Loss of Spatial Control of the Mitotic Spindle Apparatus in a Chlamydomonas Reinhardtii Mutant Strain Lacking Basal Bodies

Total Page:16

File Type:pdf, Size:1020Kb

Loss of Spatial Control of the Mitotic Spindle Apparatus in a Chlamydomonas Reinhardtii Mutant Strain Lacking Basal Bodies Copyright 0 1995 by the Genetics Society of America Loss of Spatial Control of the Mitotic Spindle Apparatus in a Chlamydomonas reinhardtii Mutant Strain Lacking Basal Bodies Linda L. Ehler, Jeffrey A. Holmes' and Susan K. Dutcher Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347 Manuscript received April 27, 1995 Accepted for publication August 4, 1995 ABSTRACT The bld2-1 mutation in the green alga Chlamydomonas reinhardtii is the only known mutation that results in the loss of centrioles/basal bodies and the loss of coordination between spindle position and cleavage furrow position during cell division. Based on several different assays, bld2-1 cells lack basal bodies in >99% of cells. The stereotypical cytoskeletal morphology and precise positioning of the cleavage furrow observed in wild-type cellsis disrupted in bld2-1 cells. The positionsof the mitotic spindle and of the cleavage furrow are not correlated with respect to each other or with a specific cellular landmark during cell division in bld2-1 cells. Actin has a variable distribution during mitosis in bld2-1 cells, but this aberrant distribution is not correlated with the spindle positioning defect. In both wild- type and bld2-1 cells, the position of the cleavage furrow is coincident with a specialized set of microtu- bules found in green algae knownas the rootlet microtubules.We propose that the rootlet microtubules perform the functionsof astral microtubules and that functional centrioles are necessarythe organiza- for tion of the cytoskeletal superstructure critical for correct spindle and cleavage furrow placement in Chlamydomonas. HE position of the mitotic spindle apparatus must Physarum and Naegleria cells do not have centrioles T be coordinated bothtemporally and spatially with during mycelial growth (FULTONand DINGLE1971), the cleavage furrow to ensure correct partitioning of and higher plant cells do not have centrioles. In addi- the cellular contents.Incorrect placement of these tion, the Drosophila haploid tissue culture cell line structures with respect to each other would result in 1182-4, which was isolated from dead embryos of the cellular catastrophe. The elaborate mechanisms that female sterile strain mh1182, lacks centrioles when ex- exist for a cell to monitor the correct replication and amined by serial thin-section electron microscopy. The segregation of itsDNA must act in concertwith cleavage cell line undergoes growth and mitotic divisions, but it furrow positioning. Furthermore, correct segregation spontaneously diploidizes, has a high levelof aneu- of developmental determinants and implementation of ploidy and contains large numbers of multinucleate developmental programs may require precise cleavage cells (DEBEC et al. 1982; DEBEC1984; SZOLLOSIet aZ. furrow position within cells undergoing development. 1986). It is unclear whether these defects arise from For example, inCaenarhabditis elegans, the specific orien- the lack of centrioles or from the haploid/aneuploid tation of the cleavage furrow is necessary for the correct nature of the cell line. In contrast,when the centrioles localization of P granules to only one daughter cell in and most of the pericentriolar material are surgically thesubsequent divisionof the P1 cell (HYMANand removed from cells of the monkey cell line BSG1, an WHITE1987). organized array of microtubules is regenerated but cen- The mitotic spindles of many cells are nucleated by trioles are not, and the cells do not complete cell divi- the centrosomes, which contain a pair of centrioles/ sion (MANIOTIS and SCHLIWA1991). It is unclear basal bodies andamorphous pericentriolar material whether the inability of these surgically altered cells to (PCM) that usually nucleates amicrotubule array divide is due to a lack of centrioles or to a missing (GOULDand BORIS 1977). Although centrosomes ap- component(s) of the PCM. The evidence for the role pear to be essential for formation of the spindle and of centrioles in cell division remains inconclusive. the mitotic asters, it is unclear whether the centrioles The exact mechanisms involved in positioning the are necessary for this function. Mouse meiotic spindles mitotic apparatus are