Nucleation and Growth Model for {110}- and {111}-Truncated Nanoparticles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Avenues for Polyhedral Research
Avenues for Polyhedral Research by Magnus J. Wenninger In the epilogue of my book Polyhedron Models I alluded Topologie Structurale #5, 1980 Structural Topology #5,1980 to an avenue for polyhedral research along which I myself have continued to journey, involving Ar- chimedean stellations and duals (Wenninger 1971). By way of introduction to what follows here it may be noted that the five regular convex polyhedra belong to a larger set known as uniform’ polyhedra. Their stellated forms are derived from the process of extending their R&urn6 facial planes while preserving symmetry. In particular the tetrahedron and the hexahedron have no stellated forms. The octahedron has one, the dodecahedron Cet article est le sommaire d’une etude et de three and the icosahedron a total of fifty eight (Coxeter recherches faites par I’auteur depuis une dizaine 1951). The octahedral stellation is a compound of two d’annees, impliquant les polyedres archimediens Abstract tetrahedra, classified as a uniform compound. The &oil& et les duals. La presentation en est faite a three dodecahedral stellations are non-convex regular partir d’un passe historique, et les travaux This article is a summary of investigations and solids and belong to the set of uniform polyhedra. Only d’auteurs recents sont brievement rappel& pour study done by the author over the past ten years, one icosahedral stellation is a non-convex regular la place importante qu’ils occupent dans I’etude involving Archimedean stellations and duals. The polyhedron and hence also a uniform polyhedron, but des formes polyedriques. L’auteur enonce une presentation is set into its historical background, several other icosahedral stellations are uniform com- regle &n&ale par laquelle on peut t,rouver un and the works of recent authors are briefly sket- pounds, namely the compound of five octahedra, five dual a partir de n’importe quel polyedre uniforme ched for their place in the continuing study of tetrahedra and ten tetrahedra. -
Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur Si Muove: Biomimetic Embedding of N-Tuple Helices in Spherical Polyhedra - /
Alternative view of segmented documents via Kairos 23 October 2017 | Draft Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur si muove: Biomimetic embedding of N-tuple helices in spherical polyhedra - / - Introduction Symbolic stars vs Strategic pillars; Polyhedra vs Helices; Logic vs Comprehension? Dynamic bonding patterns in n-tuple helices engendering n-fold rotating symbols Embedding the triple helix in a spherical octahedron Embedding the quadruple helix in a spherical cube Embedding the quintuple helix in a spherical dodecahedron and a Pentagramma Mirificum Embedding six-fold, eight-fold and ten-fold helices in appropriately encircled polyhedra Embedding twelve-fold, eleven-fold, nine-fold and seven-fold helices in appropriately encircled polyhedra Neglected recognition of logical patterns -- especially of opposition Dynamic relationship between polyhedra engendered by circles -- variously implying forms of unity Symbol rotation as dynamic essential to engaging with value-inversion References Introduction The contrast to the geocentric model of the solar system was framed by the Italian mathematician, physicist and philosopher Galileo Galilei (1564-1642). His much-cited phrase, " And yet it moves" (E pur si muove or Eppur si muove) was allegedly pronounced in 1633 when he was forced to recant his claims that the Earth moves around the immovable Sun rather than the converse -- known as the Galileo affair. Such a shift in perspective might usefully inspire the recognition that the stasis attributed so widely to logos and other much-valued cultural and heraldic symbols obscures the manner in which they imply a fundamental cognitive dynamic. Cultural symbols fundamental to the identity of a group might then be understood as variously moving and transforming in ways which currently elude comprehension. -
