Direct Transamidation Reactions: Mechanism and Recent Advances
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bifunctional Molecular Catalysts with Cooperating Amine/Amido Ligands
No.147 No.147 Bifunctional Molecular Catalysts with Cooperating Amine/Amido Ligands Yoshihito Kayaki and Takao Ikariya* Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan E-mail: [email protected] 1. Introduction and a coordinatively saturated hydrido(amine)ruthenium complex are involved in the catalytic cycle as depicted in The chemistry of transition metal-based molecular Figure 1. The amido complex has sufficient Brønsted basicity catalysts has progressed with discoveries of novel catalytic to dehydrogenate readily secondary alcohols including transformations as well as understanding the reaction 2-propanol to produce the hydrido(amine) complex. The NH mechanisms. Particularly, significant efforts have been unit bound to the metal center in the amine complex exhibits continuously paid to develop bifunctional molecular catalysts a sufficiently acidic character to activate ketonic substrates. having the combination of two or more active sites working in During the interconversion between the amido and the amine concert, to attain highly efficient molecular transformation for complexes, the metal/NH moiety cooperatively assists the organic synthesis. We have recently developed metal–ligand hydrogen delivery via a cyclic transition state where H– and cooperating bifunctional catalysts (concerto catalysts), in which H+ equivalents are transferred in a concerted manner from the the non-innocent ligands directly participate in the substrate hydrido(amine) complex to the C=O linkage or from 2-propanol activation and the bond formation. The concept of bifunctional to the amido complex without direct coordination to the metal molecular catalysis is now an attractive and general strategy to center (outer-sphere mechanism). -
Organocatalytic Asymmetric N-Sulfonyl Amide C-N Bond Activation to Access Axially Chiral Biaryl Amino Acids
ARTICLE https://doi.org/10.1038/s41467-020-14799-8 OPEN Organocatalytic asymmetric N-sulfonyl amide C-N bond activation to access axially chiral biaryl amino acids Guanjie Wang1, Qianqian Shi2, Wanyao Hu1, Tao Chen1, Yingying Guo1, Zhouli Hu1, Minghua Gong1, ✉ ✉ ✉ Jingcheng Guo1, Donghui Wei 2 , Zhenqian Fu 1,3 & Wei Huang1,3 1234567890():,; Amides are among the most fundamental functional groups and essential structural units, widely used in chemistry, biochemistry and material science. Amide synthesis and trans- formations is a topic of continuous interest in organic chemistry. However, direct catalytic asymmetric activation of amide C-N bonds still remains a long-standing challenge due to high stability of amide linkages. Herein, we describe an organocatalytic asymmetric amide C-N bonds cleavage of N-sulfonyl biaryl lactams under mild conditions, developing a general and practical method for atroposelective construction of axially chiral biaryl amino acids. A structurally diverse set of axially chiral biaryl amino acids are obtained in high yields with excellent enantioselectivities. Moreover, a variety of axially chiral unsymmetrical biaryl organocatalysts are efficiently constructed from the resulting axially chiral biaryl amino acids by our present strategy, and show competitive outcomes in asymmetric reactions. 1 Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China. 2 College -
2-Alkenes from 1-Alkenes Using Bifunctional Ruthenium Catalysts
Article Cite This: Org. Process Res. Dev. 2018, 22, 1672−1682 pubs.acs.org/OPRD Catalyst versus Substrate Control of Forming (E)‑2-Alkenes from 1‑Alkenes Using Bifunctional Ruthenium Catalysts Erik R. Paulson, Esteban Delgado, III, Andrew L. Cooksy, and Douglas B. Grotjahn* San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States *S Supporting Information ABSTRACT: Here we examine in detail two catalysts for their ability to selectively convert 1-alkenes to (E)-2-alkenes while κ2 + limiting overisomerization to 3- or 4-alkenes. Catalysts 1 and 3 are composed of the cations CpRu( -PN)(CH3CN) and * κ2 + − Cp Ru( -PN) , respectively (where PN is a bifunctional phosphine ligand), and the anion PF6 . Kinetic modeling of the fi reactions of six substrates with 1 and 3 generated