unknown. One current model is do not have centrioles (CALARCO-GILLAMet al. 1983), that the centrosomes migrate to a position previously established or maintained by a microfilament network. Corresponding authm: Susan K. Dutcher, Department of Molecular, The interaction with the actin cytoskeleton is proposed Cellular, and Developmental Biology, University of Colorado, Boul- to occur via the astral microtubules that radiate from der, CO 80309-0347. E-mail: [email protected] the centrosomes (HYMANand WHITE 1987; PALMERet 'Present address: Intercampus Program, Molecular Parasitology, 3333 California Street University of California, San Francisco, California, al. 1992).In the P blastomeres of C. elegans, the 941431204, centrosomes separate and migrate to positions directly Genetics 141: 945-960 (November, 1995) 946 L. L. Ehler, J. A. Holmes and S. K. Dutcher opposite each other and subsequently both rotate 90 formation is dependent on microtubules; loss of micro- deg to align on the anterior-posterior axis. Rotation of tubules from treatment with colchicine before midana- the centrosomes shows sensitivityto microtubuleinhibi- phase prevents cleavage furrow initiation (BWS and tors (HYMANand WHITE 1987). Laser irradiation be- EVANS1940; HAMAGUCHI 1975).These results suggest tween the centrosome and the cell cortex results in that theasters and probably the astral microtubules play the cessation of centrosomal rotation and implicates a a key role in positioning the cleavage furrow. particular cortical site in the rotational events (HYMAN We have characterized a C. reinhardtii mutant strain, 1989). Treatmentof P blastomeres with cytochalasin D, bld2-I, that lacks centrioles/basal bodies. The strain was an inhibitor of microfilament assembly, results in the originally isolated by GOODENOUGH and ST. CLAIK failure of centrosomes to rotate (HILLand STROME (1975), has a single genetic lesion, and represents the 1988, 1990; HYMAN1989). Actin and actin capping pro- first allele at a previously unidentified locus. Cells lack tein have been shown to transiently accumulate at a centrioles/basal bodies in >99% of the population and cortical site that also has astral microtubules in its vicin- GOODENOUCHand ST. CWR (1975) proposed that the ity during thetime of centrosomal rotation;blastomeres BLD2 gene product is required for the formation of that do not undergo centrosomal rotation do notaccu- doublet and triplet microtubules. In addition to the mulate capping protein atthis site (WADDLEet al. 1994). basal body defect, we have found that cellular organiza- In the budding yeast, Saccharomyces cerevisicce, charac- tion is disrupted. The placement of the mitotic spindle terization of strains that have abnormal placement of is no longer correlated spatially or temporally with the the mitotic apparatus has implicated astral microtu- cleavage furrow and is misplaced relative to the sterec- bules, cytoplasmic dynein, dynactin complex, and actin typed cytological position seen in wild-typecells. The microfilaments in establishing or maintaining the spin- position of the cleavage furrow is also aberrant, but it dle in the correct position before anaphase. At the re- always colocalizes with specialized structures known as strictive temperature, the o-tubulin mutant straintub2- rootlet microtubules. The rootlet microtubules in bld2- 401 loses astral microtubules preferentially, the mitotic 1 cells are disorganized and often mispositioned in rela- spindles misorient; anucleate and multinucleate cells tion to the mitotic spindle. These observations clearly accumulate (HUFFAKERet al. 1988; SULLIVANand HUE implicate the BLD2 gene product as a component in- FAKER 1992). Deletion mutations in the cytoplasmic volved in the correct positioning of the mitotic spindle. dynein heavy chain gene DHCI (DYNl) orflM1 result The role of the BLD2 gene product may be in the initia- in minor spindle orientation defects (ESHELet al. 1993; tion or structure of functional centrioles, which may be LI et al. 1993; MCMILLANand TATCHELL1994). Spindle necessary to maintain the elaborate cytoskeletal organi- misorientation in dhcl (dynl) disruption strains is ac- zation critical for correct cell division in C. reinhardtii. companied by elongated astral microtubules and an increase in cells that are binucleate. Act5 is a member MATERIALS AND METHODS of the actin-related protein family Arpl and is homolo- Strains and culture conditions: The 137c mt+ strain of C. gous to the actin-like protein