Intrinsic Regulation of FIC-Domain AMP-Transferases by Oligomerization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seres Health, 160 First Street Suite 1A, Cambridge MA 02142 1
Genetics: Early Online, published on September 27, 2013 as 10.1534/genetics.113.152306 1 Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific 2 components of the SOS response pathway 3 4 Alyssa Theodore, Kim Lewis, Marin Vulić1 5 Antimicrobial Discovery Center, Department of Biology, Northeastern University, 6 Boston, Massachusetts 02115 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1Present Address: Seres Health, 160 First Street Suite 1A, Cambridge MA 02142 1 Copyright 2013. 32 Fluoroquinolone Tolerance in Escherichia coli 33 34 Keywords: SOS response, Persisters, Tolerance, DNA repair, fluoroquinolones 35 36 Corresponding Author: 37 Marin Vulić 38 Current Address: Seres Health 39 160 First Street Suite 1A 40 Cambridge MA 02142 41 [email protected] 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 2 65 ABSTRACT 66 67 Bacteria exposed to bactericidal fluoroquinolone (FQ) antibiotics can survive without 68 becoming genetically resistant. Survival of these phenotypically resistant cells, 69 commonly called persisters, depends on the SOS gene network. We have examined 70 mutants in all known SOS-regulated genes to identify functions essential for tolerance in 71 Escherichia coli. The absence of DinG and UvrD helicases and Holliday junction 72 processing enzymes RuvA and RuvB lead to a decrease in survival. Analysis of the 73 respective mutants indicates that in addition to repair of double strand breaks, tolerance 74 depends on the repair of collapsed replication forks and stalled transcription complexes. -
Management of E. Coli Sister Chromatid Cohesion in Response to Genotoxic Stress
ARTICLE Received 1 Oct 2016 | Accepted 13 Jan 2017 | Published 6 Mar 2017 DOI: 10.1038/ncomms14618 OPEN Management of E. coli sister chromatid cohesion in response to genotoxic stress Elise Vickridge1,2,3, Charlene Planchenault1, Charlotte Cockram1, Isabel Garcia Junceda1 & Olivier Espe´li1 Aberrant DNA replication is a major source of the mutations and chromosomal rearrange- ments associated with pathological disorders. In bacteria, several different DNA lesions are repaired by homologous recombination, a process that involves sister chromatid pairing. Previous work in Escherichia coli has demonstrated that sister chromatid interactions (SCIs) mediated by topological links termed precatenanes, are controlled by topoisomerase IV. In the present work, we demonstrate that during the repair of mitomycin C-induced lesions, topological links are rapidly substituted by an SOS-induced sister chromatid cohesion process involving the RecN protein. The loss of SCIs and viability defects observed in the absence of RecN were compensated by alterations in topoisomerase IV, suggesting that the main role of RecN during DNA repair is to promote contacts between sister chromatids. RecN also modulates whole chromosome organization and RecA dynamics suggesting that SCIs significantly contribute to the repair of DNA double-strand breaks (DSBs). 1 Center for Interdisciplinary Research in Biology (CIRB), Colle`ge de France, UMR CNRS-7241, INSERM U1050, PSL Research University, 11 place Marcelin Berthelot, 75005 Paris, France. 2 Universite´ Paris-Saclay, 91400 Orsay, France. 3 Ligue Nationale Contre le Cancer, 75013 Paris, France. Correspondence and requests for materials should be addressed to O.E. (email: [email protected]). NATURE COMMUNICATIONS | 8:14618 | DOI: 10.1038/ncomms14618 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14618 ll cells must accurately copy and maintain the integrity of or cohesin-like activities26,27. -
Sanyal Et Al HYPE-Bip Kinetics & Structure-Sci Reports
bioRxiv preprint doi: https://doi.org/10.1101/494930; this version posted December 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Kinetic And Structural Parameters Governing Fic-Mediated Adenylylation/AMPylation of the Hsp70 chaperone, BiP/GRP78 Anwesha Sanyal1, Erica A. Zbornik1, Ben G. Watson1, Charles Christoffer2, Jia Ma3, Daisuke Kihara1,2, and Seema Mattoo1* 1From the Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 2Department of Computer Science, Purdue University, West Lafayette, IN 47907 3Bindley Biosciences Center, Purdue University, West Lafayette, IN 47907 *To whom correspondence should be addressed: Seema Mattoo, Department of Biological Sciences, Purdue University, 915 W. State St., LILY G-227, West Lafayette, IN 47907. Tel: (765) 