Targeted Mass Spectrometry for Serum Amyloid a (SAA) Isoform Profiling in Sequential Blood Samples from Experimentally Staphylococcus Aureus Infected Pigs

Total Page:16

File Type:pdf, Size:1020Kb

Targeted Mass Spectrometry for Serum Amyloid a (SAA) Isoform Profiling in Sequential Blood Samples from Experimentally Staphylococcus Aureus Infected Pigs Downloaded from orbit.dtu.dk on: Sep 24, 2021 Targeted mass spectrometry for Serum Amyloid A (SAA) isoform profiling in sequential blood samples from experimentally Staphylococcus aureus infected pigs Leuchsenring, Anna Barslund; Karlsson, Christofer; Bundgaard, Louise; Malmström, Johan; Heegaard, Peter M. H. Published in: Journal of Proteomics Link to article, DOI: 10.1016/j.jprot.2020.103904 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Leuchsenring, A. B., Karlsson, C., Bundgaard, L., Malmström, J., & Heegaard, P. M. H. (2020). Targeted mass spectrometry for Serum Amyloid A (SAA) isoform profiling in sequential blood samples from experimentally Staphylococcus aureus infected pigs. Journal of Proteomics, 227, [103904]. https://doi.org/10.1016/j.jprot.2020.103904 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Journal of Proteomics 227 (2020) 103904 Contents lists available at ScienceDirect Journal of Proteomics journal homepage: www.elsevier.com/locate/jprot Targeted mass spectrometry for Serum Amyloid A (SAA) isoform profiling in sequential blood samples from experimentally Staphylococcus aureus infected T pigs Anna Barslund Leuchsenringa, Christofer Karlssonb, Louise Bundgaarda, Johan Malmströmb, ⁎ Peter M.H. Heegaarda, a Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark b Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, BMC, Lund, Sweden ABSTRACT Serum amyloid A (SAA) is a well-described acute phase protein induced during the acute phase response (APR) to infection. Four isoform specific genes are found in most mammals. Depending on species, SAA3 and SAA4 are generally preferentially expressed extrahepatically whereas SAA1 and SAA2 are hepatic isoforms dominating the SAA serum pool. Little is known about how specific infections affect the serum SAA isoform profile, as SAA isoform discriminating antibodies are not generally available. An antibody independent, quantitative targeted MS method (Selected Reaction Monitoring, SRM) based on available information on porcine SAA isoform genes was developed and used to profile SAA in serum samples from pigs experimentally infected with Staphylococcus aureus (Sa). While results suggest SAA2 as the main circulating porcine SAA isoform, induced around 10 times compared to non-infected controls, total SAA serum concentrations reached only around 4 μg/ mL, much lower than established previously by immunoassays. This might suggest that SAA isoform variants not detected by the SRM method might be present in porcine serum. The assay allows monitoring host responses to experimental infections, infectious diseases and inflammation states in the pig at an unprecedented level of detail. It can also be used in a non-calibrated (relative quantification) format. Significance: We developed an SRM MS method which for the first time allowed the specific quantification of each of the circulating porcine SAA isoforms (SAA2, SAA3, SAA4). It was found that SAA2 is the dominating circulating isoform of SAA in the pig and that, during the acute phase response to Sa infection SAA2, SAA3 and SAA4 are induced approx. 10, 15 and 2 times, respectively. Absolute levels of the isoforms as determined by SRM MS were much lower than reported previously for total SAA quantified by immunosassays, suggesting the existence of hitherto non-described SAA variants. SRM MS holds great promise for the study of the basic biology of SAA isoforms with the potential to study an even broader range of SAA variants. 