Cd11c As a Transcriptional Biomarker to Predict Response to Anti-TNF Monotherapy with Adalimumab in Patients with Rheumatoid Arthritis

Total Page:16

File Type:pdf, Size:1020Kb

Cd11c As a Transcriptional Biomarker to Predict Response to Anti-TNF Monotherapy with Adalimumab in Patients with Rheumatoid Arthritis nature publishing group ARTICLES CD11c as a Transcriptional Biomarker to Predict Response to Anti-TNF Monotherapy With Adalimumab in Patients With Rheumatoid Arthritis B Stuhlmüller1, T Häupl1, MM Hernandez1, A Grützkau2, R-J Kuban3, N Tandon1, JW Voss4, J Salfeld4, RW Kinne5 and GR Burmester1 We performed transcription profiling using monocytes to identify predictive markers of response to anti–tumor necrosis factor (anti-TNF) therapy in patients with rheumatoid arthritis (RA). Several potential predictors of response were identified, including CD11c. Validation in samples from independent cohorts (total of n = 27 patients) using reverse transcription–PCR confirmed increased expression of CD11c in responders to adalimumab (100% sensitivity; 91.7% specificity, power 99.6%; α = 0.01). Pretherapy CD11c levels significantly correlated with the response criteria as defined by the American College of Rheumatology (ACR) (r = 0.656, P < 0.0001). However, CD11c was neither predictive of response to methotrexate (MTX) alone (n = 34) nor to MTX in combination with adalimumab (n = 16). Clinical responders revealed a reset to a normal expression pattern of resident/inflammatory monocyte markers, which was absent in nonresponders. Therefore, an analysis of key cell types identifies potentially predictive biomarkers that may help to restrict the use of adalimumab to therapy responders. Larger studies, including studies of monotherapy with other drugs, are now needed to confirm and validate the specificity of CD11c for anti-TNF biologics. Tumor necrosis factor (TNF), a cytokine known to be produced Approximately 40% of RA patients either do not respond at by monocytes,1,2 promotes the synthesis of proinflammatory all or only inadequately respond to anti-TNF monotherapy,8–10 cytokines, stimulates endothelial cells to express adhesion and predictors of outcome for monotherapies are currently molecules, and accelerates the synthesis of metalloproteinas- not available. This is a major drawback, considering the risk es.1 Systemic TNF neutralization in rheumatoid arthritis (RA) involved in exposing nonresponders to the sometimes serious responders is associated with a remarkable suppression of local side effects of TNF blockade11–15 (http://jama.ama-assn.org/ and systemic inflammation, as well as with a reduction in bone cgi/reprint/296/18/2203.pdf; http://jama.ama-assn.org/cgi/ destruction1,3 and radiological progression of joint destruction.4 reprint/296/18/2203-a.pdf) and the substantial costs of this Thus, TNF blockade inhibits inflammatory mechanisms and local treatment. tissue destruction initiated by cells of the monocytic lineage.5 Assessing gene-expression changes in circulating blood TNF-blocking agents lead to the control of RA activity in cells6,7,16 is an attractive approach for the following reasons: the 60–80% of patients when used in combination with meth- blood transcriptome constitutes a source of potential markers; otrexate (MTX). Gene profiling at baseline shows that levels response to factors undetectable in the serum may be measured of different small subsets of transcripts are suitable for reliably in circulating immune cells; and commercial microarrays, at predicting response to either infliximab/MTX in MTX-resistant affordable costs and with good reproducibility, allow measure- RA subjects6 or etanercept in combination with various disease- ment of blood transcriptional profiles on an unprecedented modifying antirheumatic drugs.7 scale using mainstream microarray technology. As a result, a 1Department of Rheumatology and Clinical Immunology, Charité University Hospital, Humboldt University of Berlin, Berlin, Germany; 2Deutsches Rheumaforschungszentrum, Cell Sorting Unit, Berlin, Germany; 3Laboratory of Functional Genomics, Charité-Universitätsmedizin Berlin, Berlin, Germany; 4Abbott Bioresearch Center, Worcester, Massachusetts, USA; 5Department of Orthopedics, Experimental Rheumatology Unit, University Hospital Jena, Jena, Germany. Correspondence: B Stuhlmüller ([email protected]) Received 6 July 2009; accepted 16 October 2009; advance online publication 23 December 2009. doi:10.1038/clpt.2009.244 CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 87 NUMBER 3 | MARCH 2010 311 ARTICLES number of studies have been carried out on the blood profiles application) were examined before and during adalimumab of patients with autoimmune diseases,17–19 including RA,6,7,16 monotherapy and compared with monocytes from seven age- in an attempt to discover diagnostic and prognostic biomarker matched normal donors. signatures. As shown by Batliwalla et al., 21 of 52 genes overex- The group of seven patients constituted a representative RA pressed in peripheral blood mononuclear cells of RA patients cohort and