483

Index

a Ajji–Choplin’s modified, 423 acrylate elastomer with polyester alcohol-treated TiO2 (T) , 284 – on PP/PET blend morphology, 467 acrylate rubbers, 264, 283, 284 alkali counter ions, 403 – with iPP thermoplastic, 283 alkyl ammonium ions, 403 – PMMA, 268 ammonium ion chain arrangement, 404 acrylic acid-modified isotactic amorphous–amorphous interaction, 141 polypropylene, 171 amorphous component, 139, 146 acrylic rubber, 316 – determination, 143 acrylonitrile, 258, 305 – , 163 – butadiene elastomers (NBR), 257 – interlamellar regions, 147 – butadiene copolymer rubber (NBR), 280 amorphous component, diffusion rate – butadiene rubber, 44, 356 – segregation, 143 acrylonitrile butadiene styrene (ABS), 168, 235, amorphous–crystalline interfaces, 42, 108 391, 444 amorphous diluent, 139, 202 – resins stiff, 264 – influences, 201 acrylonitrile–(ethylene–propylene–diene amorphous elastomers, 286 terpolymer)–styrene, 264 amorphous ethylene–propylene acrylonitrile–styrene–acrylic ester, 264 , 286 activation stress, 237 amorphous halo, 7 actual temperature, 55 amorphous materials, reversible Adam–Gibbs model, 14, 31, 36 transformation, 1 additives, 232 amorphous matrix – value, 392 – crystallizable dispersed phase, 164 additivity properties, 393 amorphous medium-cis-BR, 262 adhesion, blends, 136 amorphous phase, 158 adhesive force, 349 – in semicrystalline, microstructure of, 108 ad hoc assumptions, 14 amorphous rubbers, 273 adsorption/disruption equilibrium, 462 amorphous systems, 7 Aerosil-OX50, 408 angular frequency, 61 Aerosil-R812, 408 annealing, 354, 375 Aerosil-R972, 408 anomalous supermolecular behavior, 33 Aerosil-300, TEM micrograph, 409 antiplasticization effects, 43 Aerosol-300, 408 antiplasticizers, 43 Aerosol-380, 408 Arrhenius diagram, 66 AFM phase images, 220 Arrhenius equation, 148 – SBR/NR 50/50 vulcanizate, 321 Arrhenius prefactor, 13 agglomeration, 230, 280 aryl polyesters, 113 aggregation, of matter, 29 Askadskii monograph, 342

Encyclopedia of Polymer Blends: Volume 3: Structure, First Edition. Edited by Avraam I. Isayev.  2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA. 484 Index

asymmetric PS/PVME blends – made during polymerization, 285 – schematic phase diagram, 430 – miscibility, 139 atomic force microscopy (AFM), 138, 215, 240, – morphology, 66, 364, 365 301, 370, 428 – PE/SBR, 362 atom transfer radical polymerization – polymer pairs, difference, 441 (ATRP), 424 – ratios, 306 average equivalent diameter of PMMA phase, – spherulites, formation of, 197 influence of the PP phase concentration blend PMMA/PP/PS/HDPE displaying partial on, 381 wetting, topographical images of, 376 average viscosity ratio, 364 blends containing Avogadro number, 15 – BR, 318 Avrami analysis, 213 – butyl rubber, 323 Avrami equations, 149, 150, 207 – CR, 325 Avrami exponent, 150, 207 – EPDM, 322 Avrami index, 149 – hydrogenated nitrile butadiene rubber Avrami model, 148 (HNBR), 327 Avrami plot, 148 – , 311 – NBR, 324 b – SBR, 319 ballistic conduction, 407 – silicone rubber, 326 banded PVDF spherulites crystallized, 157 blend structure, three dimensional view, 373 BCKV model equation, 83, 93 block copolymers, 171, 263, 316 BDT temperature, 242 block , 288 bell-shape curve, 145 Boltzmann constant, 13 Benabdelghani, 103 Boltzmann relation, 31 binary blends, 347, 380 bona fide phase transitions, 3 – morphological types in, 347 Boson peak frequency, 15 binary Flory–Huggins interaction Brabender mixer, 307 parameters, 345 Bragg’s law, 409 binary interactions, asymmetry of, 339 Braun–Kovacs equation, 111 binary miscible crystalline polymer blends, 201 brittle , 238 binary mixtures, 137, 335 brittle mechanism, 234 binary polymer mixtures, 335 brittle plastics, 230 – glass-transition signals of, 73 brittle-to-ductile transition (BDT), 236 binary PP/PS system, 354 BR molecular chains, 302 – mixtures, 383 Brownian diffusion binary to ternary PMMA/PS/PC morphologies, – coefficient, 434 transition from, 369 – time, 437 binodal temperature (BT), 416 Brownian induced motion, 462 bio-based PTT/PEEA blends, 171 Bässler-type expression, 26 biopolymers, 169 butadiene, 320 bis-(diisopropyl) thiophosphoryl disulfide, 322 – acrylonitrile copolymers, 286 bisphenol A , 156 – based core elastomers, 287 bis-(triethoxysilylpropyl)-tetrasulfane, 317 – styrene block copolymers, 288 blending, 229, 230, 299 butadiene copolymer elastomers (NBR), – BR/CIIR, 318 324, 390 – BR/EPDM, 302, 307, 311 – AN level, 258 – BR/IR, 318, 319 – elastomer with iPP thermoplastic, 283 – BR/NBR, 319 – EPDM blends, 325 – BR/NBR 50/50, 319 – NR/CB compounds, 325 – BR/NR, 318 – PVC blends, 259 – BR/SBR, 310 – PVC design, 260 – composition, 196, 358, 379 butene-1 (EBR) copolymers, 273 Index 485 butene-1 dissolve, 273 – filled PA/PP 60/70, 461 butyl, and ethylene/octene-1 copolymers, 235 – filled polymer blends, 459 butyl lithium processes, 285 – localization, 461 butyl rubber (IIR), 283, 323 – temperature stability, 407 – elastomer with polypropylene coalescence, 158, 388 thermoplastic, 283 – suppression role, 465 co-continuous phase, 383 c coefficient theory, 355 C15A, concentration, 455 cohesive force, 349 calorimetric analysis, 80 Cole–Cole plots, 413, 415, 418, 422, 423, 424 calorimetric methods, 245 combinatorial entropy, 70, 336, 340, 342 calorimetric techniques, 52 comonomer, 45 calorimetry, 52 comparability, 239 capacitance, 64 compatibility, 136 carbon black (CB), 302 compatibilized polymer blends, 167, 316 carbon chloride bond, 38 – bio-based polymer blends carbon nanofibers, 44 –– reactive compatibilization, 169 carbon nanotubes (CNTs) – blocks addition/graft copolymers, 167 – single- and multiwalled, 402 – reactive compatibilization, 168 carboxylic MWCNT-filled polylactide melts compatibilizers, 138, 231, 241, 335 – Han plots, 414 completely miscible, 137 carboxyl-terminated NBR, 283 complex microstructures, 377 case studies, 99 composite domains, 372, 375 cation-exchange capacity (CEC), 404 – viscosity, 372 cationic–organic surfactant, 403 compositional variations, 74 cavitation, 239 composition in blends, dependence of domain cavitation process, 237 diameter on, 359 cavitation stresses, 238 composition ratio, 361 CB-filled blend, 465 compressive modulus, 234 – BR/EPDM, 319 compressive pressure, 240 CB localization, 443 configurational entropy, 8, 20 cellulose nitrate, 257 – temperature dependence of, 7 chain mobility state, 58 configuron percolation model, 20 Charpy impact strength, 260 configurons, 34 chemical modification, 101 constitutive thermodynamic parameters, 232 – of CNTs, 317 contact angle, 349 chemical potential, 341 controlled temperature program, 57 chemical structure cooling crystallization function, 150 – effects of, 37 cooling rate, schematic illustration, 7 chlorinated polyethylene (CPE), 323, 356, 417 cooperatively rearranging region (CRR), 30 chlorinated PVC (CPVC), 255 cooperative motion, 48 chloroform, 337, 338 copolymerization, 299 chloroprene, 260 core–shell dispersed morphology, 372 Closite 6A, 464 core–shell graft polymers, 287 Closite 15A, 455 Core–shell impact modifiers, 288 Closite 20A, 472 Core–shell modifiers, 287 Closite 30B, 450, 455 core–shell morphology, 354 cloud point, curve of, 417 core–shell particles, 236, 389, 392 13C NMR spectroscopy, 277 core/shell PC/PMMA ratio, 368 CNTs Couchman–Karasz function, 87 – chemical reactivity, 407 coupling agents, 335 – coated PE domains, 460 coupling model, 20 – filled PA/EA 10/90 blends, 461 CR/BR blends, 325 486 Index