rst- and second-order rate constants k1 and k2 (and k3 when applicable) that represent the rates of reaction for conversion of 1-alkene to (E)-2-alkene (k1), (E)-2-alkene to (E)-3-alkene (k2), and so on. The k1:k2 ratios were calculated to produce a measure of selectivity for each catalyst toward monoisomerization with each substrate. fi The k1:k2 values for 1 with the six substrates range from 32 to 132. The k1:k2 values for 3 are signi cantly more substrate- dependent, ranging from 192 to 62 000 for all of the substrates except 5-hexen-2-one, for which the k1:k2 value was only 4.7. Comparison of the ratios for 1 and 3 for each substrate shows a 6−12-fold greater selectivity using 3 on the three linear substrates as well as a >230-fold increase for 5-methylhex-1-ene and a 44-fold increase for a silyl-protected 4-penten-1-ol substrate, which are branched three and five atoms away from the alkene, respectively. -
Amide, and Paratoluenesulfonamide on the Amide of Silver,On the Imides
68 CHEMISTRY: E. C. FRANKLIN METALLIC SALTS OF AMMONO ACIDS By Edward C. Franklin DEPARTMENT OF CHEMISTRY, STANFORD UNIVERSITY Presented to the Academy, January 9. 1915 The Action of Liquid-Ammonia Solutions of Ammono Acids on Metallic Amides, Imides, and Nitrides. The acid amides and imides, and the metallic derivatives of the acid amides and imides are the acds, bases, and salts respectively of an ammonia system of acids, bases, and salts.1 Guided by the relationships implied in the above statement Franklin and Stafford were able to prepare potassium derivatives of a considerable number of acid amides by the action of potassium amide on certain acid amides in solution in liquid ammonia. That is to say, an ammono base, potassium amide, was found to react with ammono acids in liquid ammonia to form ammono salts just as the aquo base, potassium hydrox- ide, acts upon aquo acids in water solution to form aquo salts. Choos- ing, for example, benzamide and benzoic acid as representative acids of the two systems, the analogous reactions taking place respectively in liquid ammonia and water are represented by the equations: CH6CONH2+KNH2 = C6H5CONHK + NHs. CseHCONH2 + 2KNH2 = CIHsCONK2 + 2NH3. CH6tCOOH + KOH = CIH6COOK + H2O. The ammono acid, since it is dibasic, reacts with either one or two molecules of potassium amide to form an acid and a neutral salt. Having thus demonstrated the possibility of preparing ammono salts of potassium by the interaction of potassium amide and acid amides in liquid ammonia solution, it was further found that ammono salts of the heavy metals may be prepared by the action of liquid ammonia solutions of ammono acids on insoluble metallic amides, imides, and nitrides-that is, by reactions which are analogous to the formation of aquo salts in water by the action of potassium hydroxide on insoluble metallic hydroxides and oxides. -
Carbene and Nitrene Transfer Reactions Joseph B
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-19-2014 Co(II) Based Metalloradical Catalysis: Carbene and Nitrene Transfer Reactions Joseph B. Gill University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Organic Chemistry Commons Scholar Commons Citation Gill, Joseph B., "Co(II) Based Metalloradical Catalysis: Carbene and Nitrene Transfer Reactions" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5484 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Co(II) Based Metalloradical Catalysis: Carbene and Nitrene Transfer Reactions by Joseph B. Gill A dissertation in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry College of Arts and Sciences University of South Florida Major Professor: X. Peter Zhang, Ph.D. Jon Antilla, Ph.D Jianfeng Cai, Ph.D. Edward Turos, Ph.D. Date of Approval: November 19, 2014 Keywords: cyclopropanation, diazoacetate, azide, porphyrin, cobalt. Copyright © 2014, Joseph B. Gill Dedication I dedicate this work to my parents: Larry and Karen, siblings: Jason and Jessica, and my partner: Darnell, for their constant support. Without all of you I would never have made it through this journey. Thank you. Acknowledgments I would like to thank my advisor, Professor X. Peter Zhang, for his support and guidance throughout my time working with him. -
Amide Activation: an Emerging Tool for Chemoselective Synthesis