demonstrated the expected correlations among clini- were monocyte specific.19 The expression levels of these mono- cal parameters before and after anti-TNF treatment (Table 1). cyte-related genes showed a significant correlation with disease This RA group included two nonresponders to adalimumab activity in patients who were studied just before starting therapy therapy (RA patients 4 and 6) as assessed by the American with a new disease-modifying antirheumatic drug, either MTX College of Rheumatology (ACR) improvement criteria (ACR or an anti-TNF agent. Furthermore, monocyte activation seems score <20; see Table 2 for baseline characteristics of respond- to contribute to flare-ups of RA after pregnancy, as shown by ers and nonresponders; details are available in Supplementary comparative analysis of peripheral blood before and after birth Table S1 online).23 For these two patients, the percentage reduc- and by comparison with the specific expression signatures of tions in markers of local or systemic inflammation (i.e., swol- normal blood cells.20 len joint count, erythrocyte sedimentation rate, and C-reactive A number of studies on the monocyte lineage in RA have focused on the activation of these cells and the appearance of Table 1 Correlations among clinical parameters particular subsets in the periphery. The CD14+/CD16+ mono- (Pearson correlation test; before and after anti-TNF cyte subset appears to be increased in RA patients.21 CD14+/ treatment with adalimumab) CD16+ cells have features that are similar to those of activated r Value P value tissue macrophages; they express altered levels of chemokine Morning stiffness/swollen joint count 28 0.718 0.004 receptors and adhesion molecules and have an enhanced capac- Morning stiffness/swollen joint count 68 0.664 0.010 ity for transendothelial migration. Both subsets (CD16+ and Swollen joint count 28/swollen joint count 68 0.990 0.001 CD16−) of monocytes are able to differentiate into dendritic cells in vitro. The binding of small immunoglobulin G–rheumatoid Painful joint count 28/painful joint count 68 0.794 0.001 factor immune complexes to CD16+ monocytes could enhance ESR/CRP 0.854 0.000 TNF induction in tissue macrophages. ESR/VAS (physician) 0.764 0.001 In the present study, it appeared advantageous to investigate ESR/DAS28 0.813 0.000 enriched monocytes, given their prominent involvement in CRP/morning stiffness 0.733 0.003 the processes of RA pathology that are particularly responsive CRP/swollen joint count 28 0.762 0.002 to anti-TNF.22 By taking this approach, we sought to focus on immune functions of this cell type instead of using whole blood CRP/swollen joint count 68 0.728 0.003 samples and to identify single biomarkers that would be suffi- CRP/DAS28 0.786 0.001 cient for the prediction of anti-TNF response in RA. In addition, DAS28/swollen joint count 28 0.891 0.000 to investigate drug specificity and the effect of comedication, DAS28/swollen joint count 68 0.878 0.000 we tested the informative value of the predictive biomarkers DAS28/painful joint count 28 0.660 0.010 also in patients treated either with MTX alone or with MTX in VAS (physician)/swollen joint count 68 0.672 0.008 combination with adalimumab. VAS (physician)/painful joint count 28 0.697 0.006 RESULTS VAS (physician)/DAS28 0.790 0.001 Gene-expression profiling and microarray analysis Correlation between clinical parameters in RA patients before and after adalimumab In an initial exploratory analysis using microarrays, monocytes treatment (n = 14). CRP, C-reactive protein; DAS28, disease activity score (28 joints); ESR, erythrocyte from seven patients with RA (study DE011; adalimumab anti- sedimentation rate; VAS (physician), visual analog scale of the physician’s global TNF therapy without disease-modifying antirheumatic drug assessment of disease activity. Table 2 Characteristics of RA patients prior to treatment with adalimumab in responders and nonresponders Disease duration (years) Age (years) Gender (F/M) RF (+/−) ESR (mm/h) CRP (mg/l) DAS28 score Responders Mean ± SD 8.6 ± 10.3 48.9 ± 12.2 15/0 13/2 44.9 ± 20.5 31.2 ± 19.7 6.7 ± 0.9 Median (range) 3.0 (<1–38) 47.0 (33–70) 33.0 (22–80) 31.5 (<3.5–61.1) 6.3 (5.2–8.5) Nonresponders Mean ± SD 8.8 ± 11.1 54.8 ± 12.3 11/1 8/4 51.5 ± 25.3 30.4 ± 35.3 6.4 ± 0.8 Median (range) 5.0 (<1–38) 52.5 (34–79) 40.0 (16–90) 16.2 (<3.5–106) 6.4 (4.7–8.0) Patient data extracted from Supplementary Table S1 online. CRP, C-reactive protein; DAS28, disease activity score (28 joints); ESR, erythrocyte sedimentation rate; RF, rheumatoid factor. 312 VOLUME 87 NUMBER 3 | MARCH 2010 | www.nature.com/cpt ARTICLES a b −2.0 1.1 2.0 −2.0 1.1 2.0 RA_4 RA_6 RA_2 RA_3 RA_5 RA_7 RA_1 RA_4 RA_6 RA_2 RA_5 RA_3 RA_7 RA_1 212671_s_at 203097_s_at 214953_s_at 204160_s_at 207008_at
Recommended publications
  • Molecular Genetic Delineation of 2Q37.3 Deletion in Autism and Osteodystrophy: Report of a Case and of New Markers for Deletion Screening by PCR
