<<

2. Propositional Truth tables

The lecture Truth values

! Propositional formulas, like " It is raining " The train is moving  are true or false depending on the circumstances.  One day it rains, another it does not. It may rain in Helsinki but not in Warsaw. ! A true is said to have 1. ! A false propositional formula is said to have truth value 0.

Last Jouko Väänänen: Propositional logic viewed Truth values (Contd.)

! Propositional formulas of the simplest

form p0, p1,... can have truth value 1 or 0 according to our choice. But if we give them truth values, then the truth

values of formulas built from them such

as p0 v p1 and p0 → p1 are completely determined. ! A choice of truth values for symbols is called a .

Last Jouko Väänänen: Propositional logic viewed Valuation

! Valuations assign truth values 1 (true) or 0 (false) to proposition symbols.

! Valuations are the building blocks of truth tables, which are the main tool for analysing complicated propositional formulas.

Last Jouko Väänänen: Propositional logic viewed Valuations mathematically defined

! Valuations propositional symbols to the two {0,1} of truth values.

Last Jouko Väänänen: Propositional logic viewed Valuation

! Valuations extend to all formulas by means of truth tables. ! The truth value v(A) of an arbitrary propositional formula A can be easily computed in terms of the truth values of the immediate subformulas of A.

Last Jouko Väänänen: Propositional logic viewed Truth Tables

! = table of all possible valuations ! Negation Truth tables reflect our ! Implication intuition of the ! meaning of each Conjunction connective. ! Disjunction ! Equivalence

Last Jouko Väänänen: Propositional logic viewed Truth table of Conjunction

The only true case

Last Jouko Väänänen: Propositional logic viewed Truth table of Disjunction

The only false case

Last Jouko Väänänen: Propositional logic viewed Truth Table of Negation

Last Jouko Väänänen: Propositional logic viewed Truth Table of Implication

The only false case

Last Jouko Väänänen: Propositional logic viewed of implication I

! Let p be the sentence “Jukka lives in Helsinki”. ! Let q be the sentence “Jukka lives in Finland”. ! Since Helsinki is in Finland, the formula p→q is true. ! This truth is based on Helsinki being in Finland, and is unaffected if Jukka in fact does not live in Helsinki. ! The only thing that would shatter the truth of p→q is if Jukka lived in Helsinki but not in Finland, in which case we would have to review our geography.

Last Jouko Väänänen: Propositional logic viewed Interpretation of implication II

! Think of A and B as of {0}. ! There are just two subsets: and {0}. ! Identify them with 0 and 1. ! Think of A→B as “A is contained in B” ! so 1st row is 1 → ! so 2nd row is 0 ! so 3rd row is 1 ! so 4th row is 1.

Last Jouko Väänänen: Propositional logic viewed Truth table of Equivalence

Last Jouko Väänänen: Propositional logic viewed A truth table

! Every connective in a formula is the main connective of a subformula. We write under it the truth value of this subformula.

p0 p1 (p0 p1) p0 ∧ p1)

Last Jouko Väänänen: Propositional logic viewed A truth table

! Every connective in a formula is the main connective of a subformula. We write under it the truth value of this subformula.

p0 p1 (p0 p1) p0 ∧ p1)

Last Jouko Väänänen: Propositional logic viewed A truth table

! Every connective in a formula is the main connective of a subformula. We write under it the truth value of this subformula.

p0 p1 (p0 p1) p0 ∧ p1)

Last Jouko Väänänen: Propositional logic viewed A truth table

! Every connective in a formula is the main connective of a subformula. We write under it the truth value of this subformula.

p0 p1 (p0 p1) p0 ∧ p1)

Last Jouko Väänänen: Propositional logic viewed A truth table

! Every connective in a formula is the main connective of a subformula. We write under it the truth value of this subformula.

p0 p1 (p0 p1) p0 ∧ p1)

Last Jouko Väänänen: Propositional logic viewed A truth table

! Every connective in a formula is the main connective of a subformula. We write under it the truth value of this subformula.

p0 p1 (p0 p1) p0 ∧ p1)

Last Jouko Väänänen: Propositional logic viewed A truth table

! Every connective in a formula is the main connective of a subformula. We write under it the truth value of this subformula.

p0 p1 (p0 p1) p0 ∧ p1)

Last Jouko Väänänen: Propositional logic viewed A truth table

! Every connective in a formula is the main connective of a subformula. We write under it the truth value of this subformula.

p0 p1 (p0 p1) p0 ∧ p1)

Last Jouko Väänänen: Propositional logic viewed A truth table

! Every connective in a formula is the main connective of a subformula. We write under it the truth value of this subformula.

p0 p1 (p0 p1) p0 ∧ p1)

Last Jouko Väänänen: Propositional logic viewed A truth table

! Every connective in a formula is the main connective of a subformula. We write under it the truth value of this subformula.

p0 p1 (p0 p1) p0 ∧ p1)

Last Jouko Väänänen: Propositional logic viewed A bigger truth table

p0 p1 p2 (p0 p1) (p1 p2)) (p0 p2))

Last Jouko Väänänen: Propositional logic viewed A bigger truth table

p0 p1 p2 (p0 p1) (p1 p2)) (p0 p2))

Last Jouko Väänänen: Propositional logic viewed A bigger truth table

p0 p1 p2 (p0 p1) (p1 p2)) (p0 p2))

Last Jouko Väänänen: Propositional logic viewed A bigger truth table

p0 p1 p2 (p0 p1) (p1 p2)) (p0 p2))

Last Jouko Väänänen: Propositional logic viewed A bigger truth table

p0 p1 p2 (p0 p1) (p1 p2)) (p0 p2))

Last Jouko Väänänen: Propositional logic viewed A bigger truth table

p0 p1 p2 (p0 p1) (p1 p2)) (p0 p2))

Last Jouko Väänänen: Propositional logic viewed A bigger truth table

p0 p1 p2 (p0 p1) (p1 p2)) (p0 p2))

Last Jouko Väänänen: Propositional logic viewed A bigger truth table

p0 p1 p2 (p0 p1) (p1 p2)) (p0 p2))

Last Jouko Väänänen: Propositional logic viewed A bigger truth table

p0 p1 p2 (p0 p1) (p1 p2)) (p0 p2))

Last Jouko Väänänen: Propositional logic viewed A bigger truth table

p0 p1 p2 (p0 p1) (p1 p2)) (p0 p2))

Last Jouko Väänänen: Propositional logic viewed A bigger truth table

p0 p1 p2 (p0 p1) (p1 p2)) (p0 p2))

Last Jouko Väänänen: Propositional logic viewed A bigger truth table

p0 p1 p2 (p0 p1) (p1 p2)) (p0 p2))

Last Jouko Väänänen: Propositional logic viewed A bigger truth table

p0 p1 p2 (p0 p1) (p1 p2)) (p0 p2))

Last Jouko Väänänen: Propositional logic viewed Inefficiency of Truth Tables

! Truth tables become eventually too large " n propositional symbols " 2n rows in the truth table " Truth table grows exponentially

Last Jouko Väänänen: Propositional logic viewed