496-7293; Fax: (765) 494-0876; Email: [email protected] Abstract Fic (filamentation induced by cAMP) proteins regulate diverse cell signaling events by post-translationally modifying their protein targets, predominantly by the addition of an AMP (adenosine monophosphate). This modification is called Fic-mediated Adenylylation or AMPylation. We previously reported that the human Fic protein, HYPE/FicD, is a novel regulator of the unfolded protein response (UPR) that maintains homeostasis in the endoplasmic reticulum (ER) in response to stress from misfolded proteins. Specifically, HYPE regulates UPR by adenylylating the ER chaperone, BiP/GRP78, which serves as a sentinel for UPR activation. Maintaining ER homeostasis is critical for determining cell fate, thus highlighting the importance of the HYPE-BiP interaction. Here, we study the kinetic and structural parameters that determine the HYPE-BiP interaction. -
Interaction of Silver Atomic Quantum Clusters With
Chemical Volume 6 Number 12 December 2015 Pages 6681–7356 Science www.rsc.org/chemicalscience ISSN 2041-6539 EDGE ARTICLE B. García, F. Dominguez et al. Interaction of silver atomic quantum clusters with living organisms: bactericidal eff ect of Ag3 clusters mediated by disruption of topoisomerase–DNA complexes Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Interaction of silver atomic quantum clusters with living organisms: bactericidal effect of Ag3 clusters Cite this: Chem. Sci.,2015,6,6717 mediated by disruption of topoisomerase–DNA complexes† a b a b a b J. Neissa,‡ C. Perez-Arnaiz,´ ‡ V. Porto, N. Busto, E. Borrajo, J. M. Leal, c b a M. A. Lopez-Quintela,´ B. Garc´ıa* and F. Dominguez* Essential processes for living cells such as transcription and replication depend on the formation of specific protein–DNA recognition complexes. Proper formation of such complexes requires suitable fitting between the protein surface and the DNA surface. By adopting doxorubicin (DOX) as a model probe, we report here that Ag3 atomic quantum clusters (Ag-AQCs) inhibit the intercalation of DOX into DNA and have considerable influence on the interaction of DNA-binding proteins such as topoisomerase IV, Escherichia coli DNA gyrase and the restriction enzyme HindIII. Ag-AQCs at nanomolar Creative Commons Attribution-NonCommercial 3.0 Unported Licence. concentrations inhibit enzyme activity. The inhibitory effect of Ag-AQCs is dose-dependent and occurs by intercalation into DNA. All these effects, not observed in the presence of Ag+ ions, can explain the Received 5th June 2015 powerful bactericidal activity of Ag-AQCs, extending the knowledge of silver bactericidal properties. -
Post-Translational Modifications in Microbiology
Post-translational Modifications in Microbiology MCB 6937 Sections 03B2 (online) and 03A6 (on campus) Summer C 2017 Rationale for course The overall goal of this class is to enhance student learning in the field of microbiology and to network students with professionals within the scientific community. To this end, the course will take an innovative approach to student learning through interactive group projects. The students will prepare projects that will undergo a scientific review by their class peers and faculty instructors. Projects that pass the scientific review process will be made publicly available through Canvas with the ultimate-goal to provide a searchable web portal of post-translational modifications in microbiology. While proteomics and other systems biology approaches have facilitated the identification of a wide-variety of novel post-translational modifications, high-throughput data related to these modifications are 1 not well synthesized and readily available to the scientific community (particularly data related to bacteria and archaea). This course will therefore serve as a resource to the scientific community. Students in the group will benefit from being listed as co-authors on the projects (with student permission). In addition to synthesizing published research findings, the group projects will require students to think ‘outside the box’ and develop innovative proposals that take advantage of post-translational modifications to improve human health and the food, agricultural, and natural resources. Overall, this course is designed to provide an opportunity for students to not only learn about how post- translational modifications work but also how they can be of service to their profession and community. -
Stadtman How to Control the Production of Amino Acids How to Control the Production of Amino Acids?
