Caribbean Geology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Report Municipality of Siparia Local Area Economic Profile
Final Report Municipality of Siparia Local Area Economic Profile 1 Municipality of Siparia Local Area Economic Profile Final Report Submitted to: Permanent Secretary Ministry of Rural Development and Local Government Kent House, Maraval, Trinidad and Tobago Submitted by: Kairi Consultants Limited 14 Cochrane St, Tunapuna, Trinidad and Tobago Tel: 1 868 663 2677; Fax: 1 868 663 1442 Email: [email protected] March 11, 2016 i Table of Contents List of Figures ........................................................................................................................................ v List of Tables ........................................................................................................................................ vi Acronyms and Abbreviations .............................................................................................................. vii 1 Introduction .................................................................................................................................. 9 2 Area Information and Demography ......................................................................................... 10 2.1 Location ................................................................................................................................. 10 2.2 Geography ............................................................................................................................. 10 2.3 Population and Demography ............................................................................................... -
Evidence from Chromitite Zircon Grains of Eastern Cuban Ophiolites
Geoscience Frontiers 9 (2018) 1921e1936 HOSTED BY Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research Paper Cold plumes trigger contamination of oceanic mantle wedges with continental crust-derived sediments: Evidence from chromitite zircon grains of eastern Cuban ophiolites J.A. Proenza a,*, J.M. González-Jiménez b, A. Garcia-Casco b,c, E. Belousova d, W.L. Griffin d, C. Talavera e, Y. Rojas-Agramonte f,g, T. Aiglsperger a, D. Navarro-Ciurana a, N. Pujol-Solà a, F. Gervilla b,c, S.Y. O’Reilly d, D.E. Jacob d a Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, C/Martí i Franquès s/n, 08028, Barcelona, Spain b Departamento de Mineralogía y Petrología, Universidad de Granada, Facultad de Ciencias, Fuentenueva s/n 18002, Granada, Spain c Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avda. de las Palmeras 4, E-18100, Armilla, Granada, Spain d ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS), GEMOC National Key Centre, Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia e John de Laeter Centre, Curtin University, Perth, WA 6102, Australia f Geocycles-Earth System Research Center, Institut für Geowissenschaften, Johannes Gutenberg-Universität, Becherweg 21, D-55099 Mainz, Germany g Departamento de Geociencias, Universidad de los Andes, Bogotá, Colombia article info abstract Article history: The origin of zircon grains, and other exotic minerals of typical crustal origin, in mantle-hosted ophiolitic Received 15 September 2017 chromitites are hotly debated. We report a population of zircon grains with ages ranging from Cretaceous Received in revised form (99 Ma) to Neoarchean (2750 Ma), separated from massive chromitite bodies hosted in the mantle 23 November 2017 section of the supra-subduction (SSZ)-type Mayarí-Baracoa Ophiolitic Belt in eastern Cuba. -
Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions. -
Foraminifera • Foraminifers Are Found in All Marine Environments
