Safety Data Sheet Cream of Tartar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CALCIUM STABILITY in a Nutshell ESSENTIAL CHEMISTRY
CALCIUM STABILITY in a nutshell ESSENTIAL CHEMISTRY Precipitation of calcium tartrate is becoming more frequent all over the world and causing both economic and brand damage that companies should be aware of. The cause of the problem is still unknown but may be found in climate change, viticultural and enological practices or the use of untreated concrete tanks. Whatever the origin, it is important to know how to identify wines that are potentially calcium unstable and how to treat them. Calcium content (0.04 - 0.15 g/L) of wine is 10-20 times lower than potassium. Calcium precipitates mainly as calcium tartrate (CaT). CaT solubility is only 3 times lower at -4°C than at 20°C: cooling has little effect on the rate of CaT precipitation. Potassium bitartrate precipitation does not induce that of CaT. Low calcium content and the presence of inhibiting factors in wine makes the formation of CaT germs that start the crystallization process unpredictable. WINE COMPOUNDS THAT HAVE AN INHIBITING EFFECT ON CALCIUM PRECIPITATION GLUCONIC ACID MALIC ACID CITRIC ACID COLLOIDS POTASSIUM MAGNESIUM MAIN FACTORS PROMOTING CaT PRECIPITATION CALCIUM LOW HIGH INSTABILITY TARTARIC ACID INSTABILITY pH The main factors promoting calcium precipitation are calcium, pH and tartaric acid. In particular, pH has a tremendous impact. The increase of only 0.1 points has a dramatic effect on the speed and intensity of precipitation. HOW TO RECOGNIZE CALCIUM TARTRATE PRECIPITATE Both CaT and potassium bitartrate form white (or red in the case of red wine) crystals and a sandy precipitate. To distinguish one salt from the other, perform the following trial put some crystals in a flask or beaker add some clean water warm the solution between 80-100°C stir occasionally If crystals do not dissolve, it is calcium tartrate ENARTIS SOLUTION FOR CALCIUM STABILITY HOW TO CHECK IF WINE IS CALCIUM UNSTABLE Analyze wine calcium content (Ca1). -
Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods
Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods Edited by Remedios Castro-Mejías and Enrique Durán-Guerrero Printed Edition of the Special Issue Published in Foods www.mdpi.com/journal/foods Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods Editors Remedios Castro-Mej´ıas Enrique Dur´an-Guerrero MDPI Basel Beijing Wuhan Barcelona Belgrade Manchester Tokyo Cluj Tianjin • • • • • • • • • Editors Remedios Castro-Mej´ıas Enrique Duran-Guerrero´ Analytical Chemistry Analytical Chemistry Universidad de Cadiz´ Department Puerto Real University of Cadiz Spain Puerto Real Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Foods (ISSN 2304-8158) (available at: www.mdpi.com/journal/foods/special issues/Recent Developments Identification Genuine Odor- Taste-Active Compounds Foods). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-1668-4 (Hbk) ISBN 978-3-0365-1667-7 (PDF) © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. -
Dietary Supplements Compendium Volume 1
2015 Dietary Supplements Compendium DSC Volume 1 General Notices and Requirements USP–NF General Chapters USP–NF Dietary Supplement Monographs USP–NF Excipient Monographs FCC General Provisions FCC Monographs FCC Identity Standards FCC Appendices Reagents, Indicators, and Solutions Reference Tables DSC217M_DSCVol1_Title_2015-01_V3.indd 1 2/2/15 12:18 PM 2 Notice and Warning Concerning U.S. Patent or Trademark Rights The inclusion in the USP Dietary Supplements Compendium of a monograph on any dietary supplement in respect to which patent or trademark rights may exist shall not be deemed, and is not intended as, a grant of, or authority to exercise, any right or privilege protected by such patent or trademark. All such rights and privileges are vested in the patent or trademark owner, and no other person may exercise the same without express permission, authority, or license secured from such patent or trademark owner. Concerning Use of the USP Dietary Supplements Compendium Attention is called to the fact that USP Dietary Supplements Compendium text is fully copyrighted. Authors and others wishing to use portions of the text should request permission to do so from the Legal Department of the United States Pharmacopeial Convention. Copyright © 2015 The United States Pharmacopeial Convention ISBN: 978-1-936424-41-2 12601 Twinbrook Parkway, Rockville, MD 20852 All rights reserved. DSC Contents iii Contents USP Dietary Supplements Compendium Volume 1 Volume 2 Members . v. Preface . v Mission and Preface . 