found in the vertebrate reinhardtii was used as the wild-type strainfor this study unless dynactin complex. Deletions of the ACT5 gene result otherwise noted. The bldl-l and the bld2-1 strains were origi- in minor spindle placement defects (GILL et al. 1991; nallyisolated by GOODENOUGHand Sr. CIAIR (1975) and MUHUAet al. 1994). obtained from the Chlamydomonas Genetics Center. The Several lines of evidence suggest that the position of aflagellate strain 426 was isolated in a screen for cells that could not swim after heat shock treatment (42", 30 min) of the cleavage furrow is determined by the position of a member of the F, generation from a cross of strain 137c to the mitotic apparatus. The furrow always forms at right the polymorphic strain, CC1952 (GROSSet al. 1988).Cultures angles
Recommended publications
  • Glossary - Cellbiology
    1 Glossary - Cellbiology Blotting: (Blot Analysis) Widely used biochemical technique for detecting the presence of specific macromolecules (proteins, mRNAs, or DNA sequences) in a mixture. A sample first is separated on an agarose or polyacrylamide gel usually under denaturing conditions; the separated components are transferred (blotting) to a nitrocellulose sheet, which is exposed to a radiolabeled molecule that specifically binds to the macromolecule of interest, and then subjected to autoradiography. Northern B.: mRNAs are detected with a complementary DNA; Southern B.: DNA restriction fragments are detected with complementary nucleotide sequences; Western B.: Proteins are detected by specific antibodies. Cell: The fundamental unit of living organisms. Cells are bounded by a lipid-containing plasma membrane, containing the central nucleus, and the cytoplasm. Cells are generally capable of independent reproduction. More complex cells like Eukaryotes have various compartments (organelles) where special tasks essential for the survival of the cell take place. Cytoplasm: Viscous contents of a cell that are contained within the plasma membrane but, in eukaryotic cells, outside the nucleus. The part of the cytoplasm not contained in any organelle is called the Cytosol. Cytoskeleton: (Gk. ) Three dimensional network of fibrous elements, allowing precisely regulated movements of cell parts, transport organelles, and help to maintain a cell’s shape. • Actin filament: (Microfilaments) Ubiquitous eukaryotic cytoskeletal proteins (one end is attached to the cell-cortex) of two “twisted“ actin monomers; are important in the structural support and movement of cells. Each actin filament (F-actin) consists of two strands of globular subunits (G-Actin) wrapped around each other to form a polarized unit (high ionic cytoplasm lead to the formation of AF, whereas low ion-concentration disassembles AF).
    [Show full text]
  • The Role of Model Organisms in the History of Mitosis Research
    Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press The Role of Model Organisms in the History of Mitosis Research Mitsuhiro Yanagida Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan Correspondence: [email protected] Mitosis is a cell-cycle stage during which condensed chromosomes migrate to the middle of the cell and segregate into two daughter nuclei before cytokinesis (cell division) with the aid of a dynamic mitotic spindle. The history of mitosis research is quite long, commencing well before the discovery of DNA as the repository of genetic information. However, great and rapid progress has been made since the introduction of recombinant DNA technology and discovery of universal cell-cycle control. A large number of conserved eukaryotic genes required for the progression from early to late mitotic stages have been discovered, confirm- ing that DNA replication and mitosis are the two main events in the cell-division cycle. In this article, a historical overview of mitosis is given, emphasizing the importance of diverse model organisms that have been used to solve fundamental questions about mitosis. Onko Chisin—An attempt to discover new truths by checkpoint [SAC]), then metaphase (in which studying the past through scrutiny of the old. the chromosomes are aligned in the middle of cell), anaphase A (in which identical sister chro- matids comprising individual chromosomes LARGE SALAMANDER CHROMOSOMES separate and move toward opposite poles of ENABLED THE FIRST DESCRIPTION the cell), anaphase B (in which the spindle elon- OF MITOSIS gates as the chromosomes approach the poles), itosis means “thread” in Greek.