Foraminifera • Foraminifers are found in all marine environments. Some are adapted to brackish water. There are none in fresh water. Two life modes are recognized: • Benthic . These are forms that live on the sea floor, either on the surface of the sediment (epifauna) or buried in it (infauna). • Planktonic . These are forms which float passively, moved only by currents but capable of vertica migration. Some planktonic foraminifers (their largest dimension on the order of a half-millimeter). Small benthic foraminifers (their largest dimension on the order of a half-centimeter). Some large benthic foraminifers (their largest dimension on the order of a centimeter). Planktonic Foraminifera Globigerina bulloides Globorotalia menardii d'Orbigny (Parker, Jones and Brady) Pliocene-Recent Pliocene-Recent Globigerina bulloides d'Orbigny Hantkenina alabamensis Cushman, 1927 Pliocene-Recent Eocene Globigerinoides ruber Pseudohastigerina micra d'Orbigny (Cole, 1927) Miocene-Recent Eocene-Oligocene Globorotalia inflata Globorotalia cerro- d'Orbigny azulensis Cole, 1928 Pliocene-Recent Eocene Globorotalia menardii Parasubbotina (Parker, Jones and pseudobulloides Brady) (Plummer, 1926) Pliocene-Recent Lower-Middle Palaeocene Planktonic Foraminifera Racemiguembelina Subbotina triloculinoides fructicosa (Egger) (Plummer, 1926) Middle-Uppper lower-upper Palaeocene Maastrichtian (Upper Cretaceous) Pseudotextularia elegans (Rzehak) Abathomphalus mayaroensis (Bolli) Campanian- Maastrichtian (Upper Upper Maastrichtian Cretaceous (Upper Cretaceous) Hedbergella -
A Ovel, Locally Engineered Crude Asphalt Crusher
Seventh LACCEI Latin American and Caribbean Conference for Engineering and Technology (LACCEI’2009) “Energy and Technology for the Americas: Education, Innovation, Technology and Practice” June 2-5, 2009, San Cristobal. A ovel, Locally Engineered Crude Asphalt Crusher Kenneth Roberts Lake Asphalt of Trinidad and Tobago, [email protected] Kenny Cupid Lake Asphalt of Trinidad and Tobago, [email protected] Kamel Singh The University of Trinidad and Tobago, [email protected] Musti KS Sastry The University of West Indies, Trinidad and Tobago, [email protected] ABSTRACT The ‘Pitch Lake’ located in Trinidad and Tobago, West Indies is perhaps the largest natural and commercial asphalt deposit in the world. The asphalt is mined continuously and processed to produce different commercial products, which are used for different purposes all over the world. The extracted crude asphalt usually will be in large crumbs and difficult to process. This paper presents a safe, low cost, locally engineered crude asphalt crusher to improve the overall processing operations. Keywords: Crude Asphalt, Machine Design, Sustainable Technology, Innovative Solution 1. ITRODUCTIO Trinidad Lake Asphalt is a natural product from the famous Asphalt or “Pitch” Lake located in La Brea, southwest Trinidad Island (southern Carribean), 90 km from the capital Port-of-Spain. This natural resource is actively mined for many years; however the first commercial operations commenced in 1888. It is from this location that refined asphalt, known as Trinidad Lake Asphalt . The lake measures approximately 40 hectares, with an estimated depth up to 76meters at the centre. This wonder holds an estimated ten million tons of pitch; a total of 150 tons of pitch is extracted from the lake per day. -
Paving the Way
HISTORICAL NOTE Paving the Way On the road of progress, where did the road surfaces were slabs of stone laid upon passing vehicle to the underlying soil with asp_halt come from? a strong foundation of rubble or broken out damaging the road surface. Paving ma Throughout history, the creation and stone. Other Roman roads used a concrete terial must resist the degradation caused maintenance of roads has been a barome made from lime and pozzolana (volcanic by traffic and must also provide a smooth ter for the rise and fall of civilizations. ash). surface for a comfortable ride. Ideally, pav While other new science and technology For centuries after the downfall of the Ro ing material should resist damage caused developed over the centuries, surprisingly man Empire (about the fifth century A.D.) by changes in temperature, moisture, and little progress was made in the construc long-term environmental chemical action. tion of roads or the materials and tech In the 1770s two self-taught engineers