creep, 60 –– polymer blend, 145, 146 CR-elastomer, 390 – of immiscible blends, 158 CR/EPDM blends, 326 –– polymer effect of fillers, 166 critical ligament size, 239 – peak temperature, 202 critical solution temperature, 336 – physical processes, 282 critical surface tension, of rubbers, 306 – of polymers, 138, 239 CR/NR blend, 326 – processes, 149, 156, 214 crosslink density, 394 – rate, 311, 313, 318 cross-polarization magic angle spinning crystallization kinetics, 136, 147, 201, 203, 245 (CPMAS), 253 – isothermal kinetics, 147 cryogenic fracture, 249 – nonisothermal kinetics, 150 crystal growth geometry, 148 crystallization temperature, 142, 145, 148, 156, crystal growth rate, 211 159, 160, 161, 167, 192, 193, 195, 200, 205, crystalization, 2 208, 278, 302 crystalline/amorphous polymer blends, 139 crystallization time, in miscible blend, 204 crystalline component, 145 crystallize, 192 crystalline/crystalline miscible blends crystals (pseudoeutectic type I), 156 – types of crystallization, 153 crystal surface, 145 crystalline/crystalline polyester blends, 172 cure balance in rubber blends, 308 crystalline/crystalline polymer blends, 152, Cure systems, 282 192, 201 cyclization, 53 crystalline lamellae, 142, 201 cyclohexane, 370, 372, 380, 382 crystalline morphologies, 199 – of miscible crystalline/crystalline polymer d blends, 200 damping factor, 61 crystalline morphology, 194, 196, 198 data evaluations, 97 crystalline phase deformation, 234, 237, 239, 299 – nucleation of, 158 – process, 237 – spherulite growth rate, 159 degree of cure, 46 crystalline polymers, 143, 192 degree of dispersion, 394 – blends, 143, 202 degree of freedom, 37 crystalline rubbers, 285 degree of polymerization, 336 crystallinity, 109, 158, 192 degree of utility, 229 – miscible blends, 138 Delaunay networks, 34 crystallizable components, 139, 143, 146, 156 demixing, 143 – polymer blends density, 43 –– spherulite growth rate, 140 deuterated (DPS), 429 – spherulite growth rate, 144 diamond, 405 crystallizable dispersed phase, 158 diblock copolymer, 470 – fractionated crystallization, 164 – compatibilization mechanisms, 470 – number density of heterogeneities, 165 dielectric analysis, 63 crystallizable matrix dielectric characterization, 246 – blends with amorphous dispersed phase, 158 dielectric glass-transition temperature, 65 crystallizable molecule, 145 dielectric relaxation spectroscopy, 64 crystallizable phase, 158 diene rubbers, 285, 286 crystallizable polymer, 139, 159 differential scanning calorimetry (DSC), 11, crystallization, 135, 139, 142, 143, 150, 245, 320 138, 139, 245, 302, 411 – behaviors, 152, 192, 311, 313 – cooling thermograms, 164 –– of NR, 313 – curves, 53 –– polymer blends vs. copolymers, 171 – endotherms, 155 – of compatibilized blends, 170 – fusion endotherms, 155 – of dispersed phase, 164 – plots, 52 – growth rate, 145 – spectra, 77 Index 487

– thermograms, 80, 165, 166 – containing carbon–carbon double differential stress concentration, bonds, 281 234 – phase, 283 diffusion, 232, 339 electrical conductivity, 358 – coefficient, 146 electrical percolation threshold, 438 dilatational pressure, 240 electromagnetic radiation, 254 dilatational stresses, 240 electron energy loss spectroscopy (EELS), diluent + polymer systems, 82 249 DiMarzio equation, 82 π–electron interactions, 138 N,N-Dimethylformamide, 106 electron microscopy (SEM), 138, 312 dipole polarization, 246 electron spectroscopy for chemical analysis dispersed phases, 379 (ESPA), 255 – effects of interaction, 379 electron spin resonance, 50 dispersed rubber, 241 ellipsometry, 51, 256 dispersion, 299 empirical concentration power, 89 dissipation mechanisms, 238 empirical mixing, 78 DMA damping factor emulsification role, 465 – vs. temperature curves, 76 emulsions, 259 DMTA analysis, 277 – low-viscosity, 433 Doi–Edwards model, 423 – polymerized ABS, 264 domain size, 306, 307 – rubbers, 287 donor–acceptor interactions, 137 encapsulated morphologies, influence of Doolittle equation, 11, 28 different factors, 358 1D PEL, schematic illustration, 22 encapsulation effect, 373 droplets, 465 1,2-enchainment, 279 – deformation-induced elasticity, 422 endothermic mixtures, 137 – fiber morphology, 348 energy absorption, 234, 235 – like particles, 158 – of rubbers, 230 drug delivery devices, 358 energy dissipation, 235, 237, 239 DTA curve, 52 energy landscapes, 21 dynamical freezing, 25 EngageTM, 233 dynamical transition, 24 engineering , 229 dynamic heterogeneity, 13 ENR phase, 309 dynamic interfacial energy, 354 enthalpic interactions, 233 dynamic interfacial tension, 348, 355 enthalpy change, 136 dynamic mechanical analysis (DMA), 60, enthalpy relaxation effects, 54 243, 301 entropy, 136, 336, 340 dynamic mechanical spectroscopy, 60 EP copolymers, 286 dynamic quantity, 17 epoxide, 284 dynamic testing, 302 resin, 75, 238 dynamic transition, 3 EPR-G-MA/PP 70/30, 456 dynamic vulcanization, 279, 280 equilibrium constants, 71, 114 equilibrium melting point, 139 e equilibrium melting temperatures, 142 EBM droplet, 357 equilibrium morphology, 364 EB-rich amorphous region, 274 equivalent conductance, 64 Ehrenfest ratio, 6 equivalent frequency, 66 EHR51 molecules, 274 ethylene, 287 elasticity, 299, 357, 359, 383 – ethylene-acrylate (EA) copolymers, 445 elastic phase, 348 – ethylene-based elastomers, 286 elastomeric properties, 279 – ethylene–butene, 288 elastomers, 230, 233, 316 ethylene buten rubber (EBM), 357 – blends, 326 ethylene copolymers, 287 488 Index

