Option Bounds and Option Strategies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Options
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes describe the payoffs to European and American put and call options|the so-called plain vanilla options. We consider the payoffs to these options for holders and writers and describe both the time vale and intrinsic value of an option. We explain why options are traded and examine some of the properties of put and call option prices. We shall show that longer dated options typically have higher prices and that call prices are higher when the strike price is lower and that put prices are higher when the strike price is higher. Keywords: Put, call, strike price, maturity date, in-the-money, time value, intrinsic value, parity value, American option, European option, early exer- cise, bull spread, bear spread, butterfly spread. 1 Options Options are derivative assets. That is their payoffs are derived from the pay- off on some other underlying asset. The underlying asset may be an equity, an index, a bond or indeed any other type of asset. Options themselves are classified by their type, class and their series. The most important distinc- tion of types is between put options and call options. A put option gives the owner the right to sell the underlying asset at specified dates at a specified price. A call option gives the owner the right to buy at specified dates at a specified price. Options are different from forward/futures contracts as a put (call) option gives the owner right to sell (buy) the underlying asset but not an obligation. The right to buy or sell need not be exercised. -
Machine Learning Based Intraday Calibration of End of Day Implied Volatility Surfaces
DEGREE PROJECT IN MATHEMATICS, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Machine Learning Based Intraday Calibration of End of Day Implied Volatility Surfaces CHRISTOPHER HERRON ANDRÉ ZACHRISSON KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Machine Learning Based Intraday Calibration of End of Day Implied Volatility Surfaces CHRISTOPHER HERRON ANDRÉ ZACHRISSON Degree Projects in Mathematical Statistics (30 ECTS credits) Master's Programme in Applied and Computational Mathematics (120 credits) KTH Royal Institute of Technology year 2020 Supervisor at Nasdaq Technology AB: Sebastian Lindberg Supervisor at KTH: Fredrik Viklund Examiner at KTH: Fredrik Viklund TRITA-SCI-GRU 2020:081 MAT-E 2020:044 Royal Institute of Technology School of Engineering Sciences KTH SCI SE-100 44 Stockholm, Sweden URL: www.kth.se/sci Abstract The implied volatility surface plays an important role for Front office and Risk Manage- ment functions at Nasdaq and other financial institutions which require mark-to-market of derivative books intraday in order to properly value their instruments and measure risk in trading activities. Based on the aforementioned business needs, being able to calibrate an end of day implied volatility surface based on new market information is a sought after trait. In this thesis a statistical learning approach is used to calibrate the implied volatility surface intraday. This is done by using OMXS30-2019 implied volatil- ity surface data in combination with market information from close to at the money options and feeding it into 3 Machine Learning models. The models, including Feed For- ward Neural Network, Recurrent Neural Network and Gaussian Process, were compared based on optimal input and data preprocessing steps. -
Chapter 2 Roche Holding: the Company, Its
Risk Takers Uses and Abuses of Financial Derivatives John E. Marthinsen Babson College PEARSON Addison Wesley Boston San Francisco New York London Toronto Sydney Tokyo Singapore Madrid Mexico City Munich Paris Cape Town Hong Kong Montreal Preface xiii Parti 1 Chapter 1 Employee Stock Options: What Every MBA Should Know 3 Introduction 3 Employee Stock Options: A Major Pillar of Executive Compensation 6 Why Do Companies Use Employee Stock Options 6 Aligning Incentives 7 Hiring and Retention 7 Postponing the Timing of Expenses 8 Adjusting Compensation to Employee Risk Tolerance Levels 8 Tax Advantages for Employees 9 Tax Advantages for Companies 9 Cash Flow Advantages for Companies 10 Option Valuation Differences and Human Resource Management 12 Problems with Employee Stock Options 26 Employee Motivation 26 The Share Price of "Good" Companies 27 Motivation of Undesired Behavior 28 vi Contents Performance Improvement 28 Absolute Versus Relative Performance 29 Some Innovative Solutions to Employee Stock Option Problems 29 Premium-Priced Stock Options 30 Index Options 30 Restricted Shares 34 Omnibus Plans 34 Conclusion 35 Review Questions 36 Bibliography 38 Chapter 2 Roche Holding: The Company, Its Financial Strategy, and Bull Spread Warrants 41 Introduction 41 Roche Holding AG: Transition from a Lender to a Borrower 43 Loss of the Valium Patent in the United States 43 Rapid Increase in R&D Costs, Market Growth, and Industry Consolidation 43 Roche's Unique Capital Structure 44 Roche Brings in a New Leader and Replaces Its Management Committee -
Module 6 Option Strategies.Pdf