Stadtman How to Control the Production of Amino Acids How to Control the Production of Amino Acids? In 1960, Earl went on sabbatical leave to Europe, and this turned out to be a fruitful research experience. Working in Feodor Lynen's laboratory in Munich for half a year, Earl discovered a biochemical reaction dependent upon the vitamin B12—coenzyme. Subsequently, at the Pasteur Institute in Paris, he collaborated with Georges Cohen and others on investigating the regulation of activities of aspartokinase, the enzyme that catalyzes the conversion of aspa rtate, an amino acid, to its phosphate derivative. At that time it was well known that this conversion was the first common step in a "branched pathway" that led to the biosynthesis of three different amino acids-lysine, threonine, and methionine. (A typical example of the branched pathway where A is a precursor for the biosynthesis of three different products, X, Y, and Z. These products may inhibit individually the first common step of A to B). Earl and his collaborators separated two different kinds of aspartokinase from E. coli extracts and obtained evidence suggesting the existence of still another. They further demonstrated that each one of these multiple enzymes can be regulated individually by a particular product of one of the branches in the pathway. Since amino acids are the building blocks of protein, they are readily obtained in the process of digesting or degrading protein supplied by foods. But the organism is also capable of synthesizing amino acids from other molecules. For example, bacteria such as E. coli can make the entire basic set of amino acids. -
Alpha-Synuclein Is a Target of Fic-Mediated Adenylylation
*ManuscriptbioRxiv preprint doi: https://doi.org/10.1101/525659; this version posted January 21, 2019. The copyright holder for this preprint (which was not Click here to view linked certifiedReferences by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 5 Alpha-Synuclein is a Target of Fic-mediated 6 Adenylylation/AMPylation: Implications for Parkinson's Disease 7 8 Anwesha Sanyala,g*, Sayan Duttab*, Aswathy Chandranb, Antonius Kollerc,h, Ali Camaraa, Ben G. 9 Watsona, Ranjan Senguptaa, Daniel Ysselsteinb,c, Paola Montenegrob,c, Jason Cannond, Jean- 10 Christophe Rochetb,e, and Seema Mattooa,f,1 11 12 aDepartment of Biological Sciences, bDepartment of Medicinal Chemistry and Molecular 13 c 14 Pharmacology, Purdue University, Herbert Irving Comprehensive Cancer Center, Columbia d 15 University Medical Center, New York, NY, School of Health Sciences, Purdue University, 16 ePurdue Institute for Integrative Neuroscience, and fPurdue Institute for Inflammation, 17 Immunology and Infectious Disease, Purdue University, 915 W State St., LILY G-227, West 18 Lafayette, IN 47907 19 20 *equal contribution 21 1 22 To whom correspondence should be addressed. E-mail: [email protected] 23 g 24 Present address: Ann Romney Center for Neurologic Diseases, Brigham and Women’s 25 Hospital, Harvard Medical School, Boston, MA 26 hPresent address: Northeastern University, Barnette Institute, Boston, MA 27 28 The authors declare no conflict of interest. 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 *ResearchbioRxiv Highlights preprint doi: https://doi.org/10.1101/525659; this version posted January 21, 2019. -
Ability of Nonenzymic Nitration Or Acetylation of E. Coli Glutamine Synthetase to Produce Effects Analogous to Enzymic Adenylylation Filiberto Cimino,* Wayne B