ethylene–hexene-1 copolymers (EHR), –– with ethylene–propylene copolymer 273, 274 rubber, 270 ethylene–higher α-olefin elastomers, 286 –– with higher α-olefin rubber, 272 ethylene methylacrylate (EMA), 445 – blends of polyamides, 265 ethylene–methyl methacrylic acid ionomer – blends of polystyrene and styrene (EMAA), 357 copolymers, 260 ethylene–octene-1 copolymers (EOR), 233, – blends of polyvinyl chloride, 257 275, 365 – early work, 257 ethylene–α-olefin elastomers, 233 – impact performance, 277 ethylene–propylene, 286, 288 – poly(butene-1) as semicrystalline – copolymers, 168 rubber, 278 ethylene propylene diene monomer – structure in injection-molded (EPDM), 354 specimens, 276 – blends, 271 – styrene block polymer rubber, 278 – BR blends, 302 – tensile properties, 275 – CR blends, 323 extended version of theory (eMCT), 25 – elastomer with iPP thermoplastic, 282 externally controllable processes, 36, 40 – ionomer, 272 – confinement effects, 47 – 80/20/iPP composition, 281 – cross-linker effects, 45 – matrix, 281 – crystallization effects, 42 – phases, 268 – filler effects, 44 – rubber – plasticizer effects, 43 –– with iPP + PA6 thermoplastic, 284 – pressure effects, 40 –– with PA6 thermoplastic, 284 ExxonMobil Chemical Co., 282 –– with PBT thermoplastic, 284 – rubber, TPVs of, 284 f ethylene–propylene–diene monomer fabrication, 230, 231, 233 (EPDM), 249 fibrillation, 238 – rubbers, 280 fillers, 167, 230, 231, 282 – terpolymer, 271 – distribution in rubber, 308 ethylene–propylene–diene terpolymers – filler network, 323 (EPDM), 269 – polymer combinations, 44 ethylene–propylene random copolymers – retention, 231 (EPR), 269 – rubber interaction, 314 ethylene–propylene rubber (EPR), 235, 356 finite-element analysis (FEA), 239 ethylene–vinyl acetate, 258 – computer models, 239 ethylene-vinyl alcohol copolymer first-order phase transition, 6 (EVON), 384 flexible bonds additivity models, 81 ethylene vinyleacetate (EVA), 417 flexural stiffness, 231 Etxeberria, 103 floating polymer, location and shapes of, 357 eutectic crystallization, 155 Flory diluent theory, 141 evolution of phase morphology in PMMA/PS/ Flory equation, 146 PBT 20/60/20 blend, 367 Flory–Huggins binary interaction, 89 excitation spectra, 12 Flory–Huggins interaction, 99 exfoliated organoclays, 459 – parameter, 141, 146, 339, 342, 345 experimental data, 33 Flory–Huggins model, 70 experimental rubber–plastic blends, 257 – lattice model, 112 – blends of isotactic polypropylene, 269 Flory–Huggins parameters, 429 –– with ethylene–butene-1 copolymer, 273 – for binary blends, 340 –– with ethylene–hexene-1 copolymer, 274 – interaction parameters, 420 –– with ethylene–isotactic propylene Flory–Huggins theory, 89, 140, 305 copolymers, 272 Flory theory, 342 –– with ethylene–octene-1 copolymer, 275 fluorocarbon elastomer/HNBR blend, 327 Index 489

Fourier’s transformation analysis, 56, 473 – breadth, 78 Fourier transform infrared spectroscopy – manipulation, 36 (FTIR), 254 – mechanism, 20 – spectroscopy, 272 – phenomenon, 34 Fourier transform Raman spectroscopy – region, 139 (FTRS), 254 – shape characteristics, 78 Fox equation, 88 – signals, 58, 74 fracture surface of vulcanized NR/BR 80/20 – strength, 78 blend, 313 – temperatures, 3, 55, 139, 160, 232, 245, 285, fracture toughness, 240 299, 300, 301, 302 fragility, 11, 17 –– composition-dependent, 28 – concept, 17 –– determination of, 55 – index, 66 –– effect of pendant group length, 39 free energy, 231, 342, 343 –– effect of tacticity, 38 – change, 136 – theoretical approaches, 20 – of crystallization, 139 – theories of, 4 – of mixing, 136, 137 glassy behavior, kinetics of, 8 – states, 32 glassy polymers, dielectric relaxation modes free interfacial energy, 354 in, 65 – model, 354 gold , 44 free radical polymerization, 286 graft copolymers, 167, 263 free space of matrix (FSM), 386 grafting, 408 free surface energy, 347 grafting fromapproach, 408 free volumes grafting toapproach, 408 – additivity of, 82 graphene oxide (GO), 472 – theory, 82 graphene oxide sheets (GOSs), 168, 473 full width at half-maximum (FWHM), 410 graphene sheet, 405 functionalization of the rubber, 266 – rolling up, 406 graphite, 405 g GT equation, 90 gel-like behavior, 422 gum elastomers, 285, 286 gel-like criterion, 422 gyration, of amorphous component, 143 GHz–THz region, 12 Gibbs–DiMarzio theory, 31, 37 h – entropy, 82 half-unfreezing temperature, 55 Gibbs free energy, 67, 353 Han plot, 413 – change, 136 Harkins equation, 351 – function, 5, 339 Hausdorff–Besikovitch dimensionality, Girifalco–Good theory, 436 35 glass beads (GB), 384 Havriliak and Negami (HN) functions, 65 glass densification, 10 heart flow curves, 57 glass formation heat capacity, 52, 79 – disaccharides, 2 heat of reaction, 245 – liquids, 20 heat resistance, 322 –– fragility plots, 18 heterogeneity, 72 – materials, relaxations in, 12 heterogeneous miscible blends, 94 – percolative phenomena in, 34 heterogeneous mixtures of polymers, 346 glassification, 2 heterogeneous morphology, 299 glass microsphere (GMS), 379 Heterogeneous nucleation, 142 glass transformation range, 56 heterogeneous rubber blends, 300 glass transformation region, 2 heterogeneous system, 346 glass transitions, 1, 63, 66, 71, 139, 244, 245 heterophase mixture, 393 – behavior, 4 hexene-1, ethylene copolymers of, 273 490 Index