    UC Irvine UC Irvine Previously Published Works Title Molecular genetic delineation of 2q37.3 deletion in autism and osteodystrophy: report of a case and of new markers for deletion screening by PCR. Permalink https://escholarship.org/uc/item/83f0x61r Journal Cytogenetics and cell genetics, 94(1-2) ISSN 0301-0171 Authors Smith, M Escamilla, JR Filipek, P et al. Publication Date 2001 DOI 10.1159/000048775 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Original Article Cytogenet Cell Genet 94:15–22 (2001) Molecular genetic delineation of 2q37.3 deletion in autism and osteodystrophy: report of a case and of new markers for deletion screening by PCR M. Smith, J.R. Escamilla, P. Filipek, M.E. Bocian, C. Modahl, P. Flodman, and M.A. Spence Department of Pediatrics, University of California, Irvine CA (USA) Abstract. We recently studied a patient who meets criteria us to determine the parental origin of the deletion in our for autistic disorder and has a 2q37 deletion. Molecular cyto- patient. DNA from 8–13 unrelated individuals was used to genetic studies were carried out using DNA isolated from 22 determine heterozygosity estimates for these markers. We re- different 2q37 mapped BACs to more precisely define the view four genes deleted in our patient – genes whose known extent of the chromosome deletion. We also analyzed 2q37 functions and sites of expression in the brain and/or bone make mapped polymorphic markers. In addition DNA sequences of them candidates for involvement in autism and/or the osteo- BACs in the deletion region were scanned to identify microsa- dystrophy observed in patients with 2q37.3 deletions.
    [Show full text]
  • 1073 New Insight in Cdk9 Function: from Tat to Myod
    [Frontiers in Bioscience 6, d1073-1082, September 1, 2001] NEW INSIGHT IN CDK9 FUNCTION: FROM TAT TO MYOD Cristiano Simone, 1,2 and Antonio Giordano1 1Dept. of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA, 2Dept. of Internal Medicine and Public Medicine, Division of Medical Genetics, University of Bari, Bari 70124 Italy TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Cdk9-interacting proteins 4. Cdk9 and transcription 5. Cdk9 and HIV infection 6. Cdk9 and cellular differentiation 7. Conclusion 8. Acknowledgment 9. References 1. ABSTRACT Cdk9 is a serine-threonine cdc2-related kinase are the catalytic subunits of complexes whose regulatory and its activity is not cell cycle-regulated. Cdk9 function subunits are the cyclins. They are a family of proteins depends on its kinase activity and also on its regulatory named for their cyclic expression and degradation and they units: the T-family cyclins and cyclin K. Recently, several play an important role in regulating cell division. Cyclins studies confirmed the role of cdk9 in different cellular are synthesized immediately before they are used and their processes such as signal transduction, basal transcription, HIV- levels fall abruptly after their action because of degradation Tat- and MyoD-mediated transcription and differentiation. through ubiquitination (4). Interaction between the cyclins and the cdks occurs at specific stages of the cell cycle, and All the referred data strongly support the concept their activities are required for progression through the cell of a multifunctional protein kinase with specific cytoplasmic cycle. Unlike the cyclins, the protein levels of the cdks do and nuclear functions.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Differential Requirement for SUB1 in Chromosomal and Plasmid Double-Strand DNA Break Repair
    University of Massachusetts Medical School eScholarship@UMMS University of Massachusetts Medical School Faculty Publications 2013-03-12 Differential requirement for SUB1 in chromosomal and plasmid double-strand DNA break repair Lijian Yu University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/faculty_pubs Part of the Amino Acids, Peptides, and Proteins Commons, Biochemistry Commons, Enzymes and Coenzymes Commons, Genetic Phenomena Commons, Molecular Biology Commons, and the Molecular Genetics Commons Repository Citation Yu L, Volkert MR. (2013). Differential requirement for SUB1 in chromosomal and plasmid double-strand DNA break repair. University of Massachusetts Medical School Faculty Publications. https://doi.org/ 10.1371/journal.pone.0058015. Retrieved from https://escholarship.umassmed.edu/faculty_pubs/248 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in University of Massachusetts Medical School Faculty Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Differential Requirement for SUB1 in Chromosomal and Plasmid Double-Strand DNA Break Repair Lijian Yu, Michael R. Volkert* Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America Abstract Non homologous end joining (NHEJ) is an important process that repairs double strand DNA breaks (DSBs) in eukaryotic cells. Cells defective in NHEJ are unable to join chromosomal breaks. Two different NHEJ assays are typically used to determine the efficiency of NHEJ. One requires NHEJ of linearized plasmid DNA transformed into the test organism; the other requires NHEJ of a single chromosomal break induced either by HO endonuclease or the I-SceI restriction enzyme.