Proceedings of the National Academy of Sciences Vol. 66, No. 2, pp. 564-571, June 1970 Ability of Nonenzymic Nitration or Acetylation of E. coli Glutamine Synthetase to Produce Effects Analogous to Enzymic Adenylylation Filiberto Cimino,* Wayne B. Anderson,t and E. R. Stadtmant NATIONAL HEART AND LUNG INSTITUTE, NATIONAL INSTITUTES OF HEALTH, BETHESDA, MARYLAND Communicated March 6, 1970 Abstract. Treatment of unadenylylated glutamine synthetase from Esche- richia coli with tetranitromethane or with N-acetylimidazole produces alterations in catalytic parameters that are similar to alterations caused by the physio- logically important process of adenylylation. All three modification reactions lead to a change in divalent ion requirement for biosynthetic activity; the un- modified enzyme requires M1g'+ for activity, whereas the modified enzymes ex- hibit increased activity with Mn2+. The y-glutamyl transferase activity of the modified enzyme is more sensitive to feedback inhibitionbytryptophan, histidine, CTP, and AMP, and to inhibition by Mg2+ or to inactivation by 5 AI urea. Fi- nally, the pH optimum for the unmodified enzyme is 7.9, while the modified en- zymes are more active at pH 6.8. Since treatment of the enzyme with N-acetylimidazole results in a decrease in absorbancy at 278 mAu and treatment with tetranitromethane causes an increase in absorbancy at 428 m~i, the effects of these reagents are probably due to modi- fication of certain tyrosyl groups on the enzyme. However, other evidence indicates that the tyrosyl residues which -
Association of Mutation Patterns in Gyra and Parc Genes with Quinolone Resistance Levels in Lactic Acid Bacteria
The Journal of Antibiotics (2015) 68, 81–87 & 2015 Japan Antibiotics Research Association All rights reserved 0021-8820/15 www.nature.com/ja ORIGINAL ARTICLE Association of mutation patterns in GyrA and ParC genes with quinolone resistance levels in lactic acid bacteria Shaoying Li1,5, Zhen Li1,5, Wan Wei2, Chunyan Ma1, Xiaomin Song1, Shufen Li3, Wenying He4, Jianjun Tian1 and Xiaoyan Huo1 The quinolone resistance of 19 lactic acid bacterial strains belonging to the genera Enterococcus and Lactobacillus isolated from the natural fermented koumiss and yoghurt were investigated. The objective of this study was to determine the quinolone resistance levels and to explore the association of the resistance with the mutation patterns in gyrA and parC genes, as is currently recommended by the Food and Agriculture Organization/World Health Organization Joint Expert Committee in Guidelines for Evaluation of Probiotics in Food for probiotic lactic acid bacteria drug resistance in 2001. The Oxford Cup method and double-tube dilution method were used to determine the quinolone resistance levels of the isolated strains. Generally, all of the 19 strains showed resistance towards norfloxacin and ciprofloxacin when the Oxford cup method was used, whereas the incidence was lower (to norfloxacin 89.5% and to ciprofloxacin 68.4%) when minimum inhibitory concentration breakpoints (CLSI M100-S23) were tested. Furthermore, gene sequencing was conducted on gyrA and parC of topoisomerase II of these isolated strains. The genetic basis for quinolone resistance may be closely related to mutations in gyrA genes as there were 10 mutation sites in amino-acid sequences encoded by gyrA genes in 10 quinolone resistance strains and 14 mutation sites in Enterococcus durans HZ28, whereas no typical mutations were detected in parC genes. -
Stimulation of Endogenous ADP-Ribosylation by Brefeldin A
Proc. Nadl. Acad. Sci. USA Vol. 91, pp. 1114-1118, February 1994 Cell Biology Stimulation of endogenous ADP-ribosylation by brefeldin A MARIA ANTONIETTA DE MATTEIS*, MARIA Di GIROLAMOt, ANTONINO COLANZI*, MERCE PALLASt, GIUSEPPE Di TULLIOt, LEE J. MCDONALD§, JOEL Moss§, GIOVANNA SANTINI*, SERGEI BANNYKHt, DANIELA CORDAt, AND ALBERTO LUINIt *Unit of Physiopathology of Secretion, tLaboratory of Molecular and Cellular Endocrinology, and tLaboratory of Molecular Neurobiology, Istituto di Ricerche Farmacologiche "Mario Negri," Consorzio Mario Negri Sud, 66030 S. Maria Imbaro (Chieti), Italy; and kLaboratory of Cellular Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 Communicated by Martin Rodbell, October 4, 1993 ABSTRACT Brefeldin A (BFA) is a fungal metabolite that ribosyl)transferase (11). Indeed, a family of brain exerts profound and general Inhibitor actions on membrane mono(ADP-ribosyl)transferases has been reported to be sen- transport. At least some ofthe BFA effects are due to inhibition sitive to ARF (14). These considerations prompted us