Featuring work from the research group of Professor As featured in: Nuno Maulide, University of Vienna, Vienna, Austria Amide activation: an emerging tool for chemoselective synthesis Let them stand out of the crowd – Amide activation enables the chemoselective modification of a large variety of molecules while leaving many other functional groups untouched, making it attractive for the synthesis of sophisticated targets. This issue features a review on this emerging field and its application in total synthesis. See Nuno Maulide et al., Chem. Soc. Rev., 2018, 47, 7899. rsc.li/chem-soc-rev Registered charity number: 207890 Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Amide activation: an emerging tool for chemoselective synthesis Cite this: Chem. Soc. Rev., 2018, 47,7899 Daniel Kaiser, Adriano Bauer, Miran Lemmerer and Nuno Maulide * It is textbook knowledge that carboxamides benefit from increased stabilisation of the electrophilic carbonyl carbon when compared to other carbonyl and carboxyl derivatives. This results in a considerably reduced reactivity towards nucleophiles. Accordingly, a perception has been developed of amides as significantly less useful functional handles than their ester and acid chloride counterparts. Received 27th April 2018 However, a significant body of research on the selective activation of amides to achieve powerful DOI: 10.1039/c8cs00335a transformations under mild conditions has emerged over the past decades. This review article aims at placing electrophilic amide activation in both a historical context and in that of natural product rsc.li/chem-soc-rev synthesis, highlighting the synthetic applications and the potential of this approach. Creative Commons Attribution 3.0 Unported Licence. -
Reactions of Benzene & Its Derivatives
Organic Lecture Series ReactionsReactions ofof BenzeneBenzene && ItsIts DerivativesDerivatives Chapter 22 1 Organic Lecture Series Reactions of Benzene The most characteristic reaction of aromatic compounds is substitution at a ring carbon: Halogenation: FeCl3 H + Cl2 Cl + HCl Chlorobenzene Nitration: H2 SO4 HNO+ HNO3 2 + H2 O Nitrobenzene 2 Organic Lecture Series Reactions of Benzene Sulfonation: H 2 SO4 HSO+ SO3 3 H Benzenesulfonic acid Alkylation: AlX3 H + RX R + HX An alkylbenzene Acylation: O O AlX H + RCX 3 CR + HX An acylbenzene 3 Organic Lecture Series Carbon-Carbon Bond Formations: R RCl AlCl3 Arenes Alkylbenzenes 4 Organic Lecture Series Electrophilic Aromatic Substitution • Electrophilic aromatic substitution: a reaction in which a hydrogen atom of an aromatic ring is replaced by an electrophile H E + + + E + H • In this section: – several common types of electrophiles – how each is generated – the mechanism by which each replaces hydrogen 5 Organic Lecture Series EAS: General Mechanism • A general mechanism slow, rate + determining H Step 1: H + E+ E El e ctro - Resonance-stabilized phile cation intermediate + H fast Step 2: E + H+ E • Key question: What is the electrophile and how is it generated? 6 Organic Lecture Series + + 7 Organic Lecture Series Chlorination Step 1: formation of a chloronium ion Cl Cl + + - - Cl Cl+ Fe Cl Cl Cl Fe Cl Cl Fe Cl4 Cl Cl Chlorine Ferric chloride A molecular complex An ion pair (a Lewis (a Lewis with a positive charge containing a base) acid) on ch lorine ch loronium ion Step 2: attack of -
Aziridination of Alkenes Promoted by Iron Or Ruthenium Complexes
Aziridination of Alkenes Promoted by Iron or Ruthenium Complexes Caterina Damiano, Daniela Intrieri and Emma Gallo* Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan (Italy). E-mail address: [email protected]. Keywords: Aziridines, Nitrene reagents, Alkenes, Homogenous catalysis, Iron, Ruthenium. Abstract Molecules containing an aziridine functional group are a versatile class of organic synthons due to the presence of a strained three member, which can be easily involved in ring-opening reactions and the aziridine functionality often show interesting pharmaceutical and/or biological behaviours. For these reasons, the scientific community is constantly interested in developing efficient procedures to introduce an aziridine moiety into organic skeletons and the one-pot reaction of an alkene double bond with a nitrene [NR] source is a powerful synthetic strategy. Herein we describe the catalytic activity of iron or ruthenium complexes in promoting the reaction stated above by stressing the potential and limits of each synthetic protocol. 