1 Dietary Supplements Admission Evaluations . 1. General Notices and Requirements . 9 USP Dietary Supplement Verification Program . .205 USP–NF General Chapters . 25 Dietary Supplements Regulatory USP–NF Dietary Supplement Monographs . -
Weights and Measures Conversion
WEIGHTS AND MEASURES IN THE ABSENCE OF A GRAM SCALE, USE LEVEL MEASURING SPOONS TO WEIGH OUT CHEMICALS. ACCURATE UP ± 10% CHEMICAL 1/4 TSP 1 TSP 1 TBSP Acid Blend 1.3gm 5.0g 14.6g Ascorbic Acid 1.0g0 4.3g 12.9g Batonage Plus Structure 0.6g 2.6g 6.6g Bentonite, KWK, Agglomerated 1.1g 4.3g 12.7g Calcium Carbonate 0.9g 3.9g 11.4g Citric Acid 1.2g 4.8g 14.4g Diammonium Phosphate 1.2g 4.6g 13.8g Ellagitan Barrique Rouge 0.6g 2.5g 6.0g Ellagitan Extreme 0.6g 2.5g 6.0g Fermaid Nutrient 1.3g 4.8g 14.4g FT Rouge fermentation tannin 0.7g 2.7g 7.7g Gelatine, Powder 0.8g 2.9g 9.0g Goferm Yeast Hydration Nutrient Powder 0.7g 2.8g 6.9g Isinglass (Drifine) Powder 0.6g 2.3g 7.0g Malic Acid 1.2g 4.5g 13.5g Micro Essentials M-L Nutrient 0.4g 1.5g 4.5g Natural Grape Tannin, Powder 0.6g 2.4g 7.0g Noblesse powder 1g 4.1g 10.7g Noblesse powder 0.8g 3.1g 8.1g Oak Chips, American 5.0g Oak Chips, French 5.0g Oak-Mor Premium, White Oak, Granules 4.4g Oak-Mor Toasted, Granules 6.2g Opti-Red inactivated yeast 0.75g 3.0g 7.7g Opti-White yeast derivative 0.6g 2.7g 7.4g Ovo Pure, Powder 0.5g 2.2g 5.6g Potassium Bicarbonate 1.2g 4.8g 14.5g Potassium Bitartrate 1.0g0 4.2g 12.8g Potassium Caseinate (Kolorfine) 0.8g 3.1g 9.5g Potassium Metabisulfite 1.6g 6.6g 20.0g Potassium Sorbate 0.8g 3.3g 10.2g PVPP Powder 0.4g 1.7g 5.1g Reduless 07.g 3.1g 8.2g Sparkolloid Powder, Hot Mix 0.3g 1.1g 3.4g Super Ferment Nutrient 1.0g0 3.7g 10.8g Taniblanc 0.6g 2.5g 6.0g Taniquerc 0.6g 2.6g 6.7g Tannin Estate 0.6g 2.4g 6.0g Tartaric Acid 1.3g 4.9g 14.7g Viniplus, Lactizyme, Powder 0.4g -
Wine Chemistry Composition of Wine
2/25/2014 Chemistry of Juice & Wine We will begin with the composition of must/grape juice and then cover the Wine Chemistry composition of wine. Constituents are covered in highest to lowest Wine 3 concentrations. Introduction to Enology 2/25/2014 1 4 Tonight: Exam # 1 Old English Money vs. US Use Scantron and #2 Pencil Leave one empty seat between you and your 2 farthings = 1 halfpenny neighbor. 2 halfpence = 1 penny (1d) 3 pence = 1 thruppence (3d) All backpacks, bags, and notebooks on floor. 6 pence = 1 sixpence (a 'tanner') 12 pence = 1 shilling (a bob) OR 100 pennies = 1 Dollar You will have 20 minutes to complete the test. 2 shillings = 1 florin ( a 'two bob bit') When your finished hand in your test face down 2 shillings and 6 pence = 1 half crown by section and wait quietly at your desk or 5 shillings = 1 Crown 20 shillings = 1 Pound outside the classroom. Write name on both Scantron & Test 2 5 Tonight's Lecture Metric System Wine chemistry The preferred method of measurement world Juice composition wide (except for the US, Burma & Liberia) Acid and sugar adjustments Look over handout and get comfortable with Wine composition converting US to Metric & vice versa. Units change by factors of 10 Use the handout on conversions of a website to help you out. 3 6 Wine Chemistry 1 2/25/2014 Metric Units Composition of Must Water, 70 to 80%, the sweeter the grapes, the lower the % of water. Most important role is as a solution in which all other reactions take place. -
Potassium Bitartrate Flinn Scientific, Inc