to of the GDP-GTP exchange on the ADP-ribosylation factor determine whether BFA, possibly by perturbing ARF bind- (ARF) catalyzed by membrane protein(s). ARF activation is ing, might affect cellular ADP-ribosylations. Here we report likely to be a key event In the of non-dathrln coat that BFA markedly stimulates the ADP-ribosylation of two components, including ARF Itself, onto tranp organelles. cytosolic proteins of38 and 50 kDa (p38 and p50). p38 appears ARF, In addition to partidpating In membrane trnsport, is to be identical with an isoform of glyceraldehyde-3- known to function as a cofactor in the enzymatic activit of phosphate dehydrogenase (GAPDH), a glycolytic enzyme cholera toxin, a bacterial ADP-ribosyltansferase. -
Topoisomerase IV, Not Gyrase, Decatenates Products of Site-Specific Recombination in Escherichia Coli
Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli E. Lynn Zechiedrich,1,3 Arkady B. Khodursky,2 and Nicholas R. Cozzarelli1,4 1Department of Molecular and Cell Biology and 2Graduate Group in Biophysics, University of California, Berkeley, California 94720-3204 USA DNA replication and recombination generate intertwined DNA intermediates that must be decatenated for chromosome segregation to occur. We showed recently that topoisomerase IV (topo IV) is the only important decatenase of DNA replication intermediates in bacteria. Earlier results, however, indicated that DNA gyrase has the primary role in unlinking the catenated products of site-specific recombination. To address this discordance, we constructed a set of isogenic strains that enabled us to inhibit selectively with the quinolone norfloxacin topo IV, gyrase, both enzymes, or neither enzyme in vivo. We obtained identical results for the decatenation of the products of two different site-specific recombination enzymes, phage l integrase and transposon Tn3 resolvase. Norfloxacin blocked decatenation in wild-type strains, but had no effect in strains with drug-resistance mutations in both gyrase and topo IV. When topo IV alone was inhibited, decatenation was almost completely blocked. If gyrase alone were inhibited, most of the catenanes were unlinked. We showed that topo IV is the primary decatenase in vivo and that this function is dependent on the level of DNA supercoiling. We conclude that the role of gyrase in decatenation is to introduce negative supercoils into DNA, which makes better substrates for topo IV. -
Synthesis and Investigation of Bacterial Effector Molecules
Synthesis and investigation of bacterial effector molecules Michael Franz Albers Doctoral Thesis, Department of Chemistry Umeå University, 2016 Responsible publisher under swedish law: the Dean of the Faculty of Science and Technology This work is protected by the Swedish Copyright Legislation (Act 1960:729) ISBN: 978-91-7601-411-0 Electronic version available at http://umu.diva-portal.org/ Tryck/Printed by: VMC-KBC Umeå Umeå, Sweden, 2016 Table of Contents Table of Contents i Abstract iii List of Abbreviations iv List of Publications vii Author contributions viii Papers by the author, but not included in this thesis viii Enkel sammanfattning på svenska ix Introduction 1 Post-translational modifications 1 Nucleotidylylation and phosphocholination 2 Small GTPases 7 Pathogens modify host cells at a molecular level 9 Quorum sensing in Legionella pneumophila 12 Proteomics towards PTMs 13 Chapter 1: Towards the identification of adenylylated proteins and adenylylation-modifying enzymes (Paper I – III) 19 Previous work 19 Outline: From building blocks to antibodies 22 Synthesis of a tyrosine-AMP building block 23 Synthesis of a threonine- and serine-AMP building block 26 Synthesis of adenylylated Peptides 28 Generation of AMP specific antibodies 30 Mass fragmentation patterns of adenylylated peptides 37 Immunoprecipitation of adenylylated proteins 42 Non-hydrolysable mimics for the study of deadenylylating enzymes 47 Future work 52 Ongoing Work – Covalent trapping of substrates of adenylyl transferases 53 Conclusions 60 Chapter 2: Tools for