Evolutionary Patterns in the Reef Coral Siderastrea During the Mio-Pliocene of the Dominican Republic." MS (Master of Science) Thesis, University of Iowa, 2005

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Patterns in the Reef Coral Siderastrea During the Mio-Pliocene of the Dominican Republic. University of Iowa Iowa Research Online Theses and Dissertations 2005 Evolutionary patterns in the reef coral Siderastrea during the Mio- Pliocene of the Dominican Republic Brian Robert Beck University of Iowa Follow this and additional works at: https://ir.uiowa.edu/etd Part of the Geology Commons Copyright 2005 Brian Robert Beck This thesis is available at Iowa Research Online: https://ir.uiowa.edu/etd/94 Recommended Citation Beck, Brian Robert. "Evolutionary patterns in the reef coral Siderastrea during the Mio-Pliocene of the Dominican Republic." MS (Master of Science) thesis, University of Iowa, 2005. https://doi.org/10.17077/etd.psw64cdj Follow this and additional works at: https://ir.uiowa.edu/etd Part of the Geology Commons EVOLUTIONARY PATTERNS IN THE REEF CORAL SIDERASTREA DURING THE MIO-PLIOCENE OF THE DOMINICAN REPUBLIC by Brian Robert Beck A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in Geoscience in the Graduate College of The University of Iowa December 2005 Thesis Supervisor: Professor Ann F. Budd Graduate College The University of Iowa Iowa City, Iowa CERTIFICATE OF APPROVAL _______________________ MASTER'S THESIS _______________ This is to certify that the Master's thesis of Brian Robert Beck has been approved by the Examining Committee for the thesis requirement for the Master of Science degree in Geoscience at the December 2005 graduation. Thesis Committee: ___________________________________ Ann F. Budd, Thesis Supervisor ___________________________________ Jonathan M. Adrain ___________________________________ Christopher A. Brochu ACKNOWLEDGMENTS I am grateful to the following people for their help during this research: Dr. Ann Budd for assistance in fieldwork, data analyses, and comments and suggestions on several drafts; Dr. Jonathan Adrain and Dr. Christopher Brochu for helpful comments and suggestions during the editorial process; Kay Saville for help with thin-sections. I would also like to then the University of Iowa Geoscience department and the Geoscience Littlefield Fund. ii TABLE OF CONTENTS LIST OF TABLES............................................................................................................. iv LIST OF FIGURES .............................................................................................................v INTRODUCTION ...............................................................................................................1 Systematics........................................................................................................2 Localities...........................................................................................................4 METHODS AND MATERIALS ........................................................................................7 Sampling...........................................................................................................7 Morphometrics..................................................................................................8 RESULTS .........................................................................................................................11 Species recognition.........................................................................................11 Stratigraphic ranges........................................................................................11 Morphologic change through time..................................................................12 Comparison of fossil and modern species......................................................12 Comparison of morphometrics ......................................................................13 DISCUSSION ...................................................................................................................14 FUTURE WORK...............................................................................................................17 CONCLUSIONS ..............................................................................................................19 REFERENCES .................................................................................................................86 APPENDIX A. LANDMARK DESCRIPTION ..............................................................81 APPENDIX B. SAMPLE INFORMATION ....................................................................83 iii LIST OF TABLES Table 1. Morphologic characters distinguishing eight Caribbean species of Siderastrea......73 2. A list of the localities sampled, the number of samples collected, the Formation name, the river the samples were collected from, and the age of samples collected from those localities. ...................................................................74 3. Eigenvalues displaying the percent variation covered by each of the 3 discriminant functions...............................................................................................75 4. Wilks' Lambda chart displaying the significance of each of the three discriminant functions...............................................................................................76 5. Mahalanobis distance matrix reporting the significance between groups................77 6. Structure matrix for the discriminant analysis displaying the significant variables for each discriminant function..................................................................78 7. Results of the Kruskal-Wallis test of the three known DR Morphospecies throughout the Dominican Republic formations......................................................80 