zerodha.com/varsity TABLE OF CONTENTS 1 Orientation 1 1.1 Setting the context 1 1.2 What should you know? 3 2 Bull Call Spread 6 2.1 Background 6 2.2 Strategy notes 8 2.3 Strike selection 14 3 Bull Put spread 22 3.1 Why Bull Put Spread? 22 3.2 Strategy notes 23 3.3 Other strike combinations 28 4 Call ratio back spread 32 4.1 Background 32 4.2 Strategy notes 33 4.3 Strategy generalization 38 4.4 Welcome back the Greeks 39 5 Bear call ladder 46 5.1 Background 46 5.2 Strategy notes 46 5.3 Strategy generalization 52 5.4 Effect of Greeks 54 6 Synthetic long & arbitrage 57 6.1 Background 57 zerodha.com/varsity 6.2 Strategy notes 58 6.3 The Fish market Arbitrage 62 6.4 The options arbitrage 65 7 Bear put spread 70 7.1 Spreads versus naked positions 70 7.2 Strategy notes 71 7.3 Strategy critical levels 75 7.4 Quick notes on Delta 76 7.5 Strike selection and effect of volatility 78 8 Bear call spread 83 8.1 Choosing Calls over Puts 83 8.2 Strategy notes 84 8.3 Strategy generalization 88 8.4 Strike selection and impact of volatility 88 9 Put ratio back spread 94 9.1 Background 94 9.2 Strategy notes 95 9.3 Strategy generalization 99 9.4 Delta, strike selection, and effect of volatility 100 10 The long straddle 104 10.1 The directional dilemma 104 10.2 Long straddle 105 10.3 Volatility matters 109 10.4 What can go wrong with the straddle? 111 zerodha.com/varsity 11 The short straddle 113 11.1 Context 113 11.2 The short straddle 114 11.3 Case study 116 11.4 The Greeks 119 12 The long & short straddle 121 12.1 Background 121 12.2 Strategy notes 122 12..3 Delta and Vega 128 12.4 Short strangle 129 13 Max pain & PCR ratio 130 13.1 My experience with option theory 130 13.2 Max pain theory 130 13.3 Max pain calculation 132 13.4 A few modifications 137 13.5 The put call ratio 138 13.6 Final thoughts 140 zerodha.com/varsity CHAPTER 1 Orientation 1.1 – Setting the context Before we start this module on Option Strategy, I would like to share with you a Behavioral Finance article I read couple of years ago. -
Users/Robertjfrey/Documents/Work
AMS 511.01 - Foundations Class 11A Robert J. Frey Research Professor Stony Brook University, Applied Mathematics and Statistics [email protected] http://www.ams.sunysb.edu/~frey/ In this lecture we will cover the pricing and use of derivative securities, covering Chapters 10 and 12 in Luenberger’s text. April, 2007 1. The Binomial Option Pricing Model 1.1 – General Single Step Solution The geometric binomial model has many advantages. First, over a reasonable number of steps it represents a surprisingly realistic model of price dynamics. Second, the state price equations at each step can be expressed in a form indpendent of S(t) and those equations are simple enough to solve in closed form. 1+r D-1 u 1 1 + r D 1 + r D y y ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = u fl u = 1+r D u-1 u 1+r-u 1 u 1 u yd yd ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1+r D ÅÅÅÅÅÅÅÅ1 uêÅÅÅÅ-ÅÅÅÅu ÅÅ H L H ê L i y As we will see shortlyH weL Hwill solveL the general problemj by solving a zsequence of single step problems on the lattice. That K O K O K O K O j H L H ê L z sequence solutions can be efficientlyê computed because wej only have to zsolve for the state prices once. k { 1.2 – Valuing an Option with One Period to Expiration Let the current value of a stock be S(t) = 105 and let there be a call option with unknown price C(t) on the stock with a strike price of 100 that expires the next three month period. -
VERTICAL SPREADS: Taking Advantage of Intrinsic Option Value
Advanced Option Trading Strategies: Lecture 1 Vertical Spreads – The simplest spread consists of buying one option and selling another to reduce the cost of the trade and participate in the directional movement of an underlying security. These trades are considered to be the easiest to implement and monitor. A vertical spread is intended to offer an improved opportunity to profit with reduced risk to the options trader. A vertical spread may be one of two basic types: (1) a debit vertical spread or (2) a credit vertical spread. Each of these two basic types can be written as either bullish or bearish positions. A debit spread is written when you expect the stock movement to occur over an intermediate or long- term period [60 to 120 days], whereas a credit spread is typically used when you want to take advantage of a short term stock price movement [60 days or less]. VERTICAL SPREADS: Taking Advantage of Intrinsic Option Value Debit Vertical Spreads Bull Call Spread During March, you decide that PFE is going to make a large up move over the next four months going into the Summer. This position is due to your research on the portfolio of drugs now in the pipeline and recent phase 3 trials that are going through FDA approval. PFE is currently trading at $27.92 [on March 12, 2013] per share, and you believe it will be at least $30 by June 21st, 2013. The following is the option chain listing on March 12th for PFE. View By Expiration: Mar 13 | Apr 13 | May 13 | Jun 13 | Sep 13 | Dec 13 | Jan 14 | Jan 15 Call Options Expire at close Friday, -
A Glossary of Securities and Financial Terms