Temperature-Tuned Faceting and Shape-Changes in Liquid Alkane Droplets
Published in Langmuir 33, 1305 (2017) Temperature-tuned faceting and shape-changes in liquid alkane droplets Shani Guttman,† Zvi Sapir,†,¶ Benjamin M. Ocko,‡ Moshe Deutsch,† and Eli Sloutskin∗,† Physics Dept. and Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 5290002, Israel, and NSLS-II, Brookhaven National Laboratory, Upton NY 11973, USA E-mail: [email protected] Abstract Recent extensive studies reveal that surfactant-stabilized spherical alkane emulsion droplets spontaneously adopt polyhedral shapes upon cooling below a temperature Td, while still remaining liquid. Further cooling induces growth of tails and spontaneous droplet splitting. Two mechanisms were offered to account for these intriguing effects. One assigns the effects to the formation of an intra-droplet frame of tubules, consist- ing of crystalline rotator phases with cylindrically curved lattice planes. The second assigns the sphere-to-polyhedron transition to the buckling of defects in a crystalline interfacial monolayer, known to form in these systems at some Ts > Td. The buck- ling reduces the extensional energy of the crystalline monolayer’s defects, unavoidably formed when wrapping a spherical droplet by a hexagonally-packed interfacial mono- layer. The tail growth, shape changes, and droplet splitting were assigned to the ∗To whom correspondence should be addressed †Physics Dept. and Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 5290002, Israel ‡NSLS-II, Brookhaven National Laboratory, Upton NY 11973, USA ¶Present address: Intel (Israel) Ltd., Kiryat Gat, Israel 1 vanishing of the surface tension, γ. Here we present temperature-dependent γ(T ), optical microscopy measurements, and interfacial entropy determinations, for several alkane/surfactant combinations. We demonstrate the advantages and accuracy of the in-situ γ(T ) measurements, done simultaneously with the microscopy measurements on the same droplet. -
A Tourist Guide to the RCSR
A tourist guide to the RCSR Some of the sights, curiosities, and little-visited by-ways Michael O'Keeffe, Arizona State University RCSR is a Reticular Chemistry Structure Resource available at http://rcsr.net. It is open every day of the year, 24 hours a day, and admission is free. It consists of data for polyhedra and 2-periodic and 3-periodic structures (nets). Visitors unfamiliar with the resource are urged to read the "about" link first. This guide assumes you have. The guide is designed to draw attention to some of the attractions therein. If they sound particularly attractive please visit them. It can be a nice way to spend a rainy Sunday afternoon. OKH refers to M. O'Keeffe & B. G. Hyde. Crystal Structures I: Patterns and Symmetry. Mineral. Soc. Am. 1966. This is out of print but due as a Dover reprint 2019. POLYHEDRA Read the "about" for hints on how to use the polyhedron data to make accurate drawings of polyhedra using crystal drawing programs such as CrystalMaker (see "links" for that program). Note that they are Cartesian coordinates for (roughly) equal edge. To make the drawing with unit edge set the unit cell edges to all 10 and divide the coordinates given by 10. There seems to be no generally-agreed best embedding for complex polyhedra. It is generally not possible to have equal edge, vertices on a sphere and planar faces. Keywords used in the search include: Simple. Each vertex is trivalent (three edges meet at each vertex) Simplicial. Each face is a triangle. -
