Annual Review 2010/11
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Herschel PACS and SPIRE Imaging of CW Leonis*
A&A 518, L141 (2010) Astronomy DOI: 10.1051/0004-6361/201014658 & c ESO 2010 Astrophysics Herschel: the first science highlights Special feature Letter to the Editor Herschel PACS and SPIRE imaging of CW Leonis D. Ladjal1,M.J.Barlow2,M.A.T.Groenewegen3,T.Ueta4,J.A.D.L.Blommaert1, M. Cohen5, L. Decin1,6, W. De Meester1,K.Exter1,W.K.Gear7,H.L.Gomez7,P.C.Hargrave7, R. Huygen1,R.J.Ivison8, C. Jean1, F. Kerschbaum9,S.J.Leeks10,T.L.Lim10, G. Olofsson11, E. Polehampton10,12,T.Posch9,S.Regibo1,P.Royer1, B. Sibthorpe8,B.M.Swinyard10, B. Vandenbussche1 , C. Waelkens1, and R. Wesson2 1 Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium e-mail: [email protected] 2 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK 3 Koninklijke Sterrenwacht van België, Ringlaan 3, 1180 Brussels, Belgium 4 Dept. of Physics and Astronomy, University of Denver, Mail Stop 6900, Denver, CO 80208, USA 5 Radio Astronomy Laboratory, University of California at Berkeley, CA 94720, USA 6 Sterrenkundig Instituut Anton Pannekoek, Universiteit van Amsterdam, Kruislaan 403, 1098 Amsterdam, The Netherlands 7 School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, Wales CF24 3YB, UK 8 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 9 University Vienna, Department of Astronomy, Türkenschanzstrasse 17, 1180 Wien, Austria 10 Space Science and Technology Department, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK 11 Dept. of Astronomy, Stockholm University, AlbaNova University Center, Roslagstullsbacken 21, 10691 Stockholm, Sweden 12 Department of Physics, University of Lethbridge, Alberta, Canada Received 31 March 2010 / Accepted 15 April 2010 ABSTRACT Herschel PACS and SPIRE images have been obtained over a 30 × 30 area around the well-known carbon star CW Leo (IRC +10 216). -
Gillian R. Knapp - Curriculum Vitae Born: Widnes, United Kingdom, October 10, 1944
Gillian R. Knapp - Curriculum Vitae Born: Widnes, United Kingdom, October 10, 1944. B.Sc. (Hons.) Physics, University of Edinburgh, 1966. Ph.D. Astronomy, University of Maryland, 1972. Professional Societies American Astronomical Society, Royal Astronomical Society, International Union of Radio Science, International Astronomical Union Positions held Teaching associate, University of Maryland, l971-3. Research fellow, Senior Research Fellow, Research Associate, California Institute of Technology, 1974-9. Research astronomer, Princeton University, 1980-4. Associate Professor, Professor, Princeton University, 1984- Visiting Assistant Professor, University of Washington, spring 1979. Visiting Associate Professor, UCLA, spring 1980. Visiting Fellow, University of Groningen, The Netherlands, summer 1981. Visiting astronomer, Bell Laboratories, 1980-92. Visiting professor, Institute for Astronomy, University of Hawaii, Fall 1989 Awards Tinsley Centennial Professor, University of Texas, Fall 1985. Distinguished Alumnus Award, University of Maryland, 2003 Leadership Alliance Mentorship Award, 2007 Current and Recent National/ International Committees Caltech Submillimeter Observatory Director’s Advisory Committee: NAIC Arecibo Advi- sory Committee: Spitzer Science Center Users’ Committee: NAIC Arecibo Large Projects Oversight Committee: Review Board, DARK Cosmology Institute Current and Recent Princeton University and Department Activities EEEO officer, Coordinator for Undergraduate Summer Research, and Director of Graduate Studies, Astrophysics: -
Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis, -
Orbital Elements of Double Stars
Orbital elements of double stars: ADS 1548 Marco Scardia, Jean-Louis Prieur, Luigi Pansecchi, Robert Argyle, Josefina Ling, Eric Aristidi, Alessio Zanutta, Lyu Abe, Philippe Bendjoya, Jean-Pierre Rivet, et al. To cite this version: Marco Scardia, Jean-Louis Prieur, Luigi Pansecchi, Robert Argyle, Josefina Ling, et al.. Orbital elements of double stars: ADS 1548. 2018, pp.1. hal-02357208 HAL Id: hal-02357208 https://hal.archives-ouvertes.fr/hal-02357208 Submitted on 23 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INTERNATIONAL ASTRONOMICAL UNION COMMISSION G1 (BINARY AND MULTIPLE STAR SYSTEMS) DOUBLE STARS INFORMATION CIRCULAR No. 194 (FEBRUARY 2018) NEW ORBITS ADS Name P T e Ω(2000) 2018 Author(s) α2000δ n a i ! Last ob. 2019 1548 A 819 AB 135y4 2011.06 0.548 153◦8 39◦7 000161 SCARDIA 01570+3101 2◦6587 000424 50◦5 189◦7 2017.833 49.4 0.163 et al. (*) - HDS 333 49.54 1981.14 0.60 252.6 253.8 0.542 TOKOVININ 02332-5156 7.2665 0.413 57.4 150.9 2018.073 255.7 0.519 - COU 691 61.76 1964.53 0.059 68.6 276.2 0.109 DOCOBO 03423+3141 5.8290 0.160 -
Bloomsbury Project