    [Show full text]
  • Identification of Phosphoproteins Involved in Sperm
    IDENTIFICATION OF PHOSPHOPROTEINS INVOLVED IN SPERM MATURATION AND FERTILITY. A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Suranjana Goswami August 2018 © Copyright All rights reserved Except for previously published materials Dissertation written by Suranjana Goswami B.Sc., University of Calcutta, India, 2009 M.Sc., University of Calcutta, India 2011 Ph.D., Kent State University, USA, 2018 Approved by Dr. Srinivasan Vijayaraghavan , Chair, Doctoral Dissertation Committee Dr. Douglas W. Kline , Members, Doctoral Dissertation Committee Dr. Gary Koshi , Dr. Sanjaya Abeysirigunawardena , Dr. Andrew Jasnow , Accepted by Dr. Laura G. Leff , Chair, Department of Biological Sciences Dr. James L. Blank , Dean, College of Arts and Sciences TABLE OF CONTENTS ............................................................................................................... iii LIST OF FIGURES ..........................................................................................................................v LIST OF TABLES ....................................................................................................................... viii ABBREVIATIONS ....................................................................................................................... ix DEDICATION ............................................................................................................................... xi ACKNOWLEDGEMENTS .........................................................................................................
    [Show full text]
  • Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces Cerevisiae Received: 26 October 2016 Henriette Uthe, Jens T
    www.nature.com/scientificreports OPEN Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae Received: 26 October 2016 Henriette Uthe, Jens T. Vanselow & Andreas Schlosser Accepted: 25 January 2017 Here we present the most comprehensive analysis of the yeast Mediator complex interactome to date. Published: 27 February 2017 Particularly gentle cell lysis and co-immunopurification conditions allowed us to preserve even transient protein-protein interactions and to comprehensively probe the molecular environment of the Mediator complex in the cell. Metabolic 15N-labeling thereby enabled stringent discrimination between bona fide interaction partners and nonspecifically captured proteins. Our data indicates a functional role for Mediator beyond transcription initiation. We identified a large number of Mediator-interacting proteins and protein complexes, such as RNA polymerase II, general transcription factors, a large number of transcriptional activators, the SAGA complex, chromatin remodeling complexes, histone chaperones, highly acetylated histones, as well as proteins playing a role in co-transcriptional processes, such as splicing, mRNA decapping and mRNA decay. Moreover, our data provides clear evidence, that the Mediator complex interacts not only with RNA polymerase II, but also with RNA polymerases I and III, and indicates a functional role of the Mediator complex in rRNA processing and ribosome biogenesis. The Mediator complex is an essential coactivator of eukaryotic transcription. Its major function is to communi- cate regulatory signals from gene-specific transcription factors upstream of the transcription start site to RNA Polymerase II (Pol II) and to promote activator-dependent assembly and stabilization of the preinitiation complex (PIC)1–3. The yeast Mediator complex is composed of 25 subunits and forms four distinct modules: the head, the middle, and the tail module, in addition to the four-subunit CDK8 kinase module (CKM), which can reversibly associate with the 21-subunit Mediator complex.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Cytotoxic Effects and Changes in Gene Expression Profile