    [Show full text]
  • Mitosis Vs. Meiosis
    Mitosis vs. Meiosis In order for organisms to continue growing and/or replace cells that are dead or beyond repair, cells must replicate, or make identical copies of themselves. In order to do this and maintain the proper number of chromosomes, the cells of eukaryotes must undergo mitosis to divide up their DNA. The dividing of the DNA ensures that both the “old” cell (parent cell) and the “new” cells (daughter cells) have the same genetic makeup and both will be diploid, or containing the same number of chromosomes as the parent cell. For reproduction of an organism to occur, the original parent cell will undergo Meiosis to create 4 new daughter cells with a slightly different genetic makeup in order to ensure genetic diversity when fertilization occurs. The four daughter cells will be haploid, or containing half the number of chromosomes as the parent cell. The difference between the two processes is that mitosis occurs in non-reproductive cells, or somatic cells, and meiosis occurs in the cells that participate in sexual reproduction, or germ cells. The Somatic Cell Cycle (Mitosis) The somatic cell cycle consists of 3 phases: interphase, m phase, and cytokinesis. 1. Interphase: Interphase is considered the non-dividing phase of the cell cycle. It is not a part of the actual process of mitosis, but it readies the cell for mitosis. It is made up of 3 sub-phases: • G1 Phase: In G1, the cell is growing. In most organisms, the majority of the cell’s life span is spent in G1. • S Phase: In each human somatic cell, there are 23 pairs of chromosomes; one chromosome comes from the mother and one comes from the father.
    [Show full text]
  • The Emerging Role of Ncrnas and RNA-Binding Proteins in Mitotic Apparatus Formation
    non-coding RNA Review The Emerging Role of ncRNAs and RNA-Binding Proteins in Mitotic Apparatus Formation Kei K. Ito, Koki Watanabe and Daiju Kitagawa * Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; [email protected] (K.K.I.); [email protected] (K.W.) * Correspondence: [email protected] Received: 11 November 2019; Accepted: 13 March 2020; Published: 20 March 2020 Abstract: Mounting experimental evidence shows that non-coding RNAs (ncRNAs) serve a wide variety of biological functions. Recent studies suggest that a part of ncRNAs are critically important for supporting the structure of subcellular architectures. Here, we summarize the current literature demonstrating the role of ncRNAs and RNA-binding proteins in regulating the assembly of mitotic apparatus, especially focusing on centrosomes, kinetochores, and mitotic spindles. Keywords: ncRNA; centrosome; kinetochore; mitotic spindle 1. Introduction Non-coding RNAs (ncRNAs) are defined as a class of RNA molecules that are transcribed from genomic DNA, but not translated into proteins. They are mainly classified into the following two categories according to their length—small RNA (<200 nt) and long non-coding RNA (lncRNA) (>200 nt). Small RNAs include traditional RNA molecules, such as transfer RNA (tRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), PIWI-interacting RNA (piRNA), and micro RNA (miRNA), and they have been studied extensively [1]. Research on lncRNA is behind that on small RNA despite that recent transcriptome analysis has revealed that more than 120,000 lncRNAs are generated from the human genome [2–4].
    [Show full text]
  • List, Describe, Diagram, and Identify the Stages of Meiosis
    Meiosis and Sexual Life Cycles Objective # 1 In this topic we will examine a second type of cell division used by eukaryotic List, describe, diagram, and cells: meiosis. identify the stages of meiosis. In addition, we will see how the 2 types of eukaryotic cell division, mitosis and meiosis, are involved in transmitting genetic information from one generation to the next during eukaryotic life cycles. 1 2 Objective 1 Objective 1 Overview of meiosis in a cell where 2N = 6 Only diploid cells can divide by meiosis. We will examine the stages of meiosis in DNA duplication a diploid cell where 2N = 6 during interphase Meiosis involves 2 consecutive cell divisions. Since the DNA is duplicated Meiosis II only prior to the first division, the final result is 4 haploid cells: Meiosis I 3 After meiosis I the cells are haploid. 4 Objective 1, Stages of Meiosis Objective 1, Stages of Meiosis Prophase I: ¾ Chromosomes condense. Because of replication during interphase, each chromosome consists of 2 sister chromatids joined by a centromere. ¾ Synapsis – the 2 members of each homologous pair of chromosomes line up side-by-side to form a tetrad consisting of 4 chromatids: 5 6 1 Objective 1, Stages of Meiosis Objective 1, Stages of Meiosis Prophase I: ¾ During synapsis, sometimes there is an exchange of homologous parts between non-sister chromatids. This exchange is called crossing over. 7 8 Objective 1, Stages of Meiosis Objective 1, Stages of Meiosis (2N=6) Prophase I: ¾ the spindle apparatus begins to form. ¾ the nuclear membrane breaks down: Prophase I 9 10 Objective 1, Stages of Meiosis Objective 1, 4 Possible Metaphase I Arrangements: Metaphase I: ¾ chromosomes line up along the equatorial plate in pairs, i.e.