A1. Landmarks taken on transverse thin-sections of corallites of Siderastrea.............82 B1. List of specimens analyzed in morphometric analyses...........................................84 iv LIST OF FIGURES Figure 1. An example of transverse section through a corallite of a species of Siderastrea................................................................................................................21 2. Map of the study area in the Dominican Republic with the sampled rivers color coded................................................................................................................23 3. Comparison of age-depth plots of the Río Gurabo and Río Cana sections based on existing biostratigraphic and paleomagnetic (Gurabo section only) data............................................................................................................................25 4. A stratigraphic column of Rio Cana with NMB localities marked at their position in the stratigraphic column..........................................................................27 5. A stratigraphic column of Rio Gurabo with NMB localities marked at their position in the stratigraphic column.........................................................................29 6. Locality map for Arroyo Bellaco.............................................................................31 7. A stratigraphic column of Rio Yaque del Norte with NMB localities marked at their position in the stratigraphic column ...............................................................33 8. A composite stratigraphic column for each of the sampled rivers of the Northern Dominican Republic with the rivers indicated along the top...................35 9. Transverse sections of a colony of Siderastrea showing a close up view of the landmark scheme used in the 2-D geometric morphometric analysis.....................37 10. Transverse sections of a colony of Siderastrea showing 1/12 of the corallite used for landmark measurement in the 2-D geometric morphometric analysis......39 11. A photograph of a transverse section through a corallite of DR Morphospecies 1................................................................................................................................41 12. A photograph of a transverse section through a corallite of DR Morphospecies 3................................................................................................................................43 13. A photograph of a transverse section through a corallite of DR Morphospecies 4................................................................................................................................45 14. A photograph of a transverse section through a corallite of DR Morphospecies 2................................................................................................................................47 v 15. Scatterplot of discriminant function 1 vs. discriminant function 2 of DR Morphospecies 1-4. Groups are labeled by DR Morphospecies.............................49 16. Scatterplot of discriminant function 1 vs. discriminant function 2 of DR Morphospecies 1-4. Groups are labeled by formation............................................51 17. Boxplots illustrating the variation of discriminant function 1 throughout the sampled formations for DR Morphospecies 1, 3, and 4..........................................53 18. Boxplots illustrating the variation of discriminant function 2 throughout the sampled formations for DR Morphospecies 1, 3, and 4..........................................55 19. Boxplots illustrating the variation of variable x20 throughout the sampled formations for DR Morphospecies 1, 3, and 4.........................................................57 20. Boxplots illustrating the variation of variable y4 throughout the sampled formations for DR Morphospecies 1, 3, and 4.........................................................59
Recommended publications
  • Regional Studies in Marine Science Reef Condition and Protection Of
    Regional Studies in Marine Science 32 (2019) 100893 Contents lists available at ScienceDirect Regional Studies in Marine Science journal homepage: www.elsevier.com/locate/rsma Reef condition and protection of coral diversity and evolutionary history in the marine protected areas of Southeastern Dominican Republic ∗ Camilo Cortés-Useche a,b, , Aarón Israel Muñiz-Castillo a, Johanna Calle-Triviño a,b, Roshni Yathiraj c, Jesús Ernesto Arias-González a a Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida B.P. 73 CORDEMEX, C.P. 97310, Mérida, Yucatán, Mexico b Fundación Dominicana de Estudios Marinos FUNDEMAR, Bayahibe, Dominican Republic c ReefWatch Marine Conservation, Bandra West, Mumbai 400050, India article info a b s t r a c t Article history: Changes in structure and function of coral reefs are increasingly significant and few sites in the Received 18 February 2019 Caribbean can tolerate local and global stress factors. Therefore, we assessed coral reef condition Received in revised form 20 September 2019 indicators in reefs within and outside of MPAs in the southeastern Dominican Republic, considering Accepted 15 October 2019 benthic cover as well as the composition, diversity, recruitment, mortality, bleaching, the conservation Available online 18 October 2019 status and evolutionary distinctiveness of coral species. In general, we found that reef condition Keywords: indicators (coral and benthic cover, recruitment, bleaching, and mortality) within the MPAs showed Coral reefs better conditions than in the unprotected area (Boca Chica). Although the comparison between the Caribbean Boca Chica area and the MPAs may present some spatial imbalance, these zones were chosen for Biodiversity the purpose of making a comparison with a previous baseline presented.