LINN CIENTIFIC NC Safety Data Sheet (SDS) SDS #: 614.00 Revision Date: January 16, 2014 SECTION 1 — CHEMICAL PRODUCT AND COMPANY IDENTIFICATION Potassium Bitartrate Flinn Scientific, Inc. P.O. Box 219, Batavia, IL 60510 (800) 452-1261 Pictograms CHEMTREC Emergency Phone Number: (800) 424-9300 Signal Word N/A SECTION 2 — HAZARDS IDENTIFICATION This chemical is considered nonhazardous according to GHS classifications for the Hazard Communication Standard. Treat all laboratory chemicals with caution. Although this material is considered to be nonhazardous, unpredictable reactions among chemicals are always possible. Prudent laboratory practices should be observed. Product should be treated as a chemical and is not for consumption as it has been stored with other nonfood- grade chemicals. SECTION 3 — COMPOSITION, INFORMATION ON INGREDIENTS Formula Component Name CAS Number Formula Weight Concentration Potassium bitartrate 868-14-4 KHC4H4O6 188.18 Synonyms: Potassium hydrogen tartrate; Cream of tartar; Potassium acid tartrate SECTION 4 — FIRST AID MEASURES Call a POISON CENTER or physician if you feel unwell. If inhaled: Remove victim to fresh air and keep at rest in a position comfortable for breathing. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do so. Continue rinsing. If on skin: Wash with plenty of water. If swallowed: Rinse mouth. Call a POISON CENTER or physician if you feel unwell. SECTION 5 — FIRE FIGHTING MEASURES Nonflammable, noncombustible solid. NFPA CODE When heated to decomposition, may emit toxic fumes. None In case of fire: Use a tri-class dry chemical fire extinguisher. established SECTION 6 — ACCIDENTAL RELEASE MEASURES Sweep up, place in sealed bag or container and dispose. -
Enartis News Post-Bottling Wine Defects: What to Check and How to Prevent Part 1: White and Rosé Wines
ENARTIS NEWS POST-BOTTLING WINE DEFECTS: WHAT TO CHECK AND HOW TO PREVENT PART 1: WHITE AND ROSÉ WINES The appearance of a problem in wine after bottling and/or cold test (we suggest 6 days at -4°C). If wine can be a big economic problem and damage your is unstable, use stabilizing colloids or a physical image. That is why it is recommended to take the time stabilization system. necessary to check wine and stabilize it before bottling. In the case of stabilization by physical systems (cold This is much less expensive and risky than having to treatment, electrodialysis, cation exchange resins), recall faulty bottles, open them, treat the wine and re-check the stability of the wine at the end of bottle again. The following are the most common treatment. problems that may appear in bottled white or rosé In the case of stabilizing colloids use (CMC, wines and how to prevent them. mannoproteins, metatartaric acid, KPA), run preliminary lab trials reproducing the process that HAZE & SEDIMENT the wine will undergo in the winery (clarification, PROTEIN HAZE sequence of filtration, etc.) to test the efficacy and Appearance: Whitish haze or amorphous sediment. determine the correct addition rate. Microscope observation helps identification. CALCIUM TARTRATE Causes: Wine exposure to high temperatures can Appearance: White crystals, sandy precipitate. cause protein insolubilization; addition of negatively Calcium tartrate salt does not dissolve in hot water. charged colloids like metatartaric acid, CMC or KPA The presence of calcium tartrate crystals can induce or late tannin addition can react with wine proteins; the precipitation of potassium bitartrate. -
Lab 7: What Is That White Powder? Goals: the Goal of This Lab Is to Identify All Five of the Unknown White Powders You Are Given