1. Introduction specific isoform of SAA (SAA1–4), have been observed in most species; all genes having the same four-exon three-intron structure [9,12]. The Tissue perturbation, including infection and inflammation is ac- four SAA genes are highly conserved throughout evolution, and this, companied by a generalized set of immediate host reactions at the together with the rapid and huge APR of SAA proteins, indicate that tissue site as well as by an array of systemic reactions known as the SAA and its isoforms most probably have important functions during acute phase response (APR) [1,2]. The APR leads to major changes in the response to tissue perturbations [13]. circulating concentrations of a subset of serum proteins called acute Still, the precise function of SAA and its role during the APR have phase proteins [1,3]. The acute phase proteins constitute a set of very not been established [14,15]. It is speculated that SAA plays an im- useful inflammation biomarkers, but they have low discriminative portant role during the early phases of inflammation [16,17], linking power as the type of inflammation/infection has a limited effect on the complex network of cells (macrophages, hepatocytes and others) their acute phase response kinetics and magnitude [4–6]. and proteins mediating inflammation together, functioning as a cyto- Serum amyloid A (SAA) is an important and well-described highly kine-like protein in cell-cell communication as well as feedback in regulated acute phase protein in vertebrates [7,8]. It is a small apoli- pathways that are immunologic, neoplastic, and protective during in- poprotein [9–11], present in the blood circulation at low levels (a few flammation [18]. Well-described characteristics include the ability of μg/mL or lower in most species) at homeostasis, however, may be in- circulating SAA protein to bind to high-density lipoprotein, replacing duced several hundredfold during the APR in most vertebrates, in- apolipoprotein A1 during the APR, becoming the predominant apoli- cluding pigs [10]. Four very similar SAA genes, each coding for a poprotein of high-density lipoprotein [9,11]. SAA can directly induce ⁎ Corresponding author. E-mail address: [email protected] (P.M.H. Heegaard). https://doi.org/10.1016/j.jprot.2020.103904 Received 24 April 2020; Received in revised form 19 June 2020; Accepted 29 June 2020 Available online 21 July 2020 1874-3919/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/). A.B. Leuchsenring, et al. Journal of Proteomics 227 (2020) 103904 pro-inflammatory cytokines and chemokines in monocytes and granu- complex biological samples such as serum [30–32]. SRM exploits the locytes, and it has chemotactic effects on various cell types through unique capability of triple quadrupole (QQQ) mass spectrometers to binding to formyl-peptide receptor-2 (FPR2) and Toll-like receptor-2 filter out unrelated ions both at the tryptic peptide stage and at the (TLR2) [19]. In the latter work the efficacy towards the two types of fragment ion stage according to preselected mass to charge ratios receptors mentioned was furthermore demonstrated to differ between [30–32]. We developed a quantitative, antibody-free SRM-MS method isoforms of human SAA (SAA1 isoform variants and SAA2) [19]. Most for quantifying specific circulating porcine SAA isoforms directly in recently, cytokine-like properties have been ascribed to SAA as it seems serum samples from pigs infected experimentally with Sa. This allowed to be intimately implicated in the intestinal control of Th17 immunity, us to correlate tissue specific expression of SAA isoforms (mRNA) with SAA itself being directly induced in epithelial cells of mucosal tissue by SAA isoforms (protein) in the circulation. This is of interest not only for IL22, which can be controlled by the microbiota in the absence of in- elucidating possible specific biological functions of SAA isoforms, but flammation [20]. also for describing the possible utility of SAA isoforms as differential, The predominant site for synthesis of SAA is the liver [21,22]; circulating biomarkers of infection with the potential to differentiate however, extrahepatic synthesis has repeatedly been demonstrated inflammatory responses having infectious (e.g. bacterial versus viral), [14,23]. Generally, SAA1 and SAA2 are