highdensitypolyethylene(HDPE), 166,240,354 i – cores, 361 ideal glass transition, 8 – EPDM core/shell minor phases, 360 IIR/EPDM blends, 322 – PP interface, 377 immiscibility, 68, 389 – PS/PMMA blends, 372 immiscible amorphous component, 160 – PS/PMMA 70/15/15 ternary blends, 365 immiscible blends, 158 – rubber interface, 240 – complex modulus, 446 high impact polystyrene (HIPS), 168, 235, 391 immiscible polymer blends, 159 – polymers, 263 – containing , 433 – PPE blends, 265 –– carbon nanotubes, 459 high temperature crystallizing component ––compatibilizing effect of nanoparticles, 464 (HTC), 153 –– feeding sequence effect, 437 high-throughput (HTP), 424 –– kinetic parameters, 437 high-Tm component –– nanoclay, 450 – crystallization of, 209 –– nanofilled polymer blends, morphology Hildebrand solubility, 71 evolution of, 462 histogenesis, 377 –– nanoparticle migration, 462 Hoffman–Weeks plots, 142 –– nanosilica, 447 – for PAS/PEO blends, 142 –– parameters determining localization, 433 homogeneity, 305 –– rheology of, 446 homogeneous polymers, 393 –– thermodynamic parameters, 434 homogeneous system, 339 –– viscosity effect, 441 homopolymers, 40, 81, 144 – crystallization characteristics, 136 – miscible blends, 140 – crystallization rate, 161 HPDE/PMMA interface, 372 – melting behavior of crystalline matrix, 163 HTC dendrites, 156 – superstructures, 158 hydrocarbon solvents, 284 immiscible polymers, 347 hydrodynamic interaction, 379 – chains, 470 hydrogenated nitrile butadiene rubber inelastic deformation, 239 (HNBR), 327 inelastic neutron scattering (INS), 252 hydrogenated styrene influence of content of PMMA enveloping – block polymers, 278 phase on average equivalent volumetric Hydrogen bonding diameters of PBT + PMMA composite – interactions, 38, 254 domains, 361 – networks, 2 Infrared spectroscopy, 254 – proton, 88 initialization, 240 hydrogen bonding, 100, 137, 138 in’situ emulsion polymerization of NBR, hydrophilic (A200), 431 257 hydrophilic nanoparticles, 467 in’situ ester-interchange reactions, 171 hydrophilic silica, 440 interaction energy density, 141 – filled blends, 436 interassociation equilibrium constant, 114 – particles, 439 interassociation interactions, 90 hydrophilic silica nanoparticle-filled interfacial energy, 230, 350 near-critical PS/PVME (10/90) blends, 432 interfacial free energies, 353 hydrophobic (R972) concentration, 431 interfacial property, 256 hydrophobic polymers, 404 interfacial surface, 231 hydrophobic silica nanoparticles, 433 interfacial tensions, 256, 307, 325, 347, 349, fi hydrophobic SiO2- lled PS/PVME blends, 431 350, 353, 355, 356, 357, 358, 365, 372, 379, hydrostatic stress, 239 394, 434 hydroxypropyl methylcellulose (HPMC), 83 – values, 356 hydroxypropyl methylcellulose acetate interfibrillar, 139, 143 succinate (HPMCAS), 83 – segregation, 143 hysteresis peak, 53 interlamellar segregation, 143, 201 Index 491 intermolecular interactions, 38, 344, 389, kinetics, of dispersive actions, 231 390, 391 Kohlrausch’s exponent, 12 internal cavitation, 240 Kuhn length, 96 interpenetrated spherulites, formation process, 224 l interphase boundary, 335 lamellae structure, 143 interspherulite, 139 large melting point difference, 201 interspherulitic segregation, 192 – crystallization behavior of intramolecular hydrogen bonding, 114 –– high-Tm component, 201 intraspherulitic phase separation, 214 –– low-Tm component, 209 Inverse gas chromatography (IGC), 70, 255 – morphology and structure of blend ion–dipole intercomponent interactions, 2 systems, 213 ion-exchange reaction, schematic picture, 404 Larson’s based mean-field theory, 416 ionomers, 287 laser scanning confocal microscopy, 248 isobaric capacity, 86 latent heat of transition, 5 isochronal DMA scan, 62 LDPE, 362 isochronal ϵ((T) spectra, 95 – amorphous polymer, 161 isochronous dynamic temperature, 421, 430 – droplets, 161 isomers, 233 – samples composition, 451 isoprene, 317 LEST behavior, 428 – based unsaturated rubbers, 235 ligament, 238 isotactic polypropylene (iPP), 155, 160, 233, linear-chain polymers, 38 269, 270 linear heating cycles, 52 – emanating, 279 linear mixing rule, 109 – EP blends, 275 – deviation from, 100 – failure, 276 linear thermal expansion, 59 – lamellar crystals, 275 linear viscoelastic measurements, 412, 456 – matrix, 276 liquid crystalline polymer (LCP), 365, 436 – PB-1 blends, 278 liquid fragility, 17 – PE blends, 272 liquid–liquid demixing, 278 – plastomer blends, 273 liquid–liquid mixture, 139 – spherulites in a 50/50 iPP/LDPE blend, 162 liquid–solid boundary, 145 – ternary blends, 272 liquid–solid interface, 145 – thermoplastic liquid–solid-like transition (LST), 446 –– TPVs of, 284 liquid–solid phase separation, 192 isothermal crystallization, 150, 221 liquid–solid transition (LST), 412 – data, 150 liquid to glass, transition from, 25 – kinetics, 207 lithium-neutralized poly(ethylene-co- isothermal plots, 64 methacrylic acid) copolymer, 171 iTEM software, 472 LM model, 96 Izod impact strength, 268 loading, 43 loss angle tangent, 422 k loss modulus, 61, 63 Kauzmann paradox, 22 loss tangent, 61 Kauzmann temperatures, 9, 22 low critical solution temperature (LCST), 339, ΔK effect, 113 345, 416 Kerner model, 450 – system, 417 Köhlrausch–Williams–Watts function, 23 low-induced molecular orientation, 276 kinetic curves of mixing for ternary PMMA/PS/ low temperature crystallizing component PBT 20/60/20 blends, 366 (LTC), 153 kinetic factors, 363 – spherulitic morphologies, 153 kinetic mixing curves for PMMA/PS/PC 20/60/ low-Tm component 20, 368 – spherulitic growth, 209 492 Index

m miscible crystallizable blends, crystallization macromolecules, 299, 342, 392 behaviors of, 139 macroscopic uniform liquid layer, 350 miscible iPP/EPR84, 270 maleic anhydride (MA), 249, 323, 375 miscible polymer – functionalized polypropylene, 170 – blends, 138, 415 – grafted PP, 284 –– amorphous component, 144 – modified rubber (SEBS-MA), 267 – composition curve of, 84 maleic anhydride grafted polypropylene mode-coupling theory, 20 (mPP), 155 model blend systems, 471 matrix-disperse morphology, 447 moderate-to-strong signal, 79 matrix ligament size, 238 modulated-temperature matrix molecular weight, 263 – DSC, 56 matrix thermoplastic material, 240 – TMA, 59 MCM-41 nanoporous glass, 48 molar entropy, 86 mean-field theory, 355 molecular dynamics computer simulations, 7 means of determination, 50 molecular mobility, 314 mean square fluctuations, 14 molecular weight, 233, 286, 307 mechanical properties, 326 – diluent, 146 melt annealing, 159 – ratio, 307 melting behavior, 138, 139 montmorillonite clay, 402 melting point, 147 Mooney viscosity, 308 – depression, 140 morphological observations, 211 melt linear viscoelastic measurements, 460 morphological types, 348 melt polymer blending, 231 – in ternary blends, 369 melt rheology, 450 – in ternary polymer blends, with phase methacrylate–butadiene–styrene, 258 encapsulation, 372 methacrylated butadiene-styrene copolymer morphology characterization, 247 (MSBR), 391 morphology–composition relationships, – particles, 391 372 methyl acrylate, 283 mosaic cells, 32 4,4-methylenedianiline (MDA), 284 multicomponent material, 394 α-Methylstyrene, 265 multicomponent polymer blends, 394 Michaelis–Menten-type function, 48 multicomponent polymeric emulsions, 379 microcanonical partition function, 30 multicomponent systems, 394 microheterogeneity in blends, 326 multicomponent systems, thermodynamic microhomogeneity in blends, 326 equilibrium of, 339 micrometer scale, 192 multifunctional block copolymers, 401 microscale, 300 multiparticle computer models, 239 microscopic density fluctuations, 24 multiphase blends, 346, 373 microvolumes, 392 multiphase mixtures, 393 minimal concentrations (percolation multiphase polymer blends, 355, 393 threshold), dependence of, 383 multiphase systems, 353, 394 miscibility achievement multiple percolated structures, 372 – via chemical modificatiom, 99 multiwall carbon nanotubes (MWNT), 170 miscibility/compatibility, 67, 72, 109, 136, 137, multiwalled nanotubes (MWNTs), 405 305, 389, 392 mutual solubility, 336, 337 – indicators, 72 MWCNT-filled PC/PE blends, 444 – partial, 72 MWCNT-filled PE/ABS blends, 444 – of polymer blends, 136 MWCNT-filled poly(butyl terephathalate) miscible binary crystalline blend systems, 214 (PBT), 413 miscible binary polymer systems, 98 MWCNT-filled polylactide, 413 miscible blends, 232, 233 MWNTs miscible crystalline, 202 – TEM micrographs, 445 Index 493 n – SBR/CB compounds, 310 nanoclay, 323, 455 – silica interaction, 316 nanoclay-filled PET/PE 10/90 blends, 456 – silica nanocomposites, TSC spectra of, 45 nanoclay-filled polymer blends, 450 – star SBR blends, 322 nanocomposites – TPI blends, 314 – inear and nonlinear viscoelastic network–droplet morphological behavior, 412 transition, 432 – WAXD patterns and TEM images, 410 Neumann triangle method, 376 nanofilled polymer blends, 433 Neutron reflectivity, 256 nanofillers, 472 neutron scattering, 12, 252 nanoheterogeneities, 67 neutron spin echo (NSE), 252 nanometer scale, 201 – spectroscopy, 253 nanoparticle-filled blends, 431 Newtonian fluid, 61 nanoparticle-filled composites, 403 Newtonian viscosity, 450 nanoparticle-induced compatibilization, 472 Nishi–Wang equation, 141 nanoparticle-induced shift, 420 nitroxide radical, Arrhenius plots, 50 ´ nanoparticle localization, 464 4,4 -(N,N-dibutylamino)-(E)-nitrostilbene, nanoparticle–polymer interaction, 433 64 nanoparticles containing polymer blends, 402 non-Arrhenius temperature behaviors, 15 nanoparticles in polymer blends noncombinatorial entropy, 340 – compatibilizing effect, 465 noncrystallizable, diffusion behavior, 214 nanopores, 48 nonequilibrium glass, 9 nano-reinforcing, 452 nonequilibrium morphology, 80 nanoscopic structure, 433 nonergodic glass, 9 nanosilica-filled, 418 nonergodicity parameter, 25 nanostructural characterization, 409 noninteracting entities, 26 – differential scanning calorimetry (DSC), 411 nonisothermal conditions, 150 – linear rheological measurements, 412 nonisothermal crystallization – transition electron microscopy (TEM), 410 – behaviors, 166 – x-ray diffraction, 409 – process, 150, 152 nanotubes, thermal conductors, 407 – thermograms, 150 natural rubber (NR), 235, 282, 392 nonisotropic morphology, 231 – blends containing, 311 nonlinear function, 231 – BR blends, 307, 310, 312, 314, 316, 317 nonlinear melt rheology, 448 – BR compounds, 302, 310, 314 non-Newtonian flow behavior, 277 – CB compound, 302, 310, 314, 326 nonpolar rubber – CB interaction, 309 – with nonpolar thermoplastic, 282 – CR blends, 315, 316, 317, 326 – with polar thermoplastic, 284 – CSBR blends, 326 nonradiative energy transfer (NRET), 255 – elastomer nonreversible dimensional deformation, 59 –– with PE thermoplastic, 282 non-wetting behavior, 349 –– with polypropylene thermoplastic, 283 normal phase separation (NPS), 429 * – ENR blends, 314 N2-plasma surface-treated PP (PP ), 471 – ENR interface, 318 nuclear magnetic resonance (NMR), – EPDM blends, 316, 323 50, 253 – IIR 50/50 blends, 324 nucleation, 148, 159, 240, 251, 313 – iPP TPVs, 283 – ability of PES, 199 – NBR blends, 316 – density, 161 – polyurethane/layered silicate – efficiency, 212 compound, 315 nucleation and growth (NG), 416, 422 – PP compositions, 283 Nylon 6, 171 – PU blends, 315 – LDPE blends, 171 – SBR blends, 302, 313 Nylon 66, 375 494 Index