Opticon1826 , Issue 6, Spring 2009 THE BLOOMSBURY PROJECT By Rosemary Ashton For a century, Bloomsbury has been celebrated as the home of the ‘Bloomsbury Group’ of writers and artists in the early decades of the twentieth century. The UCL Leverhulme-funded Bloomsbury Project, ‘Bloomsbury and Reform in the Nineteenth Century’, is dedicated to the study of the area before this group settled there. A striking number of pioneering nineteenth- century institutions are to be found in the space bounded by Tottenham Court Road in the west, Euston Road to the north, Gray’s Inn Road to the east, and New Oxford Street to the south. Why and how so many centres of learning emerged in the immediate area of the British Museum (founded in 1753 but much extended in the nineteenth century), turning Bloomsbury into an intellectual powerhouse, are questions the project addresses. The beginning and end dates are 1800, when Francis Russell, fifth Duke of Bedford, obtained two acts of Parliament to develop his Bloomsbury estate, and 1904, when Virginia Stephen, later Woolf, moved into the area after the death of her father Leslie Stephen, so beginning the ‘Bloomsbury Group’. The Bloomsbury project is multidisciplinary, involving research in many fields: intellectual, cultural, political, social, economic, geographical, architectural, legal, educational, medical, religious, and literary history. Collaborators and advisors already attached to the project include colleagues at UCL in English, History, the History of Medicine, the Built Environment, and Geography; outside UCL, we number collaborators from Birkbeck, Central St Martin’s, the British Library, the British Museum, the Dr Williams’s Library, the Swedenborg Society, and Camden Public Library. -
Annual Report
Annual Report 2002/2003 The academic year 2002/2003 was marked by continued excellence in research, teaching and outreach, in service of humanity’s intellectual, social and technological needs. Provost & President’s Outreach Statement In accordance with its UCL is committed to founding principles, UCL using its excellence in continued to share the research and teaching highest quality research to enrich society’s and teaching with those intellectual, cultural, who could most benefit scientific, economic, from it, regardless of environmental and their background or medical spheres. circumstances. See page 2 See page 8 Research & Teaching Achievements UCL continued to UCL’s academics challenge the boundaries conducted pioneering of knowledge through its work at the forefront programmes of research, of their disciplines while ensuring that the during this year. most promising students See page 12 could benefit from its intense research-led teaching environment. See page 4 The UCL Community Financial Information UCL’s staff, students, UCL’s annual income has alumni and members of grown by almost 30% in Council form a community the last five years. The which works closely largest component of this together to achieve income remains research the university’s goals. grants and contracts. See page 18 See page 24 Supporting UCL Contacting UCL UCL pays tribute to Join the many current those individuals and and former students and organisations who staff, friends, businesses, have made substantial funding councils and financial contributions agencies, governments, in support of its research foundations, trusts and and teaching. charities that are See page 22 involved with UCL. See page 25 Developing UCL With the help of its supporters, UCL is investing in facilities fit for the finest research and teaching in decades to come. -
Week 5: January 26-February 1, 2020
5# Ice & Stone 2020 Week 5: January 26-February 1, 2020 Presented by The Earthrise Institute About Ice And Stone 2020 It is my pleasure to welcome all educators, students, topics include: main-belt asteroids, near-Earth asteroids, and anybody else who might be interested, to Ice and “Great Comets,” spacecraft visits (both past and Stone 2020. This is an educational package I have put future), meteorites, and “small bodies” in popular together to cover the so-called “small bodies” of the literature and music. solar system, which in general means asteroids and comets, although this also includes the small moons of Throughout 2020 there will be various comets that are the various planets as well as meteors, meteorites, and visible in our skies and various asteroids passing by Earth interplanetary dust. Although these objects may be -- some of which are already known, some of which “small” compared to the planets of our solar system, will be discovered “in the act” -- and there will also be they are nevertheless of high interest and importance various asteroids of the main asteroid belt that are visible for several reasons, including: as well as “occultations” of stars by various asteroids visible from certain locations on Earth’s surface. Ice a) they are believed to be the “leftovers” from the and Stone 2020 will make note of these occasions and formation of the solar system, so studying them provides appearances as they take place. The “Comet Resource valuable insights into our origins, including Earth and of Center” at the Earthrise web site contains information life on Earth, including ourselves; about the brighter comets that are visible in the sky at any given time and, for those who are interested, I will b) we have learned that this process isn’t over yet, and also occasionally share information about the goings-on that there are still objects out there that can impact in my life as I observe these comets. -