The Crystal Forms of Diamond and Their Significance
THE CRYSTAL FORMS OF DIAMOND AND THEIR SIGNIFICANCE BY SIR C. V. RAMAN AND S. RAMASESHAN (From the Department of Physics, Indian Institute of Science, Bangalore) Received for publication, June 4, 1946 CONTENTS 1. Introductory Statement. 2. General Descriptive Characters. 3~ Some Theoretical Considerations. 4. Geometric Preliminaries. 5. The Configuration of the Edges. 6. The Crystal Symmetry of Diamond. 7. Classification of the Crystal Forros. 8. The Haidinger Diamond. 9. The Triangular Twins. 10. Some Descriptive Notes. 11. The Allo- tropic Modifications of Diamond. 12. Summary. References. Plates. 1. ~NTRODUCTORY STATEMENT THE" crystallography of diamond presents problems of peculiar interest and difficulty. The material as found is usually in the form of complete crystals bounded on all sides by their natural faces, but strangely enough, these faces generally exhibit a marked curvature. The diamonds found in the State of Panna in Central India, for example, are invariably of this kind. Other diamondsJas for example a group of specimens recently acquired for our studies ffom Hyderabad (Deccan)--show both plane and curved faces in combination. Even those diamonds which at first sight seem to resemble the standard forms of geometric crystallography, such as the rhombic dodeca- hedron or the octahedron, are found on scrutiny to exhibit features which preclude such an identification. This is the case, for example, witb. the South African diamonds presented to us for the purpose of these studŸ by the De Beers Mining Corporation of Kimberley. From these facts it is evident that the crystallography of diamond stands in a class by itself apart from that of other substances and needs to be approached from a distinctive stand- point. -
Icosahedral Polyhedra from 6 Lattice and Danzer's ABCK Tiling
Icosahedral Polyhedra from 퐷6 lattice and Danzer’s ABCK tiling Abeer Al-Siyabi, a Nazife Ozdes Koca, a* and Mehmet Kocab aDepartment of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoud, 123 Muscat, Sultanate of Oman, bDepartment of Physics, Cukurova University, Adana, Turkey, retired, *Correspondence e-mail: [email protected] ABSTRACT It is well known that the point group of the root lattice 퐷6 admits the icosahedral group as a maximal subgroup. The generators of the icosahedral group 퐻3 , its roots and weights are determined in terms of those of 퐷6 . Platonic and Archimedean solids possessing icosahedral symmetry have been obtained by projections of the sets of lattice vectors of 퐷6 determined by a pair of integers (푚1, 푚2 ) in most cases, either both even or both odd. Vertices of the Danzer’s ABCK tetrahedra are determined as the fundamental weights of 퐻3 and it is shown that the inflation of the tiles can be obtained as projections of the lattice vectors characterized by the pair of integers which are linear combinations of the integers (푚1, 푚2 ) with coefficients from Fibonacci sequence. Tiling procedure both for the ABCK tetrahedral and the < 퐴퐵퐶퐾 > octahedral tilings in 3D space with icosahedral symmetry 퐻3 and those related transformations in 6D space with 퐷6 symmetry are specified by determining the rotations and translations in 3D and the corresponding group elements in 퐷6 .The tetrahedron K constitutes the fundamental region of the icosahedral group and generates the rhombic triacontahedron upon the group action. Properties of “K-polyhedron”, “B-polyhedron” and “C-polyhedron” generated by the icosahedral group have been discussed. -