o PBT/PS blends, SEM photographs of, 385 oil resistivity, 323 PCOM images, 320 olefinic elastomers, 281 – at blending ratio of 75/25, 325 α-olefin impact modifiers, 286 – of CR/BR blends, 326 oligomeric molecular weights, 256 PEG/PLA blends, 169 onset temperature, 62 pendant drop, 256 optical microscopy (OM), 112, 138, 247, percolation cluster, 35 248, 300 percolation theory, 35, 387 optical-shear technique, 467 percolation thresholds, 373, 382, 387, 394 orevac/clay volume fraction – experimental and theoretical dependences – critical strain, 458 of, 388 Orevac-compatibilized blends, 459 – volume fraction, 373 organic bentonite, 50 peroxide, 281, 282 organic small molecules, 232 perturbations, confinement-induced, 47 organoclay (Closite 20A), 318, 471 phase angle, Van Gurp plot, 412 organoclay-filled blends, 459 phase contrast optical microscopy, 300 organo-modified montmorillonite – image of SBR/EPDM 50/50 blend, 304 (OMT), 315 – images of SBR/BR 60/40 blends, 321 organophilic montmorillonite, 50 phase diagram orientational motion, 24 – LCST, 68 oscillating frequency, 51 – PPG–PHMA–p(MMA-n-BMA) ternary oscillating strain frequency, 112 blends, 342 oscillatory heating rate, 245 – PS–PMMA–SAN chloroform solutions, 337 Osmium tetroxide, 248 – UCST, 68 Owens–Wendt theory, 436 phase homogeneity, 94 oxidation, 232 phase inversion, 359, 375, 389 Ozawa equations, 150 phase microscope images – plot of log[ln(1X(t))], 151 – 75/25, 303 Ozawa’s method, 151 – of 75/25, 303 ozone resistance, 311, 322 – butyl/EPDM 50/50 blend, 304 – SBR/NBR blends, 303 p phase morphology, 158, 346, 364 Painter–Coleman association model, 87, 88, – formation of, 345 107, 113 – in PMMA/PS/PBT 20/40/40 blends, 371 Palierne model, 446, 447, 456 – in PMMA/PS/PBT 40/40/20 blends, 371 – palierne model, 456 – polymer blends, 137 – viscoelastic model, 355 –– prediction of, 346 partially miscible polymer blends phase selectively, 394 – nanoparticles, 414 phase-separated systems, 4 –– on phase separation, 415 phase separation, 337, 416 –– PS/PVME behavior, 428 – behavior, 414 – nanosilica on phase-separation behavior of –– of polymer blends, 415 PMMA/SAN blends, 418 – morphology evolution, 432 – silica nanoparticles on phase separation of – temperature, 418 PMMA/polyvinyl acetate, 417 – thermodynamics, 135 partial wetting, 351, 353, 378 phase viscosity ratio, 364 – morphology, 375 PHBV/ENR blends, 162 particles phenomenology, 4 – with highly elongated aspect ratio, 236 phenyl ketone hydrogenated, 59 – polymer interaction, 414, 434 PHE/PCL 20/80 blend, 151 – shape, 394 2:1 phyllosilicates, chemical structure, 404 – sizes, 161, 236, 313, 365, 384, 386, 392 physical properties, 324 Payne effect, 325 PIB droplets, 447 Index 495

Pickering emulsion, 377 (PBD), 69, 163, 235, 261, Pickering-type structures, 377 264, 338 PI + P4tBS blends, MTDSC thermograms, 94 – SAN blends, 268 plain kinetic effects, 11 poly(butene-1), 273 plastic, 229 polybutene (PB), 248 plasticizers, 230, 231, 281, 282 poly(butylene adipate) (PBA), 103, 202 – molecules, 90 – crystals, 220 – plasticizing effect, 390 – melt, different diffusion behavior, 206 plastic matrix, 238 – rich blend, 222 Plastic–rubber blends, 241 poly(butylenes adipate-co-terephthalate) plastics, 229, 230 (PBAT), 377 plastomers, 277 poly(butylene succinate) (PBS), 103, 193, 377 P85LI5n4 – crystallization – storage modulus versus frequency, 451 –– half-time, 212 p-methylstyrene–isobutylene copolymers, 283 –– temperature, 210 Poisson distribution, 166 – dependence of growth rate, 210 Poisson ratio, 43 – growth rate, variation, 211 polar esters, 44 – PBA blends, 203, 205, 215, 217, 218, 222 polarity, 43, 266, 318 –– AFM images, 191 polarized optical micrograph (POM), 270 –– AFM phase images, 216, 218, 221, 222 polarizing light microscopy, 247 –– crystallization, 219, 220 polar rubber –– DSC heating curves, 204 – with nonpolar plastic, 283 –– optical micrographs, 215, 217, 218, – with polar thermoplastic, 284 219, 222 poly(acetoxy styrene) (PAS), 142 –– optical micrographs of, 191 polyacetylene, 325 – PBA system, 225 polyacrylates, 344 – PBAT/PCL blend, 379 polyamide (PA), 265, 444 – spherulites, 206, 216, 219, 220 – ABS blends, 246 –– vs. crystallization time, 203 – dispersed phase, 443 – temperature dependence of spherulitic – EA copolymer EA(10/90) immiscible growth rates, 205 blends, 461 poly(butylene succinate) (PBSU), 156 – EPR blends, 452 poly(butylene succinate-co-butylene adipate) – isothermal crystallization rate, 170 (PBSA), 152, 193 – PA6 matrix, 246, 355, 444 – crystallization of, 223 – PA6/PP/CNTs (60/40/3) nanocomposites, –– kinetic parameters, 213 TEM images of, 462 –– temperature dependence, 212 – PA6/PP nanocomposites, storage modulus – rich blends, 213 variation, 452 –– heterogeneous nucleation, 213 – PA6/PP/PS ternary blends, 355 –– PVDF/PBSA, 213 – PE 75/25 and 25/75 blends, 460 – spherulitic structures, 154, 224 – PE 80/20 blend, 470 poly(butylene succinate-co-butylene – PE 75/25 blend nanocomposite, 460 carbonate). See poly(epichlorohydrin) – (—) PE/PA, complex viscosity, 459 poly(butylene terephthalate), 103, 202, 361 – rubber blends, 266 poly(butyl terephathalate) (PBT) – SAN/whisker system, 441 – cores, 366, 367 polyamide 6 (PA6), 375 – domains, 362 – DSC cooling curves, 165 – GMS solid particles on concentration, polyamides, 284, 286 influence of content of, 385 – blends, 170 – matrix, 392 polyarylates (PAr), 202 – melt viscoelastic, 454 poly(benzilmethacrylate), 345 – MWCNT, 413 polyblends, 389 – particles, 389 496 Index