Omar Abdelaziz
Omar Abdelaziz Tel: (202) 22582188(EGY) Mob: +44 07733317297 (UK) Mob: +2 01128807700 (EGY) Email: [email protected]; Nationality: Egyptian. Education and Qualifications: 2017 : Submitted PhD in law to IALS – SAS – University of London. 2016 (June): Advanced Course on EU law – King’s College London (KCL) 2016 (April): forthcoming Short Course: International Law in Practice - British Institute of International and Comparative Law (BIICL) 2012-2016: Mphil - PhD in law (Building a Case for Punitive Damages in Contract Law – Doctrinal Critical Analysis) 2010-2011: LL.M in advanced Legislative Studies (EU direction), School of Advanced Study, University of London. Themes in Legislative Studies: Distinction. Theories of European Integration: Academic Merit. European Legislative Studies: Academic Merit. European Union Membership and Accession: Academic Merit Dissertation: Merit – Ranked first (Legislative Drafting Aspects on the Law of Damages in the new Draft Common Frame of Reference (DCFR) – Europeanisation of Contract Law feasibility) 2009 (May): Faculty of law, Cairo university, Egypt. Post Graduate Diploma (PGD) Title: Islamic law Diploma. Test date: May 2009. Written Exams: Very Good 1 Oral Exam: Very Good Grade: Very Good (1st class honours) Ranking: First 2008 (May): Faculty of law, Cairo University, Egypt Post Graduate Diploma (PGD) Title: private law Diploma. Test date: May 2008 Written Exams: Very Good Oral Exams: Very Good Grade: Very Good (1st class honors). Ranking: Second over 150 student The Two PG diplomas qualify as a Master degree (LLM) with an average overall grade: Very good with distinction, ranked 1st on my class. 2003-2007: Faculty of law, English section, Cairo University, Egypt. Bachelor of law (License en Droit) Grade: Excellent with Honor degree (graduated as top student). -
Blackstone's Tower: the English Law School by Professor William Twining
THE HAMLYN LECTURES BLACKSTONE'S •TOWER: The English Law School • William Twining Sweet & Maxwell THE HAMLYN LECTURES FORTY-SIXTH SERIES BLACKSTONE'S TOWER The English Law School AUSTRALIA The Law Book Company Brisbane • Sydney • Melbourne • Perth CANADA Carswell Ottawa • Toronto • Calgary • Montreal • Vancouver AGENTS Steimatzky's Agency Ltd., Tel Aviv; N.M. Tripathi (Private) Ltd., Bombay; Eastern Law House (Private) Ltd., Calcutta; M.P.P. House, Bangalore; Universal Book Traders, Delhi; Aditya Books, Delhi; MacMillan Shuppan KK, Tokyo; Pakistan Law House, Karachi, Lahore BLACKSTONE'S TOWER The English Law School by WILLIAM TWINING Quain Professor of Jurisprudence University College, London Published under the auspices of THE HAMLYN TRUST LONDON STEVENS & SONS/SWEET & MAXWELL 1994 Published in 1994 by Stevens & Sons Ltd./Sweet & Maxwell Ltd. South Quay Plaza, 183 Marsh Wall, London E14 9FT Computerset by Wyvern Typesetting, Bristol Printed in England by Clays Ltd, St Ives pic A OP catalogue record for this book is available from the British Library ISBN 0 421 53270 X (H/b) 0 421 53280 7 (P/b) All rights reserved. UK statutory material in this publication is acknowledged as Crown copyright. No part of this publication may be reproduced or transmitted in any form or by any means, or stored in any retrieval system of any nature without prior written permission, except for permitted fair dealing under the Copyright, Designs and Patents Act 1988, or in accordance with the terms of a licence issued by the Copyright Licensing Agency in respect of photocopying and/or reprographic reproduction. Application for permission for other use of copyright material including permission to reproduce extracts in other published works shall be made to the publishers. -
Microwave Spectroscopy of Sulfur-Bearing Molecular Species Of