preferentially expressed in the autoimmune, neurodegenerative and metabolic origins, respectively. liver, while SAA3 is found to be expressed in both hepatic and non- hepatic tissues during an APR [15]. In the pig Olsen et al. [15] studied 2. Materials and methods the relative expression of SAA1, SAA2, SAA3 and SAA4 genes in spleen, liver and lung tissue from pigs experimentally infected with the swine 2.1. Ethics statement specific pathogen Actinobacillus pleuropneumoniae (Ap), and a porcine strain of Staphylococcus aureus (Sa), respectively, using SAA isoform All animal procedures were conducted according to protocols ap- specific quantitative (q) PCR assays. Results showed that for both in- proved by the Danish Animal Experiments Inspectorate (License fections, increased hepatic expressions of SAA2,
Recommended publications
  • Influence of Serum Amyloid a (SAA1) And
    Influence of Serum Amyloid A (SAA1) and SAA2 Gene Polymorphisms on Renal Amyloidosis, and on SAA/ C-Reactive Protein Values in Patients with Familial Mediterranean Fever in the Turkish Population AYSIN BAKKALOGLU, ALI DUZOVA, SEZA OZEN, BANU BALCI, NESRIN BESBAS, REZAN TOPALOGLU, FATIH OZALTIN, and ENGIN YILMAZ ABSTRACT. Objective. To evaluate the effect of serum amyloid A (SAA) 1 and SAA2 gene polymorphisms on SAA levels and renal amyloidosis in Turkish patients with familial Mediterranean fever (FMF). Methods. SAA1 and SAA2 gene polymorphisms and SAA levels were determined in 74 patients with FMF (39 female, 35 male; median age 11.5 yrs, range 1.0–23.0). All patients were on colchicine therapy. SAA1 and SAA2 gene polymorphisms were analyzed using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). SAA and C-reactive protein (CRP) values were measured and SAA/CRP values were calculated. Results. The median SAA level was 75 ng/ml (range 10.2–1500). SAA1 gene polymorphisms were: α/α genotype in 23 patients (31.1%), α/ß genotype in 30 patients (40.5%), α/γ genotype in one patient (1.4 %), ß/ß genotype in 14 patients (18.9%), ß/γ genotype in 5 patients (6.8 %), and γ/γ geno- type in one patient (1.4%). Of the 23 patients who had α/α genotype for the SAA1 polymorphism, 7 patients had developed renal amyloidosis (30.4%) compared to only one patient without this geno- type (1/51; 2.0%); p < 0.001. SAA2 had no effect on renal amyloidosis. SAA1 and SAA2 genotypes had no significant effect on SAA levels.
    [Show full text]
  • Diversity and Complexity of the Mouse Saa1 and Saa2 Genes
    Exp. Anim. 63(1), 99–106, 2014 —Original— Diversity and Complexity of the Mouse Saa1 and Saa2 genes Masayuki MORI1), Geng TIAN1), Akira ISHIKAWA2), and Keiichi HIGUCHI1) 1)Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3–1–1 Asahi, Matsumoto, Nagano 390-8621, Japan 2)Laboratory of Animal Genetics, Division of Applied Genetics and Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan Abstract: Mouse strains show polymorphisms in the amino acid sequences of serum amyloid A 1 (SAA1) and serum amyloid A 2 (SAA2). Major laboratory mouse strains are classified based on the sequence as carrying the A haplotype (e.g., BALB/c) or B haplotype (e.g., SJL/J) of the Saa1 and Saa2 gene unit. We attempted to elucidate the diversity of the mouse Saa1 and Saa2 family genes at the nucleotide sequence level by a systematic survey of 6 inbred mouse strains from 4 Mus subspecies, including Mus musculus domesticus, Mus musculus musculus, Mus musculus castaneus, and Mus spretus. Saa1 and Saa2 genes were obtained from the mouse genome by PCR amplification, and each full-length nucleotide sequence was determined. We found that Mus musculus castaneus mice uniquely possess 2 divergent Saa1 genes linked on chromosome 7. Overall, the mouse strains had distinct composite patterns of amino acid substitutions at 9 positions in SAA1 and SAA2 isoforms. The mouse strains also had distinct composite patterns of 2 polymorphic upstream regulatory elements that influenced gene transcription in in vitro reporter assays. B haplotype mice were revealed to possess an LTR insertion in the downstream region of Saa1.
