulty Generally in a vacuum but if needed, solvent treated classically
    [Show full text]
  • Introduction to DFT and the Plane-Wave Pseudopotential Method
    Introduction to DFT and the plane-wave pseudopotential method Keith Refson STFC Rutherford Appleton Laboratory Chilton, Didcot, OXON OX11 0QX 23 Apr 2014 Parallel Materials Modelling Packages @ EPCC 1 / 55 Introduction Synopsis Motivation Some ab initio codes Quantum-mechanical approaches Density Functional Theory Electronic Structure of Condensed Phases Total-energy calculations Introduction Basis sets Plane-waves and Pseudopotentials How to solve the equations Parallel Materials Modelling Packages @ EPCC 2 / 55 Synopsis Introduction A guided tour inside the “black box” of ab-initio simulation. Synopsis • Motivation • The rise of quantum-mechanical simulations. Some ab initio codes Wavefunction-based theory • Density-functional theory (DFT) Quantum-mechanical • approaches Quantum theory in periodic boundaries • Plane-wave and other basis sets Density Functional • Theory SCF solvers • Molecular Dynamics Electronic Structure of Condensed Phases Recommended Reading and Further Study Total-energy calculations • Basis sets Jorge Kohanoff Electronic Structure Calculations for Solids and Molecules, Plane-waves and Theory and Computational Methods, Cambridge, ISBN-13: 9780521815918 Pseudopotentials • Dominik Marx, J¨urg Hutter Ab Initio Molecular Dynamics: Basic Theory and How to solve the Advanced Methods Cambridge University Press, ISBN: 0521898633 equations • Richard M. Martin Electronic Structure: Basic Theory and Practical Methods: Basic Theory and Practical Density Functional Approaches Vol 1 Cambridge University Press, ISBN: 0521782856
    [Show full text]
  • What's New in Biovia Materials Studio 2020
    WHAT’S NEW IN BIOVIA MATERIALS STUDIO 2020 Datasheet BIOVIA Materials Studio 2020 is the latest release of BIOVIA’s predictive science tools for chemistry and materials science research. Materials Studio empowers researchers to understand the relationships between a material’s mo- lecular or crystal structure and its properties in order to make more informed decisions about materials research and development. More often than not materials performance is influenced by phenomena at multiple scales. Scientists using Materials Studio 2020 have an extensive suite of world class solvers and parameter sets operating from atoms to microscale for simulating more materials and more properties than ever before. Furthermore, the predicted properties can now be used in multi-physics modeling and in systems modeling software such as SIMULIA Abaqus and CATIA Dymola to predict macroscopic behaviors. In this way multiscale simulations can be used to solve some of the toughest pro- blems in materials design and product optimization. BETTER MATERIALS - BETTER BATTERIES Safe, fast charging batteries with high energy density and long life are urgently needed for a host of applications - not least for the electrification of all modes of transportation as an alternative to fossil fuel energy sources. Battery design relies on a complex interplay between thermal, mechanical and chemical processes from the smallest scales of the material (electronic structure) through to the geometry of the battery cell and pack design. Improvements to the component materials used in batteries and capacitors are fundamental to providing the advances in performance needed. Materials Studio provides new functionality to enable the simula- tion of key materials parameters for both liquid electrolytes and electrode components.
    [Show full text]
  • O (N) Methods in Electronic Structure Calculations
    O(N) Methods in electronic structure calculations D R Bowler1;2;3 and T Miyazaki4 1London Centre for Nanotechnology, UCL, 17-19 Gordon St, London WC1H 0AH, UK 2Department of Physics & Astronomy, UCL, Gower St, London WC1E 6BT, UK 3Thomas Young Centre, UCL, Gower St, London WC1E 6BT, UK 4National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, JAPAN E-mail: [email protected] E-mail: [email protected] Abstract. Linear scaling methods, or O(N) methods, have computational and memory requirements which scale linearly with the number of atoms in the system, N, in contrast to standard approaches which scale with the cube of the number of atoms. These methods, which rely on the short-ranged nature of electronic structure, will allow accurate, ab initio simulations of systems of unprecedented size. The theory behind the locality of electronic structure is described and related to physical properties of systems to be modelled, along with a survey of recent developments in real-space methods which are important for efficient use of high performance computers. The linear scaling methods proposed to date can be divided into seven different areas, and the applicability, efficiency and advantages of the methods proposed in these areas is then discussed. The applications of linear scaling methods, as well as the implementations available as computer programs, are considered. Finally, the prospects for and the challenges facing linear scaling methods are discussed. Submitted to: Rep. Prog. Phys. arXiv:1108.5976v5 [cond-mat.mtrl-sci] 3 Nov 2011 O(N) Methods 2 1.