DETECTION of FACES in WIRE-FRAME POLYHEDRA Interactive Modelling of Uniform Polyhedra
DETECTION OF FACES IN WIRE-FRAME POLYHEDRA Interactive Modelling of Uniform Polyhedra Hidetoshi Nonaka Hokkaido University, N14W9, Sapporo, 060 0814, Japan Keywords: Uniform polyhedron, polyhedral graph, simulated elasticity, interactive computing, recreational mathematics. Abstract: This paper presents an interactive modelling system of uniform polyhedra including regular polyhedra, semi-regular polyhedra, and intersected concave polyhedra. In our system, user can virtually “make” and “handle” them interactively. The coordinate of vertices are computed without the knowledge of faces, solids, or metric information, but only with the isomorphic graph structure. After forming a wire-frame polyhedron, the faces are detected semi-automatically through user-computer interaction. This system can be applied to recreational mathematics, computer assisted education of the graph theory, and so on. 1 INTRODUCTION 2 UNIFORM POLYHEDRA This paper presents an interactive modelling system 2.1 Platonic Solids of uniform polyhedra using simulated elasticity. Uniform polyhedra include five regular polyhedra Five Platonic solids are listed in Table 1. The (Platonic solids), thirteen semi-regular polyhedra symbol Pmn indicates that the number of faces (Archimedean solids), and four regular concave gathering around a vertex is n, and each face is m- polyhedra (Kepler-Poinsot solids). Alan Holden is describing in his writing, “The best way to learn sided regular polygon. about these objects is to make them, next best to handle them (Holden, 1971).” Traditionally, these Table 1: The list of Platonic solids. objects are made based on the shapes of faces or Symbol Polyhedron Vertices Edges Faces solids. Development figures and a set of regular polygons cut from card boards can be used to P33 Tetrahedron 4 6 4 assemble them. -
Rhombic Dodecahedron
Rhombic Dodecahedron Figure 1 Rhombic Dodecahedron. Vertex labels as used for the corresponding vertices of the 120 Polyhedron. COPYRIGHT 2007, Robert W. Gray Page 1 of 14 Encyclopedia Polyhedra: Last Revision: September 5, 2007 RHOMBIC DODECAHEDRON Figure 2 Cube (blue) and Octahedron (green) define rhombic Dodecahedron. Figure 3 “Long” (green) and “short” (blue) face diagonals. COPYRIGHT 2007, Robert W. Gray Page 2 of 14 Encyclopedia Polyhedra: Last Revision: September 5, 2007 RHOMBIC DODECAHEDRON Topology: Vertices = 14 Edges = 24 Faces = 12 diamonds Lengths: EL ≡ Edge length of rhombic Dodecahedron. 22 FDL ≡ Long face diagonal = EL ≅ 1.632 993 162 EL 3 1 FDS ≡ Short face diagonal = FDL ≅ 0.707 106 781 FDL 2 2 FDS = EL ≅ 1.154 700 538 EL 3 DFVL ≡ Vertex at the end of a long face diagonal 1 2 = FDL = EL ≅ 0.816 496 581 EL 2 3 DFVS ≡ Vertex at the end of a short face diagonal 1 = FDL ≅ 0.353 553 391 FDL 22 1 = EL ≅ 0.577 350 269 EL 3 COPYRIGHT 2007, Robert W. Gray Page 3 of 14 Encyclopedia Polyhedra: Last Revision: September 5, 2007 RHOMBIC DODECAHEDRON 3 DFE = FDL ≅ 0.306 186 218 FDL 42 1 = EL 2 1 DVVL = FDL ≅ 0.707 106 781 FDL 2 2 = EL ≅ 1.154 700 538 EL 3 3 DVVS = FDL ≅ 0.612 372 4 FDL 22 = EL 11 DVE = FDL ≅ 0.586 301 970 FDL 42 11 = EL ≅ 0.957 427 108 EL 23 1 DVF = FDL 2 2 = EL ≅ 0.816 496 581 EL 3 COPYRIGHT 2007, Robert W. Gray Page 4 of 14 Encyclopedia Polyhedra: Last Revision: September 5, 2007 RHOMBIC DODECAHEDRON Areas: 2 2 1 Area of one diamond face = FDL ≅ 0.353 553 391 FDL 22 22 2 2 = EL ≅ 0.942 809 042 EL 3 2 2 Total face area = 32 FDL ≅ 4.242 640 687 FDL 2 2 = 82 EL ≅ 4.242 640 687 EL Volume: 16 3 3 Cubic measure volume equation = EL ≅ 3.079 201 436 EL 33 3 Synergetics' Tetra-volume equation = 6 FDL Angles: Face Angles: ⎛⎞2 2arcsin θS ≡ Face angle at short vertex = ⎜⎟ ≅ 109.471 220 634° ⎝⎠3 ⎛⎞22 θ ≡ Face angle at long vertex = arcsin ≅ 70.528 779 366° L ⎜⎟ ⎝⎠3 Sum of face angles = 4320° Central Angles: ⎛⎞1 All central angles are = arccos ≅ 54.735 610 317° ⎜⎟ ⎝⎠3 Dihedral Angles: All dihedral angles are = 120° COPYRIGHT 2007, Robert W. -