Chemistry 108, Spring 2017 Lab 7: What is That White Powder? Goals: The goal of this lab is to identify all five of the unknown white powders you are given. Each of these powders can be superficially described as a “dry white powder”, but they have different chemical and physical properties. You will need to develop your own procedure for this lab by reading the material given in this hand out. You will show your procedure to an instructor and it must be accepted before you can begin the lab. The possibilities of the unknown solids are given in the table below. FORMULA NAME USE NaCl sodium chloride Table salt NaHCO3 sodium bicarbonate Baking soda C12H22O11 sucrose Table sugar C6H12O6 glucose/dextrose Sweetener CaSO4 calcium sulfate Plaster of Paris (C6H12O6)n cornstarch Thickener MgSO4·7H2O magnesium sulfate (hydrated) Epsom Salts Na2B4O7 sodium tetraborate Borax KHC4H4O6 potassium bitartrate Cream of Tartar CaCO3 calcium carbonate Chalks, antacids NaOH sodium hydroxide Lye, drain cleaner Na2CO3 sodium carbonate Washing soda Procedure: You will need to develop your own procedure for this lab by reading the material given in this hand out. You will show your procedure to an instructor and it must be accepted before you can begin the lab. NOTE: You do not have to carry out each test on each powder. Tests You Can Perform: I. Solubility A. Water Solubility Eight of the twelve possible powders are soluble in water (dissolve in water). The four that are insoluble are calcium sulfate, calcium carbonate, cornstarch, and potassium bitartrate. To test water solubility, add a pea-sized sample to a test tube, and about 5 mL of water, stopper and shake the test tube. -
Things We're Dwelling on Now… Cold Stabilization
Grape Resources www.fruit.cornell.edu/grapes Things We’re Dwelling on Now… Cold Stabilization Chris Gerling, Enology Extension Associate, Cornell University - NYSAES First published in Cellar Dweller - January 2010. Cold stabilization time is here for many of us. When you think about it, cold stabilization shares with all winemaking the principle that bad results are unlikely to hurt anyone, but you can definitely upset people. Here are some tips to keep in mind when attempting to get the “wine diamonds” out before they show up at a dinner party. Faster chilling is better. For quicker and more complete precipitation, changing the temperature drastically is the best way to shake those crystals loose. Seeding with potassium bitartrate and agitating the wine can speed up the process further. Stabilization can still take place with traditional chilling and higher temperatures, but the process will take more time. Chilling is only effective on potassium bitartrate. In a year where a lot of deacidification took place, a fair amount of calcium carbonate was most likely used. Calcium tartrate is NOT responsive to temperature like potassium bitartrate is. The standard conductivity and freeze tests are also not effective in determining stability. What conditions do affect calcium tartrate? Alcohol, pH and the presence of sugars and acids all play a role in both potassium and calcium tartrate precipitation. As a general rule, higher alcohol and higher pH will favor precipitation, while organic acids and sugars seem to inhibit it. Malic acid seems more inhibitory than lactic, however, so malolactic fermentation can be considered as a step towards precipitation, especially when the pH bump is considered. -
Tartaric Acid Handling 1 2 Identification of Petitioned Substance
Tartaric Acid Handling 1 2 Identification of Petitioned Substance 3 Chemical Names: 14 4 2,3-dihydroxybutanedioic acid CAS Numbers: 5 L(+) tartaric acid: 87-69-4 6 Other Name: D(-) tartaric acid: 147-71-7 7 2,3-dihydroxysuccinic acid Mesotartaric acid: 147-73-9 8 Thearic acid Racemic acid: 133-37-9 9 Uvic acid 10 L(+) tartaric acid Other Codes: D(-) tartaric acid L(+) tartaric acid: 205-695-6 Mesotartaric acid D(-) tartaric acid: 201-766-0 Racemic acid Mesotartaric acid: 205-696-1 Racemic acid: 205-105-7 11 Trade Names: 12 None 1513 Characterization of Petitioned Substance 16 17 Composition of the Substance: 18 Tartaric acid [HOOCCH(OH)CH(OH)COOH; C4H6O6] is a four-carbon, organic acid with two OH groups 19 on the second and third carbon atoms, and two carboxylic acid (COOH) groups involving the first and 20 fourth carbons. The chemical structure of L(+) tartaric acid is shown below: 21 22 Source: Reusch, 1999 23 24 Tartaric acid exists in three distinct isomeric forms, as shown in the Fisher projection formulas below. Two 25 forms are chiral isomers, which means that the molecules are non-superimposable on their mirror images. 26 The form of tartaric acid found naturally in grapes and often produced synthetically for use in handling is 27 the L(+) tartaric acid isomer. This form is generally referred to as the ‘dextro form’ (Church and Blumberg, 28 1951). The D(-) form of tartaric acid is less common in nature and has almost no practical uses. The third 29 form is an achiral isomer, mesotartaric acid, that also can be manufactured (Reusch, 1999). -