A Glossary of Securities and Financial Terms (English to Traditional Chinese) 9-times Restriction Rule 九倍限制規則 24-spread rule 24 個價位規則 1 A AAAC see Academic and Accreditation Advisory Committee【SFC】 ABS see asset-backed securities ACCA see Association of Chartered Certified Accountants, The ACG see Asia-Pacific Central Securities Depository Group ACIHK see ACI-The Financial Markets of Hong Kong ADB see Asian Development Bank ADR see American depositary receipt AFTA see ASEAN Free Trade Area AGM see annual general meeting AIB see Audit Investigation Board AIM see Alternative Investment Market【UK】 AIMR see Association for Investment Management and Research AMCHAM see American Chamber of Commerce AMEX see American Stock Exchange AMS see Automatic Order Matching and Execution System AMS/2 see Automatic Order Matching and Execution System / Second Generation AMS/3 see Automatic Order Matching and Execution System / Third Generation ANNA see Association of National Numbering Agencies AOI see All Ordinaries Index AOSEF see Asian and Oceanian Stock Exchanges Federation APEC see Asia Pacific Economic Cooperation API see Application Programming Interface APRC see Asia Pacific Regional Committee of IOSCO ARM see adjustable rate mortgage ASAC see Asian Securities' Analysts Council ASC see Accounting Society of China 2 ASEAN see Association of South-East Asian Nations ASIC see Australian Securities and Investments Commission AST system see automated screen trading system ASX see Australian Stock Exchange ATI see Account Transfer Instruction ABF Hong -
Spread Scanner Guide Spread Scanner Guide
Spread Scanner Guide Spread Scanner Guide ..................................................................................................................1 Introduction ...................................................................................................................................2 Structure of this document ...........................................................................................................2 The strategies coverage .................................................................................................................2 Spread Scanner interface..............................................................................................................3 Using the Spread Scanner............................................................................................................3 Profile pane..................................................................................................................................3 Position Selection pane................................................................................................................5 Stock Selection pane....................................................................................................................5 Position Criteria pane ..................................................................................................................7 Additional Parameters pane.........................................................................................................7 Results section .............................................................................................................................8 -
Macquarie Dynamic Carry Bull/Bear Commodities Spread Index Index Manual January 2021
Macquarie Dynamic Carry Bull/Bear Commodities Spread Index Index Manual January 2021 1 NOTES AND DISCLAIMERS BASIS OF PROVISION This document (the Index Manual) sets out the rules for the Macquarie Dynamic Carry Bull/Bear Spread Commodities Index (the Index) and reflects the methodology for determining the composition and calculation of the Index (the Methodology). The Methodology and the Index derived from this Methodology are the exclusive property of Macquarie Bank Limited (the Index Administrator). The Index Administrator owns the copyright and all other rights to the Index. They have been provided to you solely for your internal use and you may not, without the prior written consent of the Index Administrator, distribute, reproduce, in whole or in part, summarize, quote from or otherwise publicly refer to the contents of the Methodology or use it as the basis of any financial instrument. SUITABILITY OF INDEX The Index and any financial instruments based on the Index may not be suitable for all investors and any investor must make an independent assessment of the appropriateness of any transaction in light of their own objectives and circumstances including the potential risks and benefits of entering into such a transaction. If you are in any doubt about any of the contents of this document, you should obtain independent professional advice. This Index Manual assumes the reader is a sophisticated financial market participant, with the knowledge and expertise to understand the financial mathematics and derived pricing formulae, as well as the trading concepts, described herein. Any financial instrument based on the Index is unsuitable for a retail or unsophisticated investor. -
The Impact of Implied Volatility Fluctuations on Vertical Spread Option Strategies: the Case of WTI Crude Oil Market