Dissection of Rhombic Solids with Octahedral Symmetry to Archimedean Solids, Part 2
Dissection of rhombic solids with octahedral symmetry to Archimedean solids, Part 2 Izidor Hafner In [5] we found "best approximate" by "rhombic solids" for certain Platonic and Archimedean solids with octahedral symmetry. In this paper we treat the remaining solids: truncated cube, rhombicubocahedron and truncated cuboctahedron. For this purpose we extend the notion of rhombic solid so, that it is also possible to add to them 1/4 and 1/8 of the rhombic dodecahedron and 1/6 of the cube. These last solids can be dissected to cubes. The authors of [1, pg. 331] produced the table of the Dehn invariants for the non-snub unit edge Archimedean polyhedra. We have considered the icosahedral part in [7]. Results from both papers show, that each best aproximate has a surplus or a deficit measured in tetrahedrons (T): -2, -1, 0, 1, 2. Actualy 1/4 of the tetrahedron appears as a piece. The table of Dehn invariant for the non-snub unit edge Archimedean polyhedra (octahedral part) [1]: Tetrahedron -12(3)2 Truncated tetrahedron 12(3)2 Cube 0 Truncated cube -24(3)2 Octahedron 24(3)2 Truncated octahedron 0 Rhombicuboctahedron -24(3)2 ??? Cuboctahedron -24(3)2 Truncated cuboctahedron 0 Along with the above table, we produced the following one: Tetrahedron 1 Truncated tetrahedron -1 Cube 0 Truncated cube 2 Octahedron -2 Truncated octahedron 0 Rhombicuboctahedron -2 Cuboctahedron 2 Truncated cuboctahedron 0 For instance: the tetrahedron has a surplus of 1 tetrahedron relative to empty polyhedron, the octahedron has deficit of 2 tetrahedra relative to rhombic dodecahedron. Our truncated cube, rhombicuboctahedron and truncated cuboctahedron are not Archimedean, but can be enlarged to Archimedean by addition of some prisms, so the results in the table are valid for Archimedean solids as well. -
Local Symmetry Preserving Operations on Polyhedra
Local Symmetry Preserving Operations on Polyhedra Pieter Goetschalckx Submitted to the Faculty of Sciences of Ghent University in fulfilment of the requirements for the degree of Doctor of Science: Mathematics. Supervisors prof. dr. dr. Kris Coolsaet dr. Nico Van Cleemput Chair prof. dr. Marnix Van Daele Examination Board prof. dr. Tomaž Pisanski prof. dr. Jan De Beule prof. dr. Tom De Medts dr. Carol T. Zamfirescu dr. Jan Goedgebeur © 2020 Pieter Goetschalckx Department of Applied Mathematics, Computer Science and Statistics Faculty of Sciences, Ghent University This work is licensed under a “CC BY 4.0” licence. https://creativecommons.org/licenses/by/4.0/deed.en In memory of John Horton Conway (1937–2020) Contents Acknowledgements 9 Dutch summary 13 Summary 17 List of publications 21 1 A brief history of operations on polyhedra 23 1 Platonic, Archimedean and Catalan solids . 23 2 Conway polyhedron notation . 31 3 The Goldberg-Coxeter construction . 32 3.1 Goldberg ....................... 32 3.2 Buckminster Fuller . 37 3.3 Caspar and Klug ................... 40 3.4 Coxeter ........................ 44 4 Other approaches ....................... 45 References ............................... 46 2 Embedded graphs, tilings and polyhedra 49 1 Combinatorial graphs .................... 49 2 Embedded graphs ....................... 51 3 Symmetry and isomorphisms . 55 4 Tilings .............................. 57 5 Polyhedra ............................ 59 6 Chamber systems ....................... 60 7 Connectivity .......................... 62 References -