1. Introduction Aziridines, the smallest N-heterocycle compounds, have attracted considerable attention in the last few decades due to their many applications in biological and synthetic chemistry [1]. The aziridine functionality is often responsible for the activity of biologically active species (such as antitumor compounds, antibiotics and enzyme inhibitors) and aziridine containing molecules [2] are also useful building blocks in the synthesis of fine chemicals and pharmaceuticals [3-6]. The striking chemical properties of aziridines are due to the energy associated to the strained three- membered ring [7], which renders them very active and versatile starting materials for the synthesis of several useful molecules such as amines, amino acids, β-lactams, polymers and α-amido ketones [8, 9]. -
Direct Synthesis of Dimethyl Ether from Syngas on Bifunctional Hybrid
catalysts Article Direct Synthesis of Dimethyl Ether from Syngas on Bifunctional Hybrid Catalysts Based on Supported H3PW12O40 and Cu-ZnO(Al): Effect of Heteropolyacid Loading on Hybrid Structure and Catalytic Activity Elena Millán , Noelia Mota, Rut Guil-López, Bárbara Pawelec , José L. García Fierro and Rufino M. Navarro * Instituto de Catálisis y Petroleoquímica (CSIC), C/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain; [email protected] (E.M.); [email protected] (N.M.); [email protected] (R.G.-L.); [email protected] (B.P.); jlgfi[email protected] (J.L.G.F.) * Correspondence: [email protected] Received: 27 August 2020; Accepted: 15 September 2020; Published: 17 September 2020 Abstract: The performance of bifunctional hybrid catalysts based on phosphotungstic acid (H3PW12O40, HPW) supported on TiO2 combined with Cu-ZnO(Al) catalyst in the direct synthesis of dimethyl ether (DME) from syngas has been investigated. We studied the effect of the HPW loading on TiO2 (from 1.4 to 2.7 monolayers) on the dispersion and acid characteristics of the HPW clusters. When the concentration of the heteropoliacid is slightly higher than the monolayer (1.4 monolayers) the acidity of the clusters is perturbed by the surface of titania, while for concentration higher than 1.7 monolayers results in the formation of three-dimensional HPW nanocrystals with acidity similar to the bulk heteropolyacid. Physical hybridization of supported heteropolyacids with the Cu-ZnO(Al) catalyst modifies both the acid characteristics of the supported heteropolyacids and the copper surface area of the Cu-ZnO(Al) catalyst. -
Reactions of Aromatic Compounds Just Like an Alkene, Benzene Has Clouds of Electrons Above and Below Its Sigma Bond Framework
Reactions of Aromatic Compounds Just like an alkene, benzene has clouds of electrons above and below its sigma bond framework. Although the electrons are in a stable aromatic system, they are still available for reaction with strong electrophiles. This generates a carbocation which is resonance stabilized (but not aromatic). This cation is called a sigma complex because the electrophile is joined to the benzene ring through a new sigma bond. The sigma complex (also called an arenium ion) is not aromatic since it contains an sp3 carbon (which disrupts the required loop of p orbitals). Ch17 Reactions of Aromatic Compounds (landscape).docx Page1 The loss of aromaticity required to form the sigma complex explains the highly endothermic nature of the first step. (That is why we require strong electrophiles for reaction). The sigma complex wishes to regain its aromaticity, and it may do so by either a reversal of the first step (i.e. regenerate the starting material) or by loss of the proton on the sp3 carbon (leading to a substitution product). When a reaction proceeds this way, it is electrophilic aromatic substitution. There are a wide variety of electrophiles that can be introduced into a benzene ring in this way, and so electrophilic aromatic substitution is a very important method for the synthesis of substituted aromatic compounds. Ch17 Reactions of Aromatic Compounds (landscape).docx Page2 Bromination of Benzene Bromination follows the same general mechanism for the electrophilic aromatic substitution (EAS). Bromine itself is not electrophilic enough to react with benzene. But the addition of a strong Lewis acid (electron pair acceptor), such as FeBr3, catalyses the reaction, and leads to the substitution product. -