    [Show full text]
  • Porting the DFT Code CASTEP to Gpgpus
    Porting the DFT code CASTEP to GPGPUs Toni Collis [email protected] EPCC, University of Edinburgh CASTEP and GPGPUs Outline • Why are we interested in CASTEP and Density Functional Theory codes. • Brief introduction to CASTEP underlying computational problems. • The OpenACC implementation http://www.nu-fuse.com CASTEP: a DFT code • CASTEP is a commercial and academic software package • Capable of Density Functional Theory (DFT) and plane wave basis set calculations. • Calculates the structure and motions of materials by the use of electronic structure (atom positions are dictated by their electrons). • Modern CASTEP is a re-write of the original serial code, developed by Universities of York, Durham, St. Andrews, Cambridge and Rutherford Labs http://www.nu-fuse.com CASTEP: a DFT code • DFT/ab initio software packages are one of the largest users of HECToR (UK national supercomputing service, based at University of Edinburgh). • Codes such as CASTEP, VASP and CP2K. All involve solving a Hamiltonian to explain the electronic structure. • DFT codes are becoming more complex and with more functionality. http://www.nu-fuse.com HECToR • UK National HPC Service • Currently 30- cabinet Cray XE6 system – 90,112 cores • Each node has – 2×16-core AMD Opterons (2.3GHz Interlagos) – 32 GB memory • Peak of over 800 TF and 90 TB of memory http://www.nu-fuse.com HECToR usage statistics Phase 3 statistics (Nov 2011 - Apr 2013) Ab initio codes (VASP, CP2K, CASTEP, ONETEP, NWChem, Quantum Espresso, GAMESS-US, SIESTA, GAMESS-UK, MOLPRO) GS2NEMO ChemShell 2%2% SENGA2% 3% UM Others 4% 34% MITgcm 4% CASTEP 4% GROMACS 6% DL_POLY CP2K VASP 5% 8% 19% http://www.nu-fuse.com HECToR usage statistics Phase 3 statistics (Nov 2011 - Apr 2013) 35% of the Chemistry software on HECToR is using DFT methods.
    [Show full text]
  • HPC Issues for DFT Calculations
    HPC Issues for DFT Calculations Adrian Jackson EPCC Scientific Simulation • Simulation fast becoming 4 th pillar of science – Observation, Theory, Experimentation, Simulation • Explore universe through simulation rather than experimentation – Test theories – Predict or validate experiments – Simulate “untestable” science • Reproduce “real world” in computers – Generally simplified – Dimensions and timescales restricted – Simulation of scientific problem or environment – Input of real data – Output of simulated data – Parameter space studies – Wide range of approaches http://www.nu-fuse.com Reduce runtime • Serial code optimisations – Reduce runtime through efficiencies – Unlikely to produce required savings • Upgrade hardware – 1965: Moore’s law predicts growth in complexity of processors – Doubling of CPU performance – Performance often improved through on chip parallelism http://www.nu-fuse.com Parallel Background • Why not just make a faster chip? – Theoretical • Physical limitations to size and speed of a single chip • Capacitance increases with complexity • Speed of light, size of atoms, dissipation of heat • The power used by a CPU core is proportional to Clock Frequency x Voltage 2 • Voltage reduction vs Clock speed for power requirements – Voltages become too small for “digital” differences – Practical • Developing new chips is incredibly expensive • Must make maximum use of existing technology http://www.nu-fuse.com Parallel Systems • Different types of parallel systems P M – Shared memory P M P M – Distributed memory P M Interconnect