    [Show full text]
  • Human Serum Amyloid a (SAA)
    Clinical and Inflammation Research Area Human serum amyloid A (SAA) erum amyloid A recombinant SAA as well as purified endogenous apolipoprotein SAA has a tendency to aggregate and form oligomers Sfamily consists of (4-6). Presumably, the association of SAA molecules three members that in is mediated by amino acid residues located within human beings are cod- α-helix regions 1 (residues 2-8) and 3 (residues ed by different genes: 52-59) (4). SAA1, SAA2, and SAA4 (reviewed in 1-3). SAA1 The biological function of SAA and SAA2 are so-called acute phase isoforms. The biological function of SAA in inflammation is Their expression is in- unclear. It has been suggested that SAA is involved creased in response to in the recycling of cholesterol from damaged tissues. inflammation. SAA4 is It might play the role of a signaling molecule that a constitutive isoform, redirects HDL particles to activated macrophages the expression of which does not change during an and mediates the removal of stored cholesterol from acute-phase response. In addition, one more related them. Released cholesterol is then transferred to HDL gene (SAA3) has been identified, although this gene to be used again in the membranes of new cells that are is not expressed in human beings. required during acute inflammation and tissue repair (7). Besides that, published studies demonstrate Biochemical properties of SAA that recombinant SAA exhibits significant proinflammatory activity by inducing the synthesis SAA1 and SAA2 are synthesized in the liver of several cytokines and promoting chemotaxis for and secreted to the blood. When in the blood, monocytes and neutrophils in vitro (1, 8).
    [Show full text]
  • (SAA2) (NM 030754) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP304977 serum amyloid A2 (SAA2) (NM_030754) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human serum amyloid A2 (SAA2), transcript variant 1 Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 13.3 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Bioactivity: Cell treatment (PMID: 29757436) Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_110381 Locus ID: 6289 UniProt ID: P0DJI9 RefSeq Size: 594 Cytogenetics: 11p15.1 RefSeq ORF: 366 Synonyms: SAA; SAA1 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 serum amyloid A2 (SAA2) (NM_030754) Human Recombinant Protein – TP304977 Summary: This gene encodes a member of the serum amyloid A family of apolipoproteins. The encoded preproprotein is proteolytically processed to generate the mature protein. This protein is a major acute phase protein that is highly expressed in response to inflammation and tissue injury.
    [Show full text]
  • Influence of Serum Amyloid a (SAA1) and SAA2 Gene Polymorphisms On
    Influence of Serum Amyloid A (SAA1) and SAA2 Gene Polymorphisms on Renal Amyloidosis, and on SAA/ C-Reactive Protein Values in Patients with Familial Mediterranean Fever in the Turkish Population AYSIN BAKKALOGLU, ALI DUZOVA, SEZA OZEN, BANU BALCI, NESRIN BESBAS, REZAN TOPALOGLU, FATIH OZALTIN, and ENGIN YILMAZ ABSTRACT. Objective. To evaluate the effect of serum amyloid A (SAA) 1 and SAA2 gene polymorphisms on SAA levels and renal amyloidosis in Turkish patients with familial Mediterranean fever (FMF). Methods. SAA1 and SAA2 gene polymorphisms and SAA levels were determined in 74 patients with FMF (39 female, 35 male; median age 11.5 yrs, range 1.0–23.0). All patients were on colchicine therapy. SAA1 and SAA2 gene polymorphisms were analyzed using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). SAA and C-reactive protein (CRP) values were measured and SAA/CRP values were calculated. Results. The median SAA level was 75 ng/ml (range 10.2–1500). SAA1 gene polymorphisms were: α/α genotype in 23 patients (31.1%), α/ß genotype in 30 patients (40.5%), α/γ genotype in one patient (1.4 %), ß/ß genotype in 14 patients (18.9%), ß/γ genotype in 5 patients (6.8 %), and γ/γ geno- type in one patient (1.4%). Of the 23 patients who had α/α genotype for the SAA1 polymorphism, 7 patients had developed renal amyloidosis (30.4%) compared to only one patient without this geno- type (1/51; 2.0%); p < 0.001. SAA2 had no effect on renal amyloidosis. SAA1 and SAA2 genotypes had no significant effect on SAA levels.