– PC rubber blend, 392 – SBR matrix, 362 – PE blends, 384 – SBR ratio, 359 –– nanoclay-filled, 471 poly(ethylene adipate), 103 – PMMA (PMMA/PS/PBT 20/40/40), 371 polyethylene blends, 229 –– core/shell domains, 366 poly(ethylene naphthalate) (PEN), 138 –– PS/PMMA 30/50/20, 361 – 40/60 PEN/PET blend –– ratio, 362 –– crystallization behavior, 148 –– in ternary blends to co-continuous – PET blends, 148, 173 structures, 374 poly(ethylene oxide) (PEO), 27, 142, 193, 344 – PS interface, 362 – fibrils, 196 poly(ϵ-caprolactone), 345 – PECH, 338 poly-ϵ-caprolactone (PCL), 151, 201, 377 – PEO + phenolic + PCL blends, 114 – PEO blends, 470 – PMMA, 338 polycarbonate (PC), 75, 201, 265, 343 – spherulites, 194, 195, 196, 197, 199 – blends, 391 –– disappeared, 194 – SAN blends, 464 polyethylene phase, 281 –– graphene 59/40/1 blend, 473 polyethylene/polyamide (PE/PA) blends, 384 – shell, 392 poly(ethylene succinate) (PES), 103, 193 polycarbonate–ABS, 285 – crystallization of, 198 polychloroprene (CR), 390 – fibrils, 196 poly(dicyclohexylitaconate) (PDCHI), 160 – PEO blends, 193, 198, 201 poly(2,6-dimethylphenylene ether), 265 ––composition dependence of morphological poly(2,6-dimethyl-1,4-phenylene oxide, 49 patterns, 200 poly(2,6- dimethyl-1,4-phenylene oxide), 139 –– crystalline morphologies, 195 polydimethylsiloxane (PDMS), 256 ––polarized optical micrographs of spherulitic – PIB blends, 466 morphology, 194 –– Cryo SEM freez fracture, 466 –– process of interpenetration, 194 polydispersity, 365 – spherulites, 193, 195, 197, 198, 199, 200 poly(epichlorohydrin) (PEC), 156 –– type, 195 polyepiclorhydrin, 344 poly(ethylene terephthalate) (PET), 138, 357 polyester blends – dispersed phases, 468 – transesterification on miscibility/ – HDPE blends, 170 morphology, 172 – PEN blends, 173 poly(ester carbonate) (PEC), 193 –– Thermal Properties, 172 poly(ether imide) (PEI), 140 – PP/3MA/2T polyethylene (PE), 235, 272, 340, 353, 359, 375 –– schematic, 469 – core dimensions, 362 –– TEM images, 468

– g-MA, 458 – PP/TiO2 – matrix blends ––number and volume average diameter, 469 –– relaxation spectra, 457 – PP/2T nanocomposite – PA6 blend systems, 472 –– TEM image, 467 – PA interface, 384 poly(2-ethyl-2-oxazoline), 59 – PA/O, complex viscosity, 459 poly(hexamethyleneadipate) (PHMA), 341 – PE1/PP/PC system, 376 poly(β-hydroxybutyrate), 103 – phase, 362 poly(3-hydroxybutyrate) (PHB), 201, 344 – PP interface, 364, 376 poly(hydroxy ether of bisphenol-A) (PHE), 151 – PP/PS blends, 364 poly(4-hydroxystyrene), 103 – PP/PS systems, 375 poly(hydroxyvalerate), 103 – PS 45/55 blend, optical micrographs, 438 polyisobuthylene, 340 – PS co-continuous (45/55) blend polyisobutylene, 235, 436 –– electrical resistivity vs. mixing time, 439 polyisoprene, 69, 168, 436 – PS ratios, 360 poly(isoprene-butyl acrylate) block – SBR composite domains, 359 copolymer, 316 Index 497 poly(lactic acid) (PLA), 377 polymer ratio, 281 polylactide plastic–acrylate rubber blends, 230 polymethylacrylates, 344 poly(L-lactic acid), 444 poly(methylmetacrylate)-poly poly(L-lactide) (PLLA), 193 (epichlorohydrin) (PECH), 338 polymer (PS), 337, 360, 389 – PECH + PVME, 92 – blend, 3, 54, 135, 146, 192, 281, 335, 345, 346, – PMMA pair, 338 355, 358, 389, 401 poly(methyl methacrylate) (PMMA), 37, 99, –– crystallization kinetics, 147 163, 265, 337, 339, 340, 354, 362, 375 –– melting behavior and crystallization, 136 – co-continuous phase, 380 –– phase boundaries in, 67 – contents, 362, 382 – characteristics, 135 – dispersions, 382 – components, 335, 337, 340, 346 – domains, 365 – composite technology, 401 –– sizes, 381 – filler interaction, 435 – dosages, 382 –– energy, 435 – droplets, 372, 383 – film, 256 – encapsulated by PS (PS/PMMA), 354 – matrix, 446 – fibrils, 354 – miscibility, 336 – phase, 368 – nanocomposites, 407, 412, 446, 460 –– morphologies, 380 –– carbon nanotube –– separation of, 417, 418 ––structure/characteristic of, 405 –– viscosity, 365 ––surface modification of, 407 – PMMA + PMAA blends, composition –– layered silicate, 402 dependences, 107 ––surface modification, 403 – PP/PS ternary blends, 354 –– polymer-silicate nanocomposites – primary dispersed phase, 382 ––structure, 405 – PS blends, 382 –– silica nanoparticles, structure/ –– dynamic asymmetric blends, 416 characteristics of, 408 –– HDPE ternary, 372 –– slope, 414 –– PBT blends, 366, 370 –– type of nanofiller, 402 –– PBT ternary blends, 365 – phases, 347 –– PC 20/60/20 ternary blends, 366 polymer blends, samples of phase morphologies – PS interfaces, 362 – prepared by melt extrusion, 347 – PVCN mixture, 344 polymeric materials, 1 – PVPh mixture, 344 polymerization, 229, 325 – SAN blends, 421, 422, 426 – degree of, 3 –– binodal phase diagram, 423 – of styrene, 263 –– OM images, 427 polymerizing solution, viscosity changes, 262 –– SAN 40/60 blends, 423 polymerizing styrene/styrene–acrylonitrile, –– SAN 60/40, dynamic temperature 261 ramp, 421 polymer-layered silicate nanocomposites, 405 –– SAN, phase diagram, 425, 426 polymer/nanoparticle composites –– SAN(70/30)/SiO2-5 mixture – time-–temperature superposition, 425 ––Cole–Cole plot, 419 polymer–nanoparticle interfacial –– SAN/SiO2–OH 70/30/3 annealed interaction, 412 ––TEM images, 424 polymer–nanoparticle interfacial tension, 434 – shell-forming phase, 354, 361, 362 polymer–polymer blend, 137 – viscosity, 442 polymer–polymer grafts, 283 poly(methyl methacrylate-b-isoprene), 168 polymer–polymer interaction, 340 poly[(-methyl styren)-co(acrylonitrile)]/ polymer–polymer interdiffusion, 253 PMMA (PαMSAN/PMMA) blends, 427 polymer–polymer mixture, 137 poly(α-methyl styrene), 69 polymer–polymer pair, 141 poly(o-chlorostyrene), 97 polymer–polymer systems, 392 polyolefins, 229, 278 498 Index