Microwave spectroscopy of sulfur-bearing molecular species of astrophysical interest by Wenhao Sun A thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of Doctor of Philosophy Department of Chemistry University of Manitoba Winnipeg, Canada Copyright © 2019 by Wenhao Sun Abstract Microwave spectroscopy, which measures rotational transitions in the centimeter-wave region, is a robust technique to study the fundamental chemical and physical properties of gaseous molecules, such as the geometry and the electronic structure. This thesis presents a selection of studies on several compounds of great astrophysical interest including phenyl isocyanate (PhNCO), phenyl isothiocyanate (PhNCS), ethynyl isothiocyanate (HCCNCS) and its longer chain form HCCCCNCS, cyanogen isothiocyanate (NCNCS) and its longer chain form NCCCNCS. The experiments were carried out with two Fourier transform microwave (FTMW) spectrometers: the broadband chirped pulse type, which has the capability of simultaneously probing many molecules together with a bandwidth up to 6 GHz; the narrowband cavity-based type, which focuses on a frequency window of 1 MHz each time with high resolution and sensitivity. Unlike PhNCO and PhNCS which are commercially available, the other four chemical species are not likely to be synthesized on a laboratory benchtop and were thus prepared by employing a dc electrical discharge. The transient products in the discharge source were probed by the spectrometers and were unambiguously identified by their rotational transitions out of a number of discharge dependent species including both closed-shell compounds and open-shell radicals. Furthermore, in order to better understand the chemical reactivities and kinetics in complex discharge plasmas, a thiazole discharge was investigated on the basis of the identified products in the rich spectrum. -
Discovery of a Shell of Neutral Atomic Hydrogen Surrounding the Carbon Star IRC+10216
Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 6 February 2015 (MN LATEX style file v2.2) Discovery of a Shell of Neutral Atomic Hydrogen Surrounding the Carbon Star IRC+10216 L. D. Matthews1, E. G´erard2, T. Le Bertre3 1Massachusetts Institute of Technology Haystack Observatory, Off Route 40, Westford, MA 01886 USA 2GEPI, UMR 8111, Observatoire de Paris, 5 Place J. Janssen, F-92195 Meudon Cedex, France 3LERMA, UMR 8112, Observatoire de Paris, 61 av. de l’Observatoire, F-75014 Paris, France 6 February 2015 ABSTRACT We have used the Robert C. Byrd Green Bank Telescope to perform the most sensitive search to date for neutral atomic hydrogen (H i) in the circumstellar envelope (CSE) of the carbon star IRC+10216. Our observations have uncovered a low surface brightness H i shell of diameter ∼ 1300′′ (∼0.8 pc), centered on IRC+10216. The H i shell has an angular extent comparable to the far ultraviolet-emitting astrosphere of IRC+10216 previously detected with the GALEX satellite, and its kinematics are consistent with circumstellar matter that has been decelerated by the local interstellar medium. The shell appears to completely surround the star, but the highest H i column densities are measured along the leading edge of the shell, near the location of a previously identified bow shock. We estimate a total mass of atomic hydrogen associated with −3 IRC+10216 CSE of MHI ∼ 3 × 10 M⊙. This is only a small fraction of the expected total mass of the CSE (<1%) and is consistent with the bulk of the stellar wind originating in molecular rather than atomic form, as expected for a cool star with ◦ ◦ an effective temperature Teff ∼<2200 K. -
Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1
Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1 1Independent Researcher, Zadar, Croatia *Project: https://www.svemir-ipaksevrti.com/Universe-and-rotation.html; (https://www.svemir-ipaksevrti.com/) Abstract: The article analyzes the blueshift of the objects, through realized measurements of galaxies, mergers and collisions of galaxies and clusters of galaxies and measurements of different galactic speeds, where the closer galaxies move faster than the significantly more distant ones. The clusters of galaxies are analyzed through their non-zero value rotations and gravitational connection of objects inside a cluster, supercluster or a group of galaxies. The constant growth of objects and systems is visible through the constant influx of space material to Earth and other objects inside our system, through percussive craters, scattered around the system, collisions and mergers of objects, galaxies and clusters of galaxies. Atom and its formation, joining into pairs, growth and disintegration are analyzed through atoms of the same values of structure, different aggregate states and contiguous atoms of different aggregate states. The disintegration of complex atoms is followed with the temperature increase above the boiling point of atoms and compounds. The effects of rotation around an axis are analyzed from the small objects through stars, galaxies, superclusters and to the rotation of Universe. The objects' speeds of rotation and their effects are analyzed through the formation and appearance of a system (the formation of orbits, the asteroid belt, gas disk, the appearance of galaxies), its influence on temperature, surface gravity, the force of a magnetic field, the size of a radius.