    [Show full text]
  • Comparison of Gene Expression Profiles
    [CANCER RESEARCH 62, 3939–3944, July 15, 2002] Advances in Brief Comparison of Gene Expression Profiles between Hepatitis B Virus- and Hepatitis C Virus-infected Hepatocellular Carcinoma by Oligonucleotide Microarray Data on the Basis of a Supervised Learning Method1 Norio Iizuka, Masaaki Oka,2 Hisafumi Yamada-Okabe, Naohide Mori, Takao Tamesa, Toshimasa Okada, Norikazu Takemoto, Akira Tangoku, Kenji Hamada, Hironobu Nakayama, Takanobu Miyamoto, Shunji Uchimura, and Yoshihiko Hamamoto Departments of Surgery II [N. I., M. O., N. M., T. T., T. O., N. T., A. T.] and Bioregulatory Function [N. I.], Yamaguchi University School of Medicine, Yamaguchi 755-8505; Department of Computer Science and Systems Engineering, Faculty of Engineering, Yamaguchi University, Yamaguchi 755-8611 [T. M., S. U., Y. H.]; and Department of Oncology, Nippon Roche Research Center, Kanagawa 247-8530 [H. Y-O., K. H., H. N.], Japan Abstract nisms responsible for the pathogenesis of HCC differ between HBV and HCV infections. Several studies compared gene expression be- Gene expression profiles of hepatocellular carcinomas (HCCs) associ- tween nontumorous liver and HCC and revealed gene expression ated with hepatitis B virus (HBV) and hepatitis C virus (HCV) were patterns that are rather specific to HCC (10–14). However, there is analyzed and compared. Oligonucleotide microarrays containing >6000 genes and subsequent gene selection by a supervised learning method only one study that compared gene expression patterns between HCC yielded 83 genes for which expression differed between the two types of with HBV infection (B-type HCC) and HCC with HCV infection HCCs. Expression levels of 31 of these 83 genes were increased in HBV- (C-type HCC; 14), and only a limited number of specimens were associated HCCs, and expression levels of the remaining 52 genes were analyzed.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,662,389 B2 Clark Et Al
    USOO7662389B2 (12) United States Patent (10) Patent No.: US 7,662,389 B2 Clark et al. (45) Date of Patent: Feb. 16, 2010 (54) USE OF SERUM AMYLOIDA GENE IN Cotton et al., Proc. Natl. Acad. Sci. USA 85.4397 (1988): “Reactivity DAGNOSIS AND TREATMENT OF of cytosine and thymine in single-base-pair mismatches with GLAUCOMIA AND IDENTIFICATION OF hydroxylamine and osmium tetroxide and its application to the study ANT-GLAUCOMAAGENTS of mutations'. Cotton, Mutat. Res. 285:125-144 (1993); "Current methods of muta tion detection'. (75) Inventors: Abbot F. Clark, Arlington, TX (US); Croninet al., Human Mutation 7:244-255 (1996); "Cystic Fibrosis Wan-Heng Wang, Grapevine, TX (US); Mutation Detection by Hybridization to Light-Generated DNA Loretta Graves McNatt, Hurst, TX Probe Arrays”. (US) Ermilov et al. (1993); Arkh Patol.; “Senile amyloidosis of the eye as a manifestation of senile cerebral amyloidosis' abstract with article (73) Assignee: Alcon, Inc., Hunenberg (CH) in Russian 55(6):43-45. Furlenato, CJ, and Campa A, Biochem. Biophys. Res. Commun 268:405-408 (2002), “A novel function of serum amyloid A. apotent (*) Notice: Subject to any disclaimer, the term of this stimulus for the release of tumor necrosis factor-alpha, interleukin-1 patent is extended or adjusted under 35 beta, and interleukin-8 by human blood neutrophil”. U.S.C. 154(b) by 130 days. Gasparini et al., Mol. Cell Probes 6:1-7 (1992); "Restriction site generating-polymerase chain reaction (RG-PCR) for the probeless (21) Appl. No.: 11/615.454 detection of hidden genetic variation: application to the study of some common cystic fibrosis mutations'.