– blends, 244, 250, 252 – PMMA (50/50) blends – elastomers, 284 ––tungsten disulfide multilayer onion-shaped – plastics, 282 (W2S) particle, 464 – rubbers, 229, 235 – poly(phenyleneoxide) blend, 392 – thermoplastics, 235 – poly(vinyl methyl ether) (PS/PVME), 428 poly(oxymethylene) (POM), 156 – PP blends, 163 – images, 193 – PS + PPO blends, glass-transition poly (ethyleneoxide) (PEO), 338 temperatures, 102 poly(phenylene ether) (PPE), 135 – PS + TMPC blend, 80 polyphenylene oxide (PPO), 473 – PVME (10/90) blend polyphosphazenes, 39 –– morphology evolution, 431 polypropylene (PP), 170, 235, 280, 281, 353, 436 – PVME blends, 429 – EOR (ethylene-co-octan copolymer 70/30) – rich phase network, 433 blends, 453 – SBR matrix, 362 – EPDM blend, 272 – shell, 360 – EPR blends, 248 poly(styrene-acrylonitryle) (SAN), 343 – EVA03 blend, 449 poly(styrene-co-acrylonitrile), 101 – EVA80/20 blends poly-(styrene-co-4-chlorostyrene), 139 –– morphology of, 440 poly(styrene-co-vinylphenol), 108 – EVA/silica blends polystyrene/organoclay (PS/organoclay) –– TEM images, 442 mixture, 411 – gr-MA(MA), 467 poly(4-tert-butylstyrene), 99 – LCP/PS ternary system, 364 poly(trimethylene terephthalate) (PTT), 75 – melt viscoelastic, 454 – nonisothermal crystallization behaviors, 151 – PMMA blend polyurethane latex, 315 –– CB system, 441 polyurethanes, 258 –– TEM micrographs, 441 polyvinilidenfluoride (PVDF), 391 – polyamide 6 (PA6)/PS blends, 360 – crystallization of, 208 – PP-GMA/MMT/EOR nanocomposites –– dendrites, 157 –– storage modulus, 453 –– kinetic parameters, 208 – PP + PS blends, 75 –– matrix crystallization temperature, 210 – PP + PS samples, 74 –– temperature, 212 – PS 70/30 – vs. crystallization time, 204 –– micrograph of, 439 –– spherulitic radius, 205 – PS binary blends, 385 – crystals, 213 – PS core/shell droplets, 355 – dendrites, 156 – PS/PA6 40/30/30, 360 – dispersed particle, 472 – SEBS blends, 471 – matrix, 210 polypropylene-glycidil methacrylate – PBSA blend, 215 (PP-GMA), 453 – PBSA 50/50 blend, 222 poly(propylene glycol (PPG), 340 – PBSA blends, 209, 216 polypropylene phase –– DSC cooling traces, 202 – crystallization, 282 –– DSC cooling traces of, 202 polystyrene (PS), 163, 260, 337, 344, 353, 359, – PBSA system, 207 373, 375 – PBS blend, 209, 211 – blocks, 278 – PBS blend crystallization – domain, 470 –– polarized optical micrographs, 209 – droplet size, 376 – PHB blends – HDPE/PMMA blends, 365, 372 –– crystallization of, 156 – matrix, 362 – poly(hydroxy butyrate)(PHB), 156 – OMLS, DSC traces, 411 – rich blends, 208, 214 – PC–TMPC mixture, 344 – rich PVDF/PBSA blend – PE blends, 359 –– Avrami analysis, 207 Index 499

– spherulites, 214, 223, 224, 225 r –– growth rates, 153, 154 Radical-initiated reactions, 169 –– radius, 204 radical reaction routes, 169 –– structure crystallized, 157 radius of gyration, 387 – temperature dependence of, 207 Raman spectra finding, 473 polyvinyl acetate (PVAc), 344, 417 Raman spectroscopy, 254 – enriched phase, 417 reactive compatibilization, 138, 169 – isobaric volume, 10 recrystallization, 141, 142 – PVAc + epoxy resin blends, 46 reflected light microscopy, 247 – PVAc + epoxy thermosets, 74 refractive index, 55, 257, 300 polyvinyl alcohol (PVOH), 256 – values, 256 poly(vinyl chloride) (PVC), 160, 249, 326, 390 relative permittivity, 64 – butadiene–acrylonitrile copolymer, 392 relative ratio, 229 – NBR blends, NBR of, 259 relaxation, 245 – PCL interactions, 255 – dynamics, 11 poly(vinylcinnamate) (PVCN), 344 relaxation function, time variation of poly(vinylidene chloride-co-vinyl chloride) – schematic illustration, 23 (PVDCVC), 156, 193 α-relaxation mechanism, 66 poly(vinylidene fluoride) (PVDF), 152, 201 relaxation times, 14, 33 poly(vinyl methyl ether) (PEMV), 345, 416 relaxation transitions, 392 poly(vinyl methyl ether) (PVME) resilience, 229, 230 – phase, 432 rheological method – PVME + PVPh, 99 – phase -separation temperature, 428 – rich phase, 433 rheological percolation, 414 polyvinyl(phenol) (PVPh), 344 – threshold, 412 – KH + PPO blends, 60 rheological phase-separation temperature, 416 – miscible binary blends of, 104 rotational freedom, degree of, 37 – Tg(w) patterns, 105 rubber blends, 299, 300, 301, 305, 307, 324 poly(4-vinyl pyridine), 88 – characterization techniques for, 300 positron annihilation lifetime spectroscopy, 29 – distribution of fillers, 308 postpolymerization production, 285 – morphology and properties of different, 311 power-law fashion, 25 – structure and morphology, effect of material PPO–HIPS blends, 285 parameters and processing on, 303 pre-existing system, 376 rubber dispersion, 229, 238 Prigogine, 338, 340 rubber domains, 230, 239 Prigogin rules, 344 rubber/HDPE torque (viscosity) ratio, 364 property–composition curve, 389, 390 rubber inclusions, 238 proton donating groups, 108 rubber-modified PA blends, 269 pseudosolid-like behavior, 451 rubber–PA interface, 269 PS/HDPE/PMMA rubber particles, 235, 236, 238 – ultralow percolation threshold, in ternary – average size of, 235 co-continuous polymer blends of, 374 – eliminates, 282 PS/SBR-2/PE blends, transmission electron – size, 235 micrographs of rubber phase, 237 – PE contents in mixed SBR–2/PE dispersed – cross-linking, 39, 280 phase, 363 rubber–plastic blends, 229, 230, 231, 232, 233, 40/60 PTT/PEN blends, 152 234, 235, 236, 237, 238, 240, 243, 244, 245, pulse-induced critical scattering (PICS), 251 247, 261, 279 PVT method, 240 – atomic force microscopy, 250 – calorimetric methods, 245 q – characterization of interfacial quasielastic neutron scattering (QENS), 252 properties, 256 quiescent annealing, 377 – dielectric characterization, 246 500 Index