niques used to surface them. changed roadbuilding methods and mate The word "highway" is derived from the rials used throughout Europe-John Roman roads built on a mound of dirt piled The United States and Loudon McAdam and Pierre Tresauguet. up from ditches on either side, raising the Europe have nearly Tresauguet became inspector general of route above the surrounding ground and bridges and roads for France in 1775. He making it a "high way:' The term "road" 5,000,000 total miles of proposed a new theory for a light road sur comes from the Anglo-Saxon rad ("to paved roads-most of face, suggesting that the subsoil should ride"), for the path on which travelers support the load of traffic, not the surface rode. -
Paleontological Resources at Grand Teton National Park, Northwestern Wyoming Vincent L
University of Wyoming National Park Service Research Center Annual Report Volume 22 22nd Annual Report, 1998 Article 7 1-1-1998 Paleontological Resources at Grand Teton National Park, Northwestern Wyoming Vincent L. Santucci National Park Service William P. Wall Georgia College and State University Follow this and additional works at: http://repository.uwyo.edu/uwnpsrc_reports Recommended Citation Santucci, Vincent L. and Wall, William P. (1998) "Paleontological Resources at Grand Teton National Park, Northwestern Wyoming," University of Wyoming National Park Service Research Center Annual Report: Vol. 22 , Article 7. Available at: http://repository.uwyo.edu/uwnpsrc_reports/vol22/iss1/7 This Grand Teton National Park Report is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in University of Wyoming National Park Service Research Center Annual Report by an authorized editor of Wyoming Scholars Repository. For more information, please contact [email protected]. Santucci and Wall: Paleontological Resources at Grand Teton National Park, Northwest PALEONTOLOGICAL RESOURCES AT GRAND TETON NATIONAL PARK, NORTHWESTERN WYOMING + VINCENT L. SANTUCCI+ NATIONAL PARK SERVICE KEMMERER + WY WILLIAM P. WALL+ DEPARTMENT OF BIOLOGY GEORGIA COLLEGE AND STATE UNIVERSITY MILLEDGEVILLE + GA + ABSTRACT landscape, and though the last great ice masses melted 15 ,000 years ago, some re-established small Paleontological resources occur throughout glaciers still exist. the formations exposed in Grand Teton National Park. A comprehensive paleontological survey has This report provides a preliminary not been attempted previously at Grand Teton assessment of paleontological resources identified at National Park. Preliminary paleontologic resource Grand Teton National Park. data is given in this report in order to establish baseline data. -
The Geology of Cuba: a Brief Cuba: a of the Geology It’S Time—Renew Your GSA Membership and Save 15% and Save Membership GSA Time—Renew Your It’S
It’s Time—Renew Your GSA Membership and Save 15% OCTOBER | VOL. 26, 2016 10 NO. A PUBLICATION OF THE GEOLOGICAL SOCIETY OF AMERICA® The geology of Cuba: A brief overview and synthesis OCTOBER 2016 | VOLUME 26, NUMBER 10 Featured Article GSA TODAY (ISSN 1052-5173 USPS 0456-530) prints news and information for more than 26,000 GSA member readers and subscribing libraries, with 11 monthly issues (March/ April is a combined issue). GSA TODAY is published by The SCIENCE Geological Society of America® Inc. (GSA) with offices at 3300 Penrose Place, Boulder, Colorado, USA, and a mail- 4 The geology of Cuba: A brief overview ing address of P.O. Box 9140, Boulder, CO 80301-9140, USA. and synthesis GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, M.A. Iturralde-Vinent, A. García-Casco, regardless of race, citizenship, gender, sexual orientation, Y. Rojas-Agramonte, J.A. Proenza, J.B. Murphy, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. and R.J. Stern © 2016 The Geological Society of America Inc. All rights Cover: Valle de Viñales, Pinar del Río Province, western reserved. Copyright not claimed on content prepared Cuba. Karstic relief on passive margin Upper Jurassic and wholly by U.S. government employees within the scope of Cretaceous limestones. The world-famous Cuban tobacco is their employment. Individual scientists are hereby granted permission, without fees or request to GSA, to use a single grown in this valley. Photo by Antonio García Casco, 31 July figure, table, and/or brief paragraph of text in subsequent 2014. -