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape. Permalink https://escholarship.org/uc/item/4sm897jh Journal Chemical reviews, 121(8) ISSN 0009-2665 Authors Kowalski, Karol Bair, Raymond Bauman, Nicholas P et al. Publication Date 2021-04-01 DOI 10.1021/acs.chemrev.0c00998 Peer reviewed eScholarship.org Powered by the California Digital Library University of California From NWChem to NWChemEx: Evolving with the computational chemistry landscape Karol Kowalski,y Raymond Bair,z Nicholas P. Bauman,y Jeffery S. Boschen,{ Eric J. Bylaska,y Jeff Daily,y Wibe A. de Jong,x Thom Dunning, Jr,y Niranjan Govind,y Robert J. Harrison,k Murat Keçeli,z Kristopher Keipert,? Sriram Krishnamoorthy,y Suraj Kumar,y Erdal Mutlu,y Bruce Palmer,y Ajay Panyala,y Bo Peng,y Ryan M. Richard,{ T. P. Straatsma,# Peter Sushko,y Edward F. Valeev,@ Marat Valiev,y Hubertus J. J. van Dam,4 Jonathan M. Waldrop,{ David B. Williams-Young,x Chao Yang,x Marcin Zalewski,y and Theresa L. Windus*,r yPacific Northwest National Laboratory, Richland, WA 99352 zArgonne National Laboratory, Lemont, IL 60439 {Ames Laboratory, Ames, IA 50011 xLawrence Berkeley National Laboratory, Berkeley, 94720 kInstitute for Advanced Computational Science, Stony Brook University, Stony Brook, NY 11794 ?NVIDIA Inc, previously Argonne National Laboratory, Lemont, IL 60439 #National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373 @Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 4Brookhaven National Laboratory, Upton, NY 11973 rDepartment of Chemistry, Iowa State University and Ames Laboratory, Ames, IA 50011 E-mail: [email protected] 1 Abstract Since the advent of the first computers, chemists have been at the forefront of using computers to understand and solve complex chemical problems.
    [Show full text]
  • Virt&L-Comm.3.2012.1
    Virt&l-Comm.3.2012.1 A MODERN APPROACH TO AB INITIO COMPUTING IN CHEMISTRY, MOLECULAR AND MATERIALS SCIENCE AND TECHNOLOGIES ANTONIO LAGANA’, DEPARTMENT OF CHEMISTRY, UNIVERSITY OF PERUGIA, PERUGIA (IT)* ABSTRACT In this document we examine the present situation of Ab initio computing in Chemistry and Molecular and Materials Science and Technologies applications. To this end we give a short survey of the most popular quantum chemistry and quantum (as well as classical and semiclassical) molecular dynamics programs and packages. We then examine the need to move to higher complexity multiscale computational applications and the related need to adopt for them on the platform side cloud and grid computing. On this ground we examine also the need for reorganizing. The design of a possible roadmap to establishing a Chemistry Virtual Research Community is then sketched and some examples of Chemistry and Molecular and Materials Science and Technologies prototype applications exploiting the synergy between competences and distributed platforms are illustrated for these applications the middleware and work habits into cooperative schemes and virtual research communities (part of the first draft of this paper has been incorporated in the white paper issued by the Computational Chemistry Division of EUCHEMS in August 2012) INTRODUCTION The computational chemistry (CC) community is made of individuals (academics, affiliated to research institutions and operators of chemistry related companies) carrying out computational research in Chemistry, Molecular and Materials Science and Technology (CMMST). It is to a large extent registered into the CC division (DCC) of the European Chemistry and Molecular Science (EUCHEMS) Society and is connected to other chemistry related organizations operating in Chemical Engineering, Biochemistry, Chemometrics, Omics-sciences, Medicinal chemistry, Forensic chemistry, Food chemistry, etc.
    [Show full text]