Spectroscopy on Photografted Polyethylene Surfaces Using a Perfluorophenyl Azide: Evidence for Covalent Attachment
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ZHAW digitalcollection Received: 30 June 2017 Revised: 30 October 2017 Accepted: 30 October 2017 DOI: 10.1002/sia.6359 RESEARCH ARTICLE Spectroscopy on photografted polyethylene surfaces using a perfluorophenyl azide: Evidence for covalent attachment Konstantin Siegmann | Jan Inauen | Robert Sterchi | Martin Winkler Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE), Zurich The present study was conducted in order to confirm C―H insertion of a perfluorophenyl nitrene, University of Applied Sciences (ZHAW), produced by UV‐irradiation of a perfluorophenyl azide, to polyethylene surfaces. ‐ Technikumstrasse 9, CH 8401 Winterthur, It was shown previously that water‐repelling, oil‐repelling, and dirt‐repelling polyethylene sur- Switzerland faces can be created by “grafting to” of perfluoroalkanes using a photoreactive surface modifier Correspondence Martin Winkler, Institute of Materials and based on azide/nitrene chemistry. The abrasion resistance of the new surfaces was enhanced Process Engineering (IMPE), School of compared with a coating using a simple, long‐chain perfluoroalkane. However, covalent binding Engineering (SoE), Zurich University of Applied of the surface modifier was not unequivocally demonstrated. Sciences (ZHAW), Technikumstrasse 9, CH‐ Here, spectroscopic information is presented suggesting that, indeed, a monomolecular, cova- 8401 Winterthur, Switzerland. Email: [email protected] lently bound grafted layer is formed from the photodecomposition of a perfluorophenyl azide Funding information on polyethylene surfaces. Kommission für Technologie und Innovation, Infrared spectroscopy showed that the peak from the azide moiety disappeared upon UV‐irradi- ‐ Grant/Award Number: 17132.1 PFNM NM ation, and the light dose for completion of the photo decomposition was determined to be approximately 322 mJ/cm2. -
Activation of Pyridinium Salts for Electrophilic Acylation: a Method for Conversion of Pyridines Into 3-Acylpyridines
Chemistry of Heterocyclic Compounds, Vol. 40, No. 6, 2004 ACTIVATION OF PYRIDINIUM SALTS FOR ELECTROPHILIC ACYLATION: A METHOD FOR CONVERSION OF PYRIDINES INTO 3-ACYLPYRIDINES A. Klapars1 and E. Vedejs2 Cyanide adducts of N-MOM pyridinium salts react with strong acylating reagents to provide 3-acyl-4- cyano-1,4-dihydropyridines that can be aromatized to 3-acylpyridines using ZnCl2 in refluxing ethanol. Keywords: dihydropyridines, pyridine acylation. Electrophilic aromatic substitution reactions of pyridines are extraordinarily challenging. Instead of C-substitution at the pyridine ring, the electrophile typically forms an adduct with the pyridine nitrogen, which even further deactivates the already electron deficient pyridine ring toward electrophilic substitution. For example, the direct nitration of pyridine may require a reaction temperature of 330°C to provide only a 15% yield of 3-nitropyridine [1]. To the best of our knowledge, no direct, intermolecular C-acylations of pyridines have been reported [2]. This seriously limits the choice of methods for the preparation of the ubiquitous 3-substituted pyridines [3, 4]. In a limited number of cases, the lack of reactivity of pyridines toward electrophiles has been addressed by converting the recalcitrant pyridine into a temporarily activated 1,4-dihydropyridine [5-9]. In contrast to the electron poor parent pyridine, the electron rich 1,4-dihydropyridine features strongly enhanced reactivity toward electrophiles at the 3-position. Several steps are typically required including formation of the dihydropyridine, the subsequent reaction with an electrophile, and rearomatization to the desired 3-substituted pyridine. A similar concept has been ingeniously employed in a one pot nitration of pyridines in the presence of sulfite as the nucleophile that temporarily activates the pyridine, and then acts as a leaving group in an aromatization step [10, 11].