11-122. 2000 11
FERN GAZ. 16(1, 2)11-122. 2000 11 CHECKLIST OF THE PTERIDOPHYTES OF TRINIDAD & TOBAGO Y. S. BAKSH-COMEAU The National Herbarium of Trinidad and Tobago. Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad, West Indies Key words: checklist, Trinidad and Tobago pteridophytes, types, habitat, distribution. ABSTRACT Three hundred and two species and eight varieties or subspecies in 27 families and 77 genera of ferns and fern allies are listed. Four new combinations and states are made, and one synonym lectotypified. A serious attempt has been made to establish types; selections of specimens studied are cited. INTRODUCTION Recent studies of ferns in Trinidad and Tobago (Baksh-Comeau, 1996, 1999) have combined a review of the pteridophyte collection at The National Herbarium of Trinidad & Tobago with field surveys undertaken to assess the community status of these plants on both islands. This checklist has been developed as an integral part of those studies, but it is also an essential prerequisite to ongoing research covering a reclassification of the vegetation of the islands and to the preparation of a comprehensive vascular plant flora. The herbarium count and field survey revealed 251 species confirmed by voucher specimens housed in Trinidad. Additional species have been attributed to Trinidad or Tobago in early publications for Trinidad and in Floras and monographs for neighbouring areas. The number of species now believed to be indigenous in these islands is 282. Cultivated species that have escaped, and introductions which have become naturalized number 20. Early reports include Grisebach (1859-64) who listed 106 species; Eaton (1878) approximately 78 of the 150 or so species eventually collected by August Fendler; Jenman (1887) had about 184 species; Anon (1889) listed 206 binomials including a few introduced taxa; Jenman (1898-1909), in an incomplete coverage of the fern flora, described 140 taxa of which 10 were new species; Hart (1908), including some cultivated plants, listed 283 binomials of pteridophytes. -
By Philip R. Woodside U.S. Geological Survey Open-File Report 8L This
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY THE PETROLEUM GEOLOGY OF TRINIDAD AND TOBAGO By Philip R. Woodside U.S. Geological Survey Open-File Report 8l This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature* Any use of trade names is for descriptive purposes only and does not imply endorsment by the USGS. 1981 CONTENTS Page For ewo r d •————————•———-————————————————•————————•—•————•—— Abstract —• Introduction ——————————————————————————————————————————— 1 Structural Geology ————•—-———————•———•—•—————-———•—•——•—— 4 Introduction -——————————————————————————————————————— 4 Structural Areas of Trinidad ——————————————————————————— 5 The Northern Range ——————————•—————————————————————— 5 The Northern (Caroni) Basin —————————————————————————— 6 The Central Range ————————————————————————————————— 6 The Southern Basin (including Naparima Thrust Belt) ———————— 6 Los Bajos fault ———————————————————————————————— 7 The Southern Range ————————————————————————————————— 9 Shale Diapirs ———————————————————————————————————— 10 Stratigraphy ——————————————————————————————————————————— 11 Northern Range and Northern Basin ——————————————————————— 11 Central Range —————————————————————————————————————— 12 Southern Basin and Southern Range —————-————————————————— 14 Suimnary ————————————————————————————————————————————— 18 Oil and Gas Occurrence ———•——————————•——-——————•————-—•—•— 19 Introduction ————•—•————————————————————————-—— 19 Hydrocarbon Considerations -
Sucesión De Amonitas Del Cretácico Superior (Cenomaniano – Coniaciano) De La Parte Más Alta De La Formación Hondita Y De L