    [Show full text]
  • Serum Amyloid a (SAA1) Mouse Monoclonal Antibody [Clone ID: 585] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for AM09286PU-N Serum Amyloid A (SAA1) Mouse Monoclonal Antibody [Clone ID: 585] Product data: Product Type: Primary Antibodies Clone Name: 585 Applications: ELISA, WB Recommended Dilution: ELISA. Western Blot: Use of this SSA antibody at a concentration of 0.1-0.5 µg will allow visualization of 100 ng/lane of recombinant Human SAA. Reactivity: Human Host: Mouse Isotype: IgG2b Clonality: Monoclonal Immunogen: Highly purified recombinant Human SAA. Specificity: Reacts with natural and recombinant Human SAA. Does not show any cross-reaction with other Human Cytokines or Growth Factors tested such as IL1 beta, IL-8, MCAF, TGF beta and EGF. Formulation: 0.01 M PBS, pH 7.2 without preservatives. State: Aff - Purified State: Lyophilized purified IgG fraction. Reconstitution Method: Restore with Double distillated water to adjust the final concentration to 1.0 mg/ml. Purification: Affinity Chromatography on Protein G. Conjugation: Unconjugated Storage: Store the antibody at -20°C. Avoid repeated freezing and thawing. Stability: Shelf life: one year from despatch. Gene Name: Homo sapiens serum amyloid A1 (SAA1), transcript variant 1 Database Link: Entrez Gene 6288 Human P0DJI8 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Serum Amyloid A (SAA1) Mouse Monoclonal Antibody [Clone ID: 585] – AM09286PU-N Background: The Serum Amyloid A (SAA) family comprises a number of differentially expressed lipoproteins, acute phase SAA1 and SAA2, the former being a major component in plasma, and constitutive SAA's (C-SAAs).
    [Show full text]
  • Recombinant Mouse Serum Amyloid A1 Catalog Number: 2948-SA
    Recombinant Mouse Serum Amyloid A1 Catalog Number: 2948-SA DESCRIPTION Source E. coli-derived mouse Serum Amyloid A1 protein Gly20-Tyr122 Accession # P05366 N-terminal Sequence Gly20 Analysis Predicted Molecular 11.8 kDa Mass SPECIFICATIONS SDS-PAGE 11 kDa, reducing conditions Activity Measured by its ability to induce TNF-α secretion by J774A.1 mouse reticulum cell sarcoma macrophage cells. The ED50 for this effect is 1.5-7.5 μg/mL. Endotoxin Level <0.10 EU per 1 μg of the protein by the LAL method. Purity >95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining. Formulation Lyophilized from a 0.2 μm filtered solution in Tris-HCl, NaCl, PEG and Imidazole. See Certificate of Analysis for details. PREPARATION AND STORAGE Reconstitution Reconstitute at 100 μg/mL in PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. Stability & Storage Use a manual defrost freezer and avoid repeated freeze-thaw cycles. 12 months from date of receipt, -20 to -70 °C as supplied. 1 month, 2 to 8 °C under sterile conditions after reconstitution. 3 months, -20 to -70 °C under sterile conditions after reconstitution. BACKGROUND Mouse Serum Amyloid A protein-1 (SAA1; previously SAA2 in mouse) is a multifunctional apolipoprotein produced by hepatocytes in response to pro-inflammatory cytokines (1 - 4). It is secreted as a 12 kDa, 103 amino acid (aa), nonglycosylated protein and circulates as part of the HDL complex (1 - 4). The SAA1 gene is one of five SAA genes in mouse (3).