Science Sixtyseventh67 National Conference a Platform for Progress
science sixtyseventh67 national conference a platform for progress 67th ASEV National Conference June 27–30, 2016 Portola Hotel & Monterey Marriott Monterey, California USA TECHNICAL ABSTRACTS american society for enology and viticulture june 27th – 30th, 2016 — monterey, california 45 2016 National Conference Technical Abstracts sixtyseventh67 national conference Oral Presentation Abstracts Wednesday, June 29 progress Enology — General .....................................................................................48–51 Viticulture — Disease Management ............................................................52–55 Viticulture — General .................................................................................56–59 a platform for science Thursday, June 30 Enology — Microbiology ............................................................................60–63 Enology — Phenolics .................................................................................64–67 Viticulture — Water Relations ....................................................................68–71 Enology — Sensory .....................................................................................72–74 Poster Presentation Abstracts Wednesday, June 29 & Thursday, June 30 Enology & Viticulture ...............................................................................75–118 Industry .................................................................................................119–123 NOTE: pp. 1-45 constituted the program section of the original -
Food & Beverage
FOOD & BEVERAGE BAKING, CONFECTIONERY, WINE, FRUITJUICE, DAIRY, SOFT DRINK, PROCESSED MEAT 1000 PRODUCTS ENDLESS POSSIBILITIES REDOX HAS HAD AN AMAZING HISTORY OF GROWTH AND DEVELOPMENT IN THE YEARS SINCE IT WAS FOUNDED IN 1965... 2 FOOD & BEVERAGE FOOD & BEVERAGE ABOUT REDOX Established in 1965 in Sydney, Redox is a leading incoming and outgoing deliveries to be quickly and easily ingredients distributor active in the Australian, Malaysian, matched to their analysis results. Therefore, at any time, New Zealand and United States markets. Our business Redox customers can request a certificate of analysis/ specialises in providing customers with the widest possible conformity, either by fax or accompanying their delivery. range of quality chemicals, ingredients and raw materials This certificate contains all of the information required to sourced from the world’s best manufacturers. ensure full traceability and accurate matching with the analysis results of the incoming delivery. Redox add value through its expert sourcing ability, efficient freight and warehousing network, stringent quality systems, close customer service, leveraged buying power and market knowledge. We look for long WE UNDERSTAND YOUR NEEDS term partnerships, where shared values and common goals align for mutual benefit. Our relationships are open, Constant interaction with nutritionists, specialists and innovative and based on teamwork. Let Redox become regulatory bodies allow us to be at the forefront of the your supply chain partner and start to enjoy the benefits industry delivering the benefits to you, the customer. Our tens of thousands of customers enjoy around the globe. quality assurance team is now tracking the ever changing and challenging requirements for nutritional and allergen information management.