    [Show full text]
  • Pseudosiderastrea Formosa Sp. Nov. (Cnidaria: Anthozoa: Scleractinia)
    Zoological Studies 51(1): 93-98 (2012) Pseudosiderastrea formosa sp. nov. (Cnidaria: Anthozoa: Scleractinia) a New Coral Species Endemic to Taiwan Michel Pichon1, Yao-Yang Chuang2,3, and Chaolun Allen Chen2,3,4,* 1Museum of Tropical Queensland, 70-102 Flinders Street, Townsville 4810, Australia 2Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan 3Institute of Oceanography, National Taiwan Univ., Taipei 106, Taiwan 4Institute of Life Science, National Taitung Univ., Taitung 904, Taiwan (Accepted September 1, 2011) Michel Pichon, Yao-Yang Chuang, and Chaolun Allen Chen (2012) Pseudosiderastrea formosa sp. nov. (Cnidaria: Anthozoa: Scleractinia) a new coral species endemic to Taiwan. Zoological Studies 51(1): 93-98. Pseudosiderastrea formosa sp. nov. is a new siderastreid scleractinian coral collected in several localities in Taiwan. It lives on rocky substrates where it forms encrusting colonies. Results of morphological observations and molecular genetic analyses are presented. The new species is described and compared to P. tayamai and Siderastrea savignyana, and its morphological and phylogenic affinities are discussed. http://zoolstud.sinica.edu.tw/Journals/51.1/93.pdf Key words: Pseudosiderastrea formosa sp. nov., New species, Scleractinia, Siderastreid, Western Pacific Ocean. A siderastreid scleractinian coral was Pseudosiderastrea, described as P. formosa sp. collected from several localities around Taiwan nov. and nearby islands, where it is relatively rare. The specimens present some morphological similarities with Pseudosiderastrea tayamai Yabe MATERIAL AND METHODS and Sugiyama, 1935, the only species hitherto known from that genus, and with Siderastrea Specimens were collected by scuba diving at savignyana Milne Edwards and Haime, 1849, Wanlitung (21°59'48"N, 120°42'10"E) and the outlet which is the sole representative in the Indian of the 3rd nuclear power plant (21°55'51.38"N, Ocean of the genus Siderastrea de Blainville, 120°44'46.82"E) on the southeastern coast 1830.
    [Show full text]
  • Description of a New Genus of Cryptochiridae (Decapoda: Brachyura) Associated with Siderastrea (Anthozoa: Scleractinia), with Notes on Feeding Habits
    Scientia Marina 76(3) September 2012, 517-526, Barcelona (Spain) ISSN: 0214-8358 10.3989/scimar.03538.02E Description of a new genus of Cryptochiridae (Decapoda: Brachyura) associated with Siderastrea (Anthozoa: Scleractinia), with notes on feeding habits MARCELLE F.S. BADARO 1, ELIZABETH G. NEVES 1, PETER CASTRO 2 and RODRIGO JOHNSSON 1 1 Universidade Federal da Bahia, Instituto de Biologia, Departamento de Zoologia, LABIMAR (Crustacea, Cnidaria and Fauna Associada), Adhemar de Barros, s/n, Campus de Ondina, Bahia, 40170-290 Brasil. E-mail: [email protected] 2 Biological Sciences Department, California State Polytechnic University, Pomona, 91768 CA, U.S.A. SUMMARY: Members of the Cryptochiridae are small gall-crabs that live as obligate symbionts of scleractinian corals. Only two species have so far been recorded in the western Atlantic Ocean. Herein a new Cryptochiridae genus and species is described, and new information is added on the life history of cryptochirids. The new genus is characterized by having the carapace with the lowest deflection angle among the genera, and also shows the following features: thoracic sternite 4 with setules and constriction smaller than half of the width of the basis, anterior margin curved with apical row of granules; third maxilliped with subcircular exopod reaching medially the lateral margin of the ischium; pereiopod 2 with prominent distomesial and anterolateral expansion on the merus, propodus almost twice larger than dactylus; thoracic sternite 7 with complete medial suture, female pleopod 3 uniramous with longitudinal opening. Male first pleopod straight with subdistal curvature of approximately 90°. Individuals belonging to the new genus are found in galls in massive corals although this structure is cited as being characteristic of ramified corals.
    [Show full text]
  • Taxonomy and Phylogenetic Relationships of the Coral Genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae)
    Contributions to Zoology, 83 (3) 195-215 (2014) Taxonomy and phylogenetic relationships of the coral genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae) Roberto Arrigoni1, 7, Zoe T. Richards2, Chaolun Allen Chen3, 4, Andrew H. Baird5, Francesca Benzoni1, 6 1 Dept. of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy 2 Aquatic Zoology, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia 3Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan 4 Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan 5 ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia 6 Institut de Recherche pour le Développement, UMR227 Coreus2, 101 Promenade Roger Laroque, BP A5, 98848 Noumea Cedex, New Caledonia 7 E-mail: [email protected] Key words: COI, evolution, histone H3, Lobophyllia, Pacific Ocean, rDNA, Symphyllia, systematics, taxonomic revision Abstract Molecular phylogeny of P. rowleyensis and P. vitiensis . 209 Utility of the examined molecular markers ....................... 209 Novel micromorphological characters in combination with mo- Acknowledgements ...................................................................... 210 lecular studies have led to an extensive revision of the taxonomy References ...................................................................................... 210 and systematics of scleractinian corals. In the present work, we Appendix .......................................................................................