    [Show full text]
  • Mouse Anti-Human Serum Amyloid a Monoclonal Antibody, Clone 4I84 (DCABH-6007) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Mouse Anti-Human Serum Amyloid A Monoclonal Antibody, clone 4I84 (DCABH-6007) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Specificity Recognize human SAA1. Do not recognize human SAA2, human SAA4, feline, canine, equine or bovine SAA. Immunogen Human serum amyloid A (SAA) Isotype IgG1 Source/Host Mouse Species Reactivity Human Clone 4I84 Purity Protein G purified Purification Purity≥ 95 % Conjugate Unconjugated Applications ELISA(Cap), ELISA(Det), LFIA We recommend the following for sandwich ELISA (Capture - Detection): DMAB8184 - DCABH-6007; DMAB8186 - DCABH-6007; DCABH-6007 - CABT-54364MH; CABT-54364MH - DCABH-6007 Epitope Recognizes aa 64-71 but also reacts with aa 28-38 indicating that the epitope may be partly conformational. Format Liquid Concentration Lot specific Size 1 mg Buffer 50 mM Na-citrate, pH 6.0, 0.9 % NaCI, 0.095 % NaN3 as a preservative. Preservative 0.095% sodium azide Storage Store at 2-8℃. 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Ship Wet ice Warnings This product is for research use only and is not intended for diagnostic use. BACKGROUND Introduction Serum amyloid A (SAA) proteins are a family of apolipoproteins associated with high-density lipoprotein (HDL) in plasma. Different isoforms of SAA are expressed constitutively (constitutive SAAs) at different levels or in response to inflammatory stimuli (acute phase SAAs). These proteins are produced predominantly by the liver. The conservation of these proteins throughout invertebrates and vertebrates suggests that SAAs play a highly essential role in all animals.
    [Show full text]
  • Complete Primary Structures of Two Major Murine Serum Amyloid A
    Proc. Nati. Acad. Sci. USA Vol. 82, pp. 2915-2919, May 1985 Immunology Complete primary structures of two major murine serum amyloid A proteins deduced from cDNA sequences (amyloidosis/cDNA cloning/sequence/acute-phase protein) KEN-ICHI YAMAMOTO AND SHUNSUKE MIGITA Department of Molecular Immunology, Cancer Research Institute, Kanazawa University, Kanazawa 920, Japan Communicated by Frank W. Putnam, December 26, 1984 ABSTRACT cDNA clones encoding two major mouse mouse amyloid A protein has shown that mouse amyloid A serum amyloid A proteins, SAA1 and SAA2, were isolated from protein contains only a single type of amino-terminal amino a liver cDNA library of the lipopolysaccharide-stimulated acid sequence, which is identical with that of SAA2, indicat- BALB/c mouse, and their nucleotide sequences were deter- ing that amyloid A protein is derived predominantly from mined. The insert of the SAA2 cDNA clone contained 607 SAA2 (13). However, it is not known what structural differ- nucleotides with a 5' untranslated region of 36 nucleotides, a ences are responsible for selective deposition of SAA2 in signal peptide region corresponding to 19 amino acids, a amyloid tissues. In the present study, we have isolated two mature protein region corresponding to 103 amino acids, and cDNA clones corresponding to mouse SAA1 and SAA2 a 3' untranslated region of 202 nucleotides. The SAA1 cDINA mRNA and have determined the nucleotide sequences. A insert contained 549 nucleotides specifying a part of a signal comparison of the amino acid sequences deduced from the peptide region, a mature protein region, and a 3' untranslated cDNA sequences reveals amino acid differences in nine region.
    [Show full text]
  • SAA2 and SAA1 Amyloid a Genes, Activation of the Human Acute
    Differential Glucocorticoid Enhancement of the Cytokine-Driven Transcriptional Activation of the Human Acute Phase Serum Amyloid A Genes, SAA1 and SAA2 This information is current as of September 28, 2021. Caroline F. Thorn and Alexander S. Whitehead J Immunol 2002; 169:399-406; ; doi: 10.4049/jimmunol.169.1.399 http://www.jimmunol.org/content/169/1/399 Downloaded from References This article cites 47 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/169/1/399.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2002 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Differential Glucocorticoid Enhancement of the Cytokine-Driven Transcriptional Activation of the Human Acute Phase Serum Amyloid A Genes, SAA1 and SAA2 Caroline F. Thorn and Alexander S. Whitehead1 The human acute phase serum amyloid A (A-SAA) genes, SAA1 and SAA2, have a high degree of sequence identity that extends ϳ450 bp upstream of their transcription start sites.
    [Show full text]