    [Show full text]
  • The Investigational Aurora Kinase a Inhibitor MLN8237 Induces Defects in Cell Viability and Cell-Cycle Progression in Malignant
    Published OnlineFirst February 12, 2013; DOI: 10.1158/1078-0432.CCR-12-2383 Clinical Cancer Cancer Therapy: Preclinical Research The Investigational Aurora Kinase A Inhibitor MLN8237 Induces Defects in Cell Viability and Cell-Cycle Progression in Malignant Bladder Cancer Cells In Vitro and In Vivo Ning Zhou1, Kamini Singh2, Maria C. Mir1, Yvonne Parker5, Daniel Lindner5, Robert Dreicer5, Jeffrey A. Ecsedy6, Zhongfa Zhang7, Bin T. Teh8, Alexandru Almasan2, and Donna E. Hansel1,3,4,5 Abstract Purpose: Despite more than 70,000 new cases of bladder cancer in the United States annually, patients with advanced disease have a poor prognosis due to limited treatment modalities. We evaluated Aurora kinase A, identified as an upregulated candidate molecule in bladder cancer, as a potential therapeutic target. Experimental Design: Gene expression in human bladder cancer samples was evaluated using RNA microarray and quantitative reverse transcriptase PCR. Effects of the Aurora kinase A inhibitor MLN8237 (Millennium) on cell dynamics in malignant T24 and UM-UC-3 and papilloma-derived RT4 bladder cells were evaluated in vitro and in vivo in a mouse xenograft model. Results: A set of 13 genes involved in the mitotic spindle checkpoint, including Aurora kinases A and B, were upregulated in human urothelial carcinoma compared with normal urothelium. The Aurora kinase A inhibitor MLN8237 induced cell-cycle arrest, aneuploidy, mitotic spindle failure, and apoptosis in the human bladder cancer cell lines T24 and UM-UC-3. MLN8237 also arrested tumor growth when admin- istered orally over 4 weeks in a mouse bladder cancer xenograft model. Finally, in vitro sequential administration of MLN8237 with either paclitaxel or gemcitabine resulted in synergistic cytotoxic effects in T24 cells.
    [Show full text]
  • Lecture Disruption of Mitosis
    1 Lecture Disruption of Mitosis 1. General Information Mitosis is the process by which eukaryotic cell nuclei divide to give two daughter nuclei with identical and complete sets of chromosomes. The term mitosis, however, is commonly used to describe the entire process of cell division. This process mainly occurs in the meristematic tissues and is absolutely necessary for plant growth. Herbicides with this mode of action inhibit the formation or function of the spindle apparatus, a framework of proteins that allows segregation of the daughter chromosomes in the division process. For one herbicide with this mode of action the specific target site is unknown. 2 2. Mode of Action Microtubule Assembly Inhibitors (Interference with Spindle Fiber Formation) For herbicides with this mode of action, the prophase sequence is normal, but without the spindle apparatus, chromosomes are unable to move into the metaphase configuration and daughter chromosomes cannot migrate to their respective poles. Herbicides representing the dinitroaniline family bind to tubulin, the major microtubule protein. The herbicide-tubulin complex inhibits polymerization of microtubules at the growing end of the tubule but has no effect on depolymerization of the tubule on the other end. This leads to loss of microtubules. In contrast, the herbicides dithiopyr and pronamide do not bind to tubulin but appear to bind to another protein that may be a microtubule associated protein. The end result is shortened microtubules that cannot form the spindle fibers needed for mitosis. In both cases, after a time in the prophase state, chromosomes coalesce in the middle of the cell, cell division ceases, and growth stops.