    [Show full text]
  • Carlos Jiménez and Jorge Cortés Structural Characteristics of Ramose
    Rev. Biol. Trop.,Suplemento 41 (1): 39-43, 1993 Density and compressive strength of the coral Siderastrea siderea (Scleractinia: Siderastreidae): Intraspecific variability Carlos Jiménez and Jorge Cortés Centro de Investigación en Ciencias del Mar y limnología (CIMAR), Universidad de Costa Rica, San Pedro, Costa Rica. Resumen: Se determinó la densidad y fuerza de compresión en diferentes secciones de siete colonias del coral Sideraslrea siderea recolectadas en cuatro arrecifes del Caribe de Costa Rica. La densidad fue mayor en las secciones más viejas de las colonias, mientras que la fuerza de compresión no mostró ninguna tendencia; varió significativamen­ te solo en las secciones más jóvenes. Contrario a lo esperado, la densidad y la fuerza de compresión no están correla­ cionadas. La densidad promedio de colonias vecinas del mismo arrecife variaron significativamente, y fue mayor en arrecifes expuestos a turbulencia y sedimentación. Lados opuestos de la misma colonia presentaron diferencias en densidad y, en menor grado, en fuerza de compresión. Estos resultados preliminares indican que el arrecife es un am­ biente hidrodinárnicamente heterogéneo, con micro-condiciones diferentes alrededor de las colonias. Por esta razón, se debetener widado cuando análisis de parte de una colonia se interpretan como representativos de todala colonia. Sideraslrea. Key words: Density,compressiv e-strength, variability, coral-skeleton, Structural characteristics of ramose corals may vary in different parts of the branches due to different growth pattems (Tunnicliffe 1982). l. Nevertheless, in massive corals, which have ra­ MOIN dial growth (Barnes 1973), it is considered that 2. PORTETE 3. PIUTA skeletal structure will not vary significantly 4. PTO. VA RGAS within the same colony (Schneider and Smith 1982, Hughes 1987).
    [Show full text]
  • Final Corals Supplemental Information Report
    Supplemental Information Report on Status Review Report And Draft Management Report For 82 Coral Candidate Species November 2012 Southeast and Pacific Islands Regional Offices National Marine Fisheries Service National Oceanic and Atmospheric Administration Department of Commerce Table of Contents INTRODUCTION ............................................................................................................................................. 1 Background ............................................................................................................................................... 1 Methods .................................................................................................................................................... 1 Purpose ..................................................................................................................................................... 2 MISCELLANEOUS COMMENTS RECEIVED ...................................................................................................... 3 SRR EXECUTIVE SUMMARY ........................................................................................................................... 4 1. Introduction ........................................................................................................................................... 4 2. General Background on Corals and Coral Reefs .................................................................................... 4 2.1 Taxonomy & Distribution .............................................................................................................
    [Show full text]
  • Redalyc.Population Dynamics of Siderastrea Stellata Verrill, 1868
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil PINHEIRO, BARBARA R.; PEREIRA, NATAN S.; AGOSTINHO, PAULA G.F.; MONTES, MANUEL J.F. Population dynamics of Siderastrea stellata Verrill, 1868 from Rocas Atoll, RN: implications for predicted climate change impacts at the only South Atlantic atoll Anais da Academia Brasileira de Ciências, vol. 89, núm. 2, abril-junio, 2017, pp. 873-884 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32751197008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2017) 89(2): 873-884 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201720160387 www.scielo.br/aabc Population dynamics of Siderastrea stellata Verrill, 1868 from Rocas Atoll, RN: implications for predicted climate change impacts at the only South Atlantic atoll BARBARA R. PINHEIRO¹, NATAN S. PEREIRA², PAULA G.F. AGOSTINHO² and MANUEL J.F. MONTES¹ 1Laboratório de Oceanografia Química, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, s/nº, Cidade Universitária, 50740-550 Recife, PE, Brazil 2Laboratório de Geologia e Sedimentologia/LAGES, Universidade Estadual da Bahia, Campus VIII, Rua da Aurora, s/nº, General Dutra, 48608-240 Paulo Afonso, BA, Brazil Manuscript received on June 16, 2016; accepted for publication on January 1, 2017 ABSTRACT Coral reefs are one of the most vulnerable ecosystems to ocean warming and acidification, and it is important to determine the role of reef building species in this environment in order to obtain insight into their susceptibility to expected impacts of global changes.