Logical Geometry of the Rhombic Dodecahedron of Oppositions
Logical Geometry of the Rhombic Dodecahedron of Oppositions Hans Smessaert Introduction: Aristotelian subdiagrams 2 3 squares embedded in (strong) Jacoby-Sesmat-Blanché hexagon (JSB) 3 squares embedded in Sherwood-Czezowski hexagon (SC) Logical Geometry of RDH H. Smessaert Introduction: Aristotelian subdiagrams 3 4 hexagons embedded in Buridan octagon Logical Geometry of RDH H. Smessaert Introduction: Aristotelian subdiagrams in RDH 4 Internal structure of bigger/3D Aristotelian diagrams ? Some initial results: 4 weak JSB-hexagons in logical cube (Moretti-Pellissier) 6 strong JSB hexagons in bigger 3D structure with 14 formulas/vertices tetra-hexahedron (Sauriol) tetra-icosahedron (Moretti-Pellissier) nested tetrahedron (Lewis, Dubois-Prade) rhombic dodecahedron = RDH (Smessaert-Demey) joint work Greater complexity of RDH exhaustive analysis of internal structure ?? Main aim of this talk tools and techniques for such an analysis examine larger substructures (octagon, decagon, dodecagon, ...) distinguish families of substructures (strong JSB, weak JSB, ...) establish the exhaustiveness of the typology Logical Geometry of RDH H. Smessaert Structure of the talk 5 1 Introduction 2 The Rhombic Dodecahedron of Oppositions RDH 3 Sigma-structures 4 Families of Sigma-structures: the CO-perspective 5 Complementarities between families of Sigma-structures 6 Conclusion Logical Geometry of RDH H. Smessaert Structure of the talk 6 1 Introduction 2 The Rhombic Dodecahedron of Oppositions RDH 3 Sigma-structures 4 Families of Sigma-structures: the CO-perspective 5 Complementarities between families of Sigma-structures 6 Conclusion Logical Geometry of RDH H. Smessaert Rhombic Dodecahedron (RDH) 7 cube + octahedron = cuboctahedron =dual) rhombic dodecahedron Platonic Platonic Archimedean Catalan 6 faces 8 faces 14 faces 12 faces 8 vertices 6 vertices 12 vertices 14 vertices Logical Geometry of RDH H. -
Paper Models of Polyhedra
Paper Models of Polyhedra Gijs Korthals Altes Polyhedra are beautiful 3-D geometrical figures that have fascinated philosophers, mathematicians and artists for millennia Copyrights © 1998-2001 Gijs.Korthals Altes All rights reserved . It's permitted to make copies for non-commercial purposes only email: [email protected] Paper Models of Polyhedra Platonic Solids Dodecahedron Cube and Tetrahedron Octahedron Icosahedron Archimedean Solids Cuboctahedron Icosidodecahedron Truncated Tetrahedron Truncated Octahedron Truncated Cube Truncated Icosahedron (soccer ball) Truncated dodecahedron Rhombicuboctahedron Truncated Cuboctahedron Rhombicosidodecahedron Truncated Icosidodecahedron Snub Cube Snub Dodecahedron Kepler-Poinsot Polyhedra Great Stellated Dodecahedron Small Stellated Dodecahedron Great Icosahedron Great Dodecahedron Other Uniform Polyhedra Tetrahemihexahedron Octahemioctahedron Cubohemioctahedron Small Rhombihexahedron Small Rhombidodecahedron S mall Dodecahemiododecahedron Small Ditrigonal Icosidodecahedron Great Dodecahedron Compounds Stella Octangula Compound of Cube and Octahedron Compound of Dodecahedron and Icosahedron Compound of Two Cubes Compound of Three Cubes Compound of Five Cubes Compound of Five Octahedra Compound of Five Tetrahedra Compound of Truncated Icosahedron and Pentakisdodecahedron Other Polyhedra Pentagonal Hexecontahedron Pentagonalconsitetrahedron Pyramid Pentagonal Pyramid Decahedron Rhombic Dodecahedron Great Rhombihexacron Pentagonal Dipyramid Pentakisdodecahedron Small Triakisoctahedron Small Triambic