Boletín de Geología Vol. 33, N° 1, enero-junio de 2011 SUCESIÓN DE AMONITAS DEL CRETÁCICO SUPERIOR (CENOMANIANO – CONIACIANO) DE LA PARTE MÁS ALTA DE LA FORMACIÓN HONDITA Y DE LA FORMACIÓN LOMA GORDA EN LA QUEBRADA BAMBUCÁ, AIPE - HUILA (COLOMBIA, S. A.) Pedro Patarroyo1 RESUMEN La sección de la quebrada Bambucá (Aipe - Huila) posee una buena exposición de los depósitos del Cretácico del Valle Superior del Magdalena. De la parte alta de la Formación Hondita se recolectaron Acanthoceras sp. y Rhynchostreon sp. del Cenomaniano superior. Dentro del segmento inferior de la Formación Loma Gorda se hallaron Choffaticeras (C.) cf. segne, Fagesia cf. catinus, Neoptychites cf. andinus, Mitonia gracilis, Morrowites sp., Nannovascoceras ? sp., Quitmaniceras ? sp., Benueites ? sp. junto con Mytiloides kossmati, M. goppelnensis y Anomia sp. del Turoniano inferior. Estratigráficamente arriba aparecen Paramammites ? sp., Hoplitoides sp. H. ingens, H. cf. lagiraldae, Codazziceras ospinae, Allocrioceras sp., que pueden estar representando entre el Turoniano inferior y medio. Para la parte alta de este segmento se encontraron Prionocycloceras sp. P. guayabanum, Reesidites subtuberculatum, Subprionotropis colombianus, Mytiloides scupini, Dydimotis sp., Gauthiericeras sp., Anagaudryceras ? sp., Eulophoceras jacobi, Paralenticeras sieversi, Hauericeras cf. madagascarensis, Peroniceras (P.) subtricarinatum, Forresteria (F.) sp., Barroisiceras cf. onilahyense, Ankinatsytes venezolanus que abarcan entre el Turoniano superior y el Coniaciano. Con base en la fauna colectada no es posible establecer los límites Cenomaniano/Turoniano y Turoniano/Coniaciano. Palabras clave: Amonitas, Cretácico superior, Valle Superior del Magdalena, Aipe-Huila-Colombia. UPPER CRETACEOUS AMMONITE SUCCESSION (CENOMANIAN – CONIACIAN) RELATED TO THE UPPER HONDITA AND LOMA GORDA FORMATIONS ALONG THE BAMBUCÁ CREEK, AIPE - HUILA (COLOMBIA, S.A.) ABSTRACT The Bambucá creek section (Aipe - Huila) shows a very good exposition of the Upper Magdalena Valley Cretaceous deposits. -
Deep Sea Drilling Project Initial Reports Volume 6
39. PLANKTONIC MICROFOSSIL BIOSTRATIGRAPHY OF THE NORTHWESTERN PACIFIC OCEAN David Bukry1, U.S. Geological Survey, La Jolla, California, Robert G. Douglas, Case Western Reserve University, Cleveland, Ohio, Stanley A. Kling, Cities Service Oil Company, Tulsa, Oklahoma, and Valeri Krasheninnikov, Academy of Sciences of the U.S.S.R., Moscow CONTENTS Page Page Introduction 1253 Regional Correlation 1281 Zonal Comparison 1254 Calcareous Nannoplankton 1281 Planktonic Foraminifera, Mesozoic 1281 Upper Cretaceous-Paleocene Boundary 1255 California 1281 Paleocene-Eocene Boundary 1259 Japan 1285 Eocene-Oligocene Boundary 1259 West Pacific 1286 Oligocene-Miocene Boundary 1259 Australia 1287 Miocene-Pliocene Boundary 1260 Planktonic Foraminifera, Cenozoic 1288 Pliocene-Pleistocene Boundary 1261 Solomon Islands 1288 Zonal Summary 1261 Mariana Islands 1288 The Philippines 1288 Paleoecology 1261 Taiwan 1289 Calcareous Nannoplankton 1261 Japan 1289 Radiolaria 1267 Kamchatka Penisula 1290 California 1290 Preservation 1267 Radiolaria 1291 Calcareous Nannoplankton 1267 Sedimentation Rates 1291 Foraminifera 1269 Relationship to Acoustostratigraphy 1294 Radiolaria 1279 References 1296 INTRODUCTION A comparison of zonal units of calcareous nannoplank- ton, foraminifera, and radiolarians in the same strata Biostratigraphic evidence obtained from the north- shows only few cases of exact coincidence of zonal western Pacific Ocean as a result of coring carried out limits, especially if coincidences at the top or bottom by the Glomar Challenger during Leg 6 of the Deep of the standard 9-meter coring runs are dismissed as Sea Drilling Project from Hawaii to Guam is considered artificially induced owing to gaps in sediment recovery. here mainly from the standpoint of three dominant Exact coincidence of zonal limits within coring runs marine planktonic microfossil groups—calcareous nan- are most notable for the Upper Paleocene sediment of noplankton, foraminifers, and radiolarians.