energies Article The Impact of Implied Volatility Fluctuations on Vertical Spread Option Strategies: The Case of WTI Crude Oil Market Bartosz Łamasz * and Natalia Iwaszczuk Faculty of Management, AGH University of Science and Technology, 30-059 Cracow, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-696-668-417 Received: 31 July 2020; Accepted: 7 October 2020; Published: 13 October 2020 Abstract: This paper aims to analyze the impact of implied volatility on the costs, break-even points (BEPs), and the final results of the vertical spread option strategies (vertical spreads). We considered two main groups of vertical spreads: with limited and unlimited profits. The strategy with limited profits was divided into net credit spread and net debit spread. The analysis takes into account West Texas Intermediate (WTI) crude oil options listed on New York Mercantile Exchange (NYMEX) from 17 November 2008 to 15 April 2020. Our findings suggest that the unlimited vertical spreads were executed with profits less frequently than the limited vertical spreads in each of the considered categories of implied volatility. Nonetheless, the advantage of unlimited strategies was observed for substantial oil price movements (above 10%) when the rates of return on these strategies were higher than for limited strategies. With small price movements (lower than 5%), the net credit spread strategies were by far the best choice and generated profits in the widest price ranges in each category of implied volatility. This study bridges the gap between option strategies trading, implied volatility and WTI crude oil market. The obtained results may be a source of information in hedging against oil price fluctuations. -
Copyrighted Material
Index AA estimate, 68–69 At-the-money (ATM) SPX variance Affine jump diffusion (AJD), 15–16 levels/skews, 39f AJD. See Affine jump diffusion Avellaneda, Marco, 114, 163 Alfonsi, Aurelien,´ 163 American Airlines (AMR), negative book Bakshi, Gurdip, 66, 163 value, 84 Bakshi-Cao-Chen (BCC) parameters, 40, 66, American implied volatilities, 82 67f, 70f, 146, 152, 154f American options, 82 Barrier level, Amortizing options, 135 distribution, 86 Andersen, Leif, 24, 67, 68, 163 equal to strike, 108–109 Andreasen, Jesper, 67, 68, 163 Barrier options, 107, 114. See also Annualized Heston convexity adjustment, Out-of-the-money barrier options 145f applications, 120 Annualized Heston VXB convexity barrier window, 120 adjustment, 160f definitions, 107–108 Ansatz, 32–33 discrete monitoring, adjustment, 117–119 application, 34 knock-in options, 107 Arbitrage, 78–79. See also Capital structure knock-out options, 107, 108 arbitrage limiting cases, 108–109 avoidance, 26 live-out options, 116, 117f calendar spread arbitrage, 26 one-touch options, 110, 111f, 112f, 115 vertical spread arbitrage, 26, 78 out-of-the-money barrier, 114–115 Arrow-Debreu prices, 8–9 Parisian options, 120 Asymptotics, summary, 100 rebate, 108 Benaim, Shalom, 98, 163 At-the-money (ATM) implied volatility (or Berestycki, Henri, 26, 163 variance), 34, 37, 39, 79, 104 Bessel functions, 23, 151. See also Modified structure, computation, 60 Bessel function At-the-money (ATM) lookback (hindsight) weights, 149 option, 119 Bid/offer spread, 26 At-the-money (ATM) option, 70, 78, 126, minimization, -
Optimal Timing to Purchase Options
Optimal Timing to Purchase Options ∗ y Tim Leung and Mike Ludkovski Abstract. We study the optimal timing of derivative purchases in incomplete markets. In our model, an investor attempts to maximize the spread between her model price and the offered market price through optimally timing her purchase. Both the investor and the market value the options by risk-neutral expectations but under different equivalent martingale measures representing different market views. The structure of the resulting optimal stopping problem depends on the interaction between the respective market price of risk and the option payoff. In particular, a crucial role is played by the delayed purchase premium that is related to the stochastic bracket between the market price and the buyer's risk premia. Explicit characterization of the purchase timing is given for two representative classes of Markovian models: (i) defaultable equity models with local intensity; (ii) diffusion stochastic volatility models. Several numerical examples are presented to illustrate the results. Our model is also applicable to the optimal rolling of long-dated options and sequential buying and selling of options. Key words. : price discrepancy, optimal stopping, delayed purchase premium, risk premia AMS subject classifications. 60G40 91G20 91G80 1. Introduction. In most financial markets, one fundamental problem for investors is to decide when to buy a derivative at its current trading price. A potential buyer has the option to acquire the derivative immediately, or wait for a (possibly) better deal later. Naturally, the optimal timing for the derivative purchase involves comparing the buyer's subjective price and the prevailing trading price, which directly depend on the price of the underlying asset and the market views of the buyer and the market.