    [Show full text]
  • Mitotic Spindles Revisited – New Insights from 3D Electron Microscopy Thomas Müller-Reichert‡, Robert Kiewisz and Stefanie Redemann*,‡
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs211383. doi:10.1242/jcs.211383 REVIEW ARTICLE SERIES: IMAGING Mitotic spindles revisited – new insights from 3D electron microscopy Thomas Müller-Reichert‡, Robert Kiewisz and Stefanie Redemann*,‡ ABSTRACT microtubules of bipolar spindles are grouped into different classes. The mitotic spindle is a complex three-dimensional (3D) apparatus A canonical view of mitotic spindle structure in metaphase (Fig. 1) that functions to ensure the faithful segregation of chromosomes shows the following classes of microtubules (MTs): astral-MTs during cell division. Our current understanding of spindle architecture (AMTs), kinetochore-MTs (KMTs), interdigitating-MTs (IMTs) and is mainly based on a plethora of information derived from light spindle MTs (SMTs). AMTs are those microtubules that grow away microscopy with rather few insights about spindle ultrastructure from centrosomes towards the cellular cortex, thus mainly playing a obtained from electron microscopy. In this Review, we will provide role in positioning the spindle apparatus (Grill et al., 2001). The plus- insights into the history of imaging of mitotic spindles and highlight ends of KMTs are directly connected to the kinetochores (i.e. to recent technological advances in electron tomography and data specific centromeric microtubule-binding sites on the chromosomes) processing, which have delivered detailed 3D reconstructions of (Musacchio and Desai, 2017). IMTs are thought to interact with each mitotic spindles in the early embryo of the nematode Caenorhabditis other in the midzone of the spindle. This interaction is supposed to elegans. Tomographic reconstructions provide novel views on build a direct pole-to-pole connection through microtubules of spindles and will enable us to revisit and address long-standing opposite polarity (Mastronarde et al., 1993).
    [Show full text]
  • Function and Regulation of Aurora/Ipl1p Kinase Family in Cell Division
    Cell Research (2003); 13(2):69-81 http://www.cell-research.com Function and regulation of Aurora/Ipl1p kinase family in cell division 1 1 1 1,2, YU WEN KE , ZHEN DOU , JIE ZHANG , XUE BIAO YAO * 1 Laboratory for Cell Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China 2 Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA ABSTRACT During mitosis, the parent cell distributes its genetic materials equally into two daughter cells through chromosome segregation, a complex movements orchestrated by mitotic kinases and its effector proteins. Faithful chromosome segregation and cytokinesis ensure that each daughter cell receives a full copy of genetic materials of parent cell. Defects in these processes can lead to aneuploidy or polyploidy. Aurora/Ipl1p family, a class of conserved serine/threonine kinases, plays key roles in chromosome segregation and cytokinesis. This article highlights the function and regulation of Aurora/Ipl1p family in mitosis and provides potential links between aberrant regulation of Aurora/Ipl1p kinases and pathogenesis of human cancer. Key words: Aurora (Ipl1p), mitosis, and cancer. INTRODUCTION among species, the regulatory machinery is conserved from yeast to human. One of most conserved regu- Cell is a fundamental unit of life that is relayed lators is serine/theronine protein kinase superfam- via mitosis. The essence of mitosis is to segregate ily that alters the function of its effectors via protein parental genomes encoded in sister chromatides into phosphorylation. Entry into mitosis is driven by pro- two daughter cells, such that each of them inherits tein kinases while initiation of exit from mitosis is one complete copy of genome.