    [Show full text]
  • The Earliest Diverging Extant Scleractinian Corals Recovered by Mitochondrial Genomes Isabela G
    www.nature.com/scientificreports OPEN The earliest diverging extant scleractinian corals recovered by mitochondrial genomes Isabela G. L. Seiblitz1,2*, Kátia C. C. Capel2, Jarosław Stolarski3, Zheng Bin Randolph Quek4, Danwei Huang4,5 & Marcelo V. Kitahara1,2 Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confrm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Protected Species Order 2015
    Protected Species Order 2015 August 2015 GOVERNMENT OF BERMUDA MINISTRY OF HEALTH, SENIORS AND ENVIRONMENT Department of Conservation Services Protected Species Order 2015 – Protected Species Act 2003 2015 Bermuda and the surrounding reef platform, 1998 Bermuda and the surrounding reef platform, 1998 Protected Species Order 2015 – Protected Species Act 2003 Table of Contents 1.0. Introduction ................................................................................................................................................................................................ 1 Purpose of legislation ...................................................................................................................................................................................... 2 Goal ................................................................................................................................................................................................................. 2 Objectives ........................................................................................................................................................................................................ 2 How species are nominated ............................................................................................................................................................................. 2 Levels of protection for protected species ......................................................................................................................................................
    [Show full text]
  • A Guide to the Identification of the Common Corals of St. Croix
    A Guide to the Identification of the Common Corals of St. Croix Thomas Suchanek Department of Biology University of California Davis, CA Converted to digital format by Thomas F. Barry (NOAA/RSMAS) in 2004. Copy available at the NOAA Miami Regional Library. Minor editorial changes may have been made. Guide to the Common Corals of St. Croix 197 A Guide to the Identification of the Common Corals of St. Croix Thomas Suchanek Dept. of Biology University of California Davis, CA INTRODUCTION This guide was designed as an aid in identifying both live and dead corals from St. Croix which form hard, calcium carbonate skeletons. This encompasses representatives both from the Class Anthozoa (the true or scleractinian corals) and from the Class Hydrozoa (hydrocorals). Representatives from the third class of Cnidaria, the Scyphozoa, produce no calcium carbonate skeletons and are not discussed. Of the 60 or so species of "stony" corals found in the western Atlantic region, this guide focuses on 37 species which are found relatively commonly on St. Croix. Other representatives which may be common in other locations such as St. Thomas, Puerto Rico, Jamaica or Florida, but are not common on St. Croix, have not been included. Various references listed at the end of the text include many of those other species. The guide is arranged in two sections. First is a descriptive section including taxonomic and natural history information on each species represented. Following that section is a series of plates which depict three conditions for each species. First is a habitat photo, as the coral colony would appear to a swimmer or diver approaching it in the field.
    [Show full text]
  • Population Dynamics of Siderastrea Stellata Verrill, 1868 from Rocas Atoll, RN: Implications for Predicted Climate Change Impacts at the Only South Atlantic Atoll
    Anais da Academia Brasileira de Ciências (2017) 89(2): 873-884 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201720160387 www.scielo.br/aabc Population dynamics of Siderastrea stellata Verrill, 1868 from Rocas Atoll, RN: implications for predicted climate change impacts at the only South Atlantic atoll BARBARA R. PINHEIRO¹, NATAN S. PEREIRA², PAULA G.F. AGOSTINHO² and MANUEL J.F. MONTES¹ 1Laboratório de Oceanografia Química, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, s/nº, Cidade Universitária, 50740-550 Recife, PE, Brazil 2Laboratório de Geologia e Sedimentologia/LAGES, Universidade Estadual da Bahia, Campus VIII, Rua da Aurora, s/nº, General Dutra, 48608-240 Paulo Afonso, BA, Brazil Manuscript received on June 16, 2016; accepted for publication on January 1, 2017 ABSTRACT Coral reefs are one of the most vulnerable ecosystems to ocean warming and acidification, and it is important to determine the role of reef building species in this environment in order to obtain insight into their susceptibility to expected impacts of global changes. Aspects of the life history of a coral population, such as reproduction, growth and size-frequency can contribute to the production of models that are used to estimate impacts and potential recovery of the population, acting as a powerful tool for the conservation and management of those ecosystems. Here, we present the first evidence ofSiderastrea stellata planulation, its early growth, population size-frequency distribution and growth rate of adult colonies in Rocas Atoll. Our results, together with the environmental protection policies and the absence of anthropogenic pressures, suggest that S.
    [Show full text]