    Toxicology in Vitro 34 (2016) 309–320 Contents lists available at ScienceDirect Toxicology in Vitro journal homepage: www.elsevier.com/locate/toxinvit Fusarium mycotoxin enniatin B: Cytotoxic effects and changes in gene expression profile Martina Jonsson a,⁎,MarikaJestoib, Minna Anthoni a, Annikki Welling a, Iida Loivamaa a, Ville Hallikainen c, Matti Kankainen d, Erik Lysøe e, Pertti Koivisto a, Kimmo Peltonen a,f a Chemistry and Toxicology Research Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, Finland b Product Safety Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, c The Finnish Forest Research Institute, Rovaniemi Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland d Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, FI-00014, Finland e Plant Health and Biotechnology, Norwegian Institute of Bioeconomy, Høyskoleveien 7, NO -1430 Ås, Norway f Finnish Safety and Chemicals Agency (Tukes), Opastinsilta 12 B, FI-00521 Helsinki, Finland article info abstract Article history: The mycotoxin enniatin B, a cyclic hexadepsipeptide produced by the plant pathogen Fusarium,isprevalentin Received 3 December 2015 grains and grain-based products in different geographical areas. Although enniatins have not been associated Received in revised form 5 April 2016 with toxic outbreaks, they have caused toxicity in vitro in several cell lines. In this study, the cytotoxic effects Accepted 28 April 2016 of enniatin B were assessed in relation to cellular energy metabolism, cell proliferation, and the induction of ap- Available online 6 May 2016 optosis in Balb 3T3 and HepG2 cells. The mechanism of toxicity was examined by means of whole genome ex- fi Keywords: pression pro ling of exposed rat primary hepatocytes.
    [Show full text]
  • Upregulation of Cyclin T1/CDK9 Complexes During T Cell Activation
    Oncogene (1998) 17, 3093 ± 3102 ã 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc Upregulation of cyclin T1/CDK9 complexes during T cell activation Judit Garriga1,2, Junmin Peng4, Matilde ParrenÄ o1,2, David H Price4, Earl E Henderson1,3 and Xavier GranÄ a*,1,2 1Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, USA; 2Department of Biochemistry, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, USA; 3Microbiology and Immunology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, Pennsylvania 19140, USA and 4Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA Cyclin T1 has been identi®ed recently as a regulatory date in response to intracellular or extracellular signals subunit of CDK9 and as a component of the transcrip- in mammalian cells, although it has been shown that tion elongation factor P-TEFb. Cyclin T1/CDK9 com- the levels of cyclin C mRNA are stimulated by serum plexes phosphorylate the carboxy terminal domain and cytokines (Lew et al., 1991; Liu et al., 1998). All (CTD) of RNA polymerase II (RNAP II) in vitro. Here cyclin/CDK pairs involved in transcription are able to we report that the levels of cyclin T1 are dramatically phosphorylate the C-terminal domain (CTD) of RNA upregulated by two independent signaling pathways polymerase II (RNAP II) in vitro. Multiple kinases triggered respectively by PMA and PHA in primary seem to phosphorylate the CTD of RNAP II in vivo in human peripheral blood lymphocytes (PBLs).
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Mir-17-92 Fine-Tunes MYC Expression and Function to Ensure
    ARTICLE Received 31 Mar 2015 | Accepted 22 Sep 2015 | Published 10 Nov 2015 DOI: 10.1038/ncomms9725 OPEN miR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth Marija Mihailovich1, Michael Bremang1, Valeria Spadotto1, Daniele Musiani1, Elena Vitale1, Gabriele Varano2,w, Federico Zambelli3, Francesco M. Mancuso1,w, David A. Cairns1,w, Giulio Pavesi3, Stefano Casola2 & Tiziana Bonaldi1 The synergism between c-MYC and miR-17-19b, a truncated version of the miR-17-92 cluster, is well-documented during tumor initiation. However, little is known about miR-17-19b function in established cancers. Here we investigate the role of miR-17-19b in c-MYC-driven lymphomas by integrating SILAC-based quantitative proteomics, transcriptomics and 30 untranslated region (UTR) analysis upon miR-17-19b overexpression. We identify over one hundred miR-17-19b targets, of which 40% are co-regulated by c-MYC. Downregulation of a new miR-17/20 target, checkpoint kinase 2 (Chek2), increases the recruitment of HuR to c- MYC transcripts, resulting in the inhibition of c-MYC translation and thus interfering with in vivo tumor growth. Hence, in established lymphomas, miR-17-19b fine-tunes c-MYC activity through a tight control of its function and expression, ultimately ensuring cancer cell homeostasis. Our data highlight the plasticity of miRNA function, reflecting changes in the mRNA landscape and 30 UTR shortening at different stages of tumorigenesis. 1 Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, Milan 20139, Italy. 2 Units of Genetics of B cells and lymphomas, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]