    [Show full text]
  • LIN-5 Is a Novel Component of the Spindle Apparatus Required for Chromosome Segregation and Cleavage Plane Specification in Caenorhabditis Elegans Monique A
    LIN-5 Is a Novel Component of the Spindle Apparatus Required for Chromosome Segregation and Cleavage Plane Specification in Caenorhabditis elegans Monique A. Lorson,* H. Robert Horvitz,‡ and Sander van den Heuvel*‡ *Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129; and ‡Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Abstract. Successful divisions of eukaryotic cells re- codes a novel protein with a central coiled-coil domain. quire accurate and coordinated cycles of DNA replica- This protein localizes to the spindle apparatus in a cell tion, spindle formation, chromosome segregation, and cycle- and microtubule-dependent manner. The LIN-5 cytoplasmic cleavage. The Caenorhabditis elegans gene protein is located at the centrosomes throughout mito- lin-5 is essential for multiple aspects of cell division. sis, at the kinetochore microtubules in metaphase cells, Cells in lin-5 null mutants enter mitosis at the normal and at the spindle during meiosis. Our results show that time and form bipolar spindles, but fail chromosome LIN-5 is a novel component of the spindle apparatus alignment at the metaphase plate, sister chromatid sep- required for chromosome and spindle movements, cy- aration, and cytokinesis. Despite these defects, cells exit toplasmic cleavage, and correct alternation of the S and from mitosis without delay and progress through subse- M phases of the cell cycle. quent rounds of DNA replication, centrosome duplica- tion, and abortive mitoses. In addition, early embryos Key words: lin-5 • mitosis • cytokinesis • microtu- that lack lin-5 function show defects in spindle position- bules • mitotic checkpoint ing and cleavage plane specification.
    [Show full text]
  • Aurora B Phosphorylates Bub1 to Promote Spindle Assembly Checkpoint Signaling
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.05.425459; this version posted January 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Aurora B phosphorylates Bub1 to promote spindle assembly checkpoint signaling 2 Babhrubahan Roy, Simon J. Y. Han, Adrienne N. Fontan, Ajit P. Joglekar 3 4 Summary 5 Accurate chromosome segregation during cell division requires amphitelic attachment of each 6 chromosome to the spindle apparatus. This is ensured by the Spindle Assembly Checkpoint 7 (SAC) [1], which delays anaphase onset in response to unattached chromosomes, and an error 8 correction mechanism, which eliminates syntelic chromosome attachments [2]. The SAC is 9 activated by the Mps1 kinase. Mps1 sequentially phosphorylates the kinetochore protein 10 Spc105/KNL1 to license the recruitment of several signaling proteins including Bub1. These 11 proteins produce the Mitotic Checkpoint Complex (MCC), which delays anaphase onset [3-8]. 12 The error correction mechanism is regulated by the Aurora B kinase, which phosphorylates the 13 microtubule-binding interface of the kinetochore. Aurora B is also known to promote SAC 14 signaling indirectly [9-12]. Here we present evidence that Aurora B kinase activity directly 15 promotes MCC production in budding yeast and human cells. Using the ectopic SAC activation 16 (eSAC) system, we find that the conditional dimerization of Aurora B (or an Aurora B recruitment 17 domain) with either Bub1 or Mad1, but not the ‘MELT’ motifs in Spc105/KNL1, leads to a SAC- 18 mediated mitotic arrest [13-16].
    [Show full text]
  • The Spindle Assembly Checkpoint Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 22, R966–R980, November 20, 2012 ª2012 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2012.10.006 The Spindle Assembly Checkpoint Review Pablo Lara-Gonzalez1,2, Frederick G. Westhorpe1,2, point in the cell cycle can result in daughters with deviations and Stephen S. Taylor1,* from the normal karyotype, which in turn can result in a loss of fitness or, in the case of multicellular organisms, various diseases [2]. During mitosis and meiosis, the spindle assembly check- The solution to this challenge is sister chromatid cohesion, point acts to maintain genome stability by delaying cell mediated by cohesin, a multimeric protein ring structure that division until accurate chromosome segregation can encircles the replicated sister chromatids [3]. Following DNA be guaranteed. Accuracy requires that chromosomes replication in S phase, original and new chromatids are held become correctly attached to the microtubule spindle together by cohesin, thus maintaining their identity as apparatus via their kinetochores. When not correctly sisters. Cohesion is maintained throughout the rest of S attached to the spindle, kinetochores activate the spindle phase, G2 and into early mitosis where the chromosomes assembly checkpoint network, which in turn blocks cell align at the centre of the cell on the microtubule spindle cycle progression. Once all kinetochores become stably apparatus. At anaphase onset, the cohesin ring is opened, attached to the spindle, the checkpoint is inactivated, chromatid cohesion is lost and the sisters separate, allowing which alleviates the cell cycle block and thus allows chro- spindle forces to pull them to opposite sides of the cell (Fig- mosome segregation and cell division to proceed.
    [Show full text]