– dynamic mechanical characterization, 244 – different PE contents in, 360 – fluorescence spectroscopy scanning electron microscopy (SEM), 249, –– nonradiative energy transfer and excimer 301, 423 fluorescence, 255 scanning force microscopy (SFM), 250 – glass transition, 243 scanning probe microscopy (SPM), 250 – infrared spectroscopy, 254 scanning transmission electron – morphology/microscopy, 246 microscopy, 281 – neutron reflectivity, 253 Scanning tunneling microscopy (STM), 250 – neutron scattering, 252 schema describe a proposed mechanism of – neutron spin echo spectroscopy, 253 action of solid domains of PBT phase, 387 – nuclear magnetic resonance, 253 schema illustrating double action of solid – optical microscopy, 247 particles of phase 3 transformation, 386 – Raman spectroscopy, 254 SEB diblock copolymer, 377 – of SAN, 263 secondary relaxation transitions, 245 – scanning electron microscopy, 249 second-order power equation, 90 – scanning tunneling microscopy, 250 second-order transition, 6 – scattering methods – phase transitions, 5 –– light, X-ray, and neutron, 251 second-run DSC thermograms, 114 – spectroscopic methods, 254 segmental relaxation modes, 76 – transmission electron microscopy, 248 selective phase extraction, 373 – UV–visible spectroscopy, 254 semicrystalline morphology, 136 – vapor sorption and solvent probe semicrystalline polymers, 54, 58, 142, 240 techniques, 255 – blend, 139 – X-ray microscopy, 251 semicrystalline rubbers, 235 – X-ray photoelectron spectroscopy and SEM images, 312 secondary ion mass spectroscopy, 255 – of cryo-fractured surface of SBR/BR 50/50 – X-ray scattering, 251 vulcanizate. Particles, 320 rubbers, 229, 230, 235, 236 – of etched silicone/EPDM 50/50 blend before – molecular weight distribution, 281 vulcanization, 327 – morphology, 299 – of fractured surface of vulcanized NR/IIR 50/ – plastic blends, discontinuous properties 50 blends, 324 of, 239 – of NR/acrylic rubber 50/50 blends, 317 – plastic interface, 237 semiquantitative theory, 347 – plastic phases, 232 SEM micrographs, 355 – plastic ratio, 264 – of morphology of HDPE/PP/PS blends, 377 – plastic volume ratio, 264 – of PA6/PP/PS 70/15/15 blends, 356 – products, 314 – of PMMA phase morphologies in binary 45/ – toughening epoxy resins, 286 55 PMMA/PS, 380 – vulcanization, 281 SEM microphotographs, 367 rubber toughening of plastics, models for, 240 sessile drop, 256 – model, 241 shear stresses, 307 – interparticle distance model, 242 shear viscosity logarithm, 55 – percolation models, 243 silane-modified silica rubbers, 325

rubber toughening, of thermoplastics, 233 silica dioxide (SiO2), 408 – failure process, 236 silica-filled blend samples, 447 – mechanism, 233 silica-filled PDMS/PIB blends – morphology, 235 – drop cluster of, 448 rubbery inclusions, 237 silica-filled PMDS/PIB system – linear viscoelastic behavior, 447 s silica-filled PP/EVA blends, 449 saturated polyolefin plastics, 233 silica-filled PP/PS blends, 449 SBR–2/PS/PE blends, transmission electron silica nanoparticles, 402 micrographs of silicon rubber, 326, 327, 408 Index 501 siloxane, 408 – spherulitic growth, 159 Simha–Somcynsky hole theory, 29 –– rate for immiscible blends, 159 single covalent bonds, 37 spherulitic, model of, 143 single/multiwalled carbon nanotube spherulitic morphology, 197 – artistic representation, 406 – in PES/PEO blends, 200 single-phase polymer blends, 346 spin-lattice relaxation time, 77 single-phase systems, 4 spinning drop methods, 256 – glass transitions in, 78 spinodal curve, 343 single-walled nanotubes (SWNTs), 405 – for ternary blend, 343 – bundles, 407 spinodal decomposition (SD), 416, 421 sinusoidal stress, 61 spinodal decomposition temperature (ST), 416 sliding-motions mechanism, 48 spinodal diagram, 343 slim-fast mechanism, 463 spreading coefficients, 350, 351, 352, 354, slow secondary relaxation process, 13 356, 376 small angle light scattering (SALS), 415 – theory, 351, 363 small-angle neutron scattering (SANS), 71, S-shape curve, 323 252, 426 stabilizing interaction, 233 small angle X-ray scattering (SAXS), 71, 138 stable droplet-fiber dispersion, 348 small melting point, 201 star SIB rubber, 322 – PES/PEO blends state of dispersion, 71 –– crystallization temperature on the STEM, 281 crystalline morphologies, 198 stiffness, 43, 230 –– interpenetrating spherulites, formation Stokes–Einstein relation, 19 of, 195 storage modulus, 61 –– morphology and structure of, 193 strain, dissipation of, 237 smecfile clay, 402 strain induced crystallization, 173, 314 sodium-neutralized poly(ethylene-co- stress, 234, 299 methacrylic acid) copolymer, 171 stress concentration, 237 solar systems, 377 stress-induced cavitation, 238 solid dispersions, 83 stress-induced nanoparticle, 414 solidification, 240 stress relaxation, 60 solid-like behavior, 455 stress–strain curves, 276 solid–liquid interface, 145 structural relaxation, 10 solid particles, 384 – time, 30 solid-state formulations, 2 structural voids, 27 solid state polymerization (SSP), 173 styrene, 305, 309, 320 solid-state spectroscopy, 277 styrene-acrylonitrile (SAN), 168, 260, 337 solubility, 232, 306, 310, 345 – dispersion, 263 solubility parameters, 43, 231, 233, 305, – SAN + PMMA blends, 101 306, 355 styrene(acrylonitrile) copolymers, 339 – difference between various rubbers, 305 styrene-based block copolymers, 288 – for polymers, 356 styrene-b-butadiene-b-styrene triblock solvents, 233, 284 copolymer (SEBS), 168, 364 – resistance, 312 – droplets, 471 spatial fluctuations, 33 – particles, 240 specific volumes, 81 styrene butadiene rubber (SBR), 287, 362 spherical domains, 231 – BR blends, 319, 320, 322 spherulites, 111 – BR 60/40 blends, 320 – crystallization and formation process of, 195 – BR/CB 80/20/20 compounds, 309 – formation processes, 193 – domains, 359 – growth, 148 – EPDM 50/50 blend, 304 – growth rate, 160, 161, 163 – NBR blends, 303, 322 –– amorphous component, 140 – NR blends, 320, 322 502 Index

– NR 50/50 vulcanizate, 320 tensile testing, 275, 326 –– AFM phase image of, 321 tensile toughness, 238 styrene-butadiene-styrene (SBS), 448 – in blend, 238 styrene-co-acrylonitrile (SAN), 418 ternary blends, 340, 345, 348 styrene (maleic anhydride) copolymers, 339 – components, 375 styrene-ethylene-butylene-styrene – of polypropylene, 391 (SEBS), 240, 267, 269, 375, 448 – PS/SBR–2/PE, 362 styrene-hydrogenated butadiene, 168 – with separated dispersed phases, 379 styrene-isoprene-butadiene (SIB), 322 ternary blends, toughening mechanism in, 392 styrene maleic anhydride copolymer ternary compositions, 373 (SMA), 170, 444 ternary liquid heterogeneous system, 350 sulfonate groups, 443 ternary mixture, 336, 341 sulfur donors, 282 – PS–SAN–MSBR, 391 supercooled liquids, 3, 9, 25 – PVC–polychloroprene–co (polybutadiene- supercooling, 278 acrylonitrile), 393 surface effects, 48 ternary PE1/PP/PC system, 376 surface free energy, 350, 375 ternary PMMA/PS/PBT 40/40/20 blend, 370 surface modified nanosilicates, 402 ternary PMMA/PS/PC 10/85/5 blends, 368 surface tensions, 306, 349 ternary PMMA/PS/PC 20/60/20 blends, 368 sweep and grab effect, 377 ternary PMMA/PS/PP blends, 381 synergistic effects, 346 ternary polymer blends, 335, 338, 339, 348, synthetic butadiene- based unsaturated 351, 352, 353, 355 rubbers, 235 – miscibility of polymers, 336 synthetic butadiene-styrene rubber (SBR), 359 – phase behavior, 111 synthetic rubbers, 312 – properties of, 389 synthetic strategy, 233 ternary polymer systems, 364 ternary polyolefin system, 364 t ternary PP/PS/PBT blends, 386, 388 tailoring high-value polymers, 192 ternary systems, 343, 358, 379 Taylor equation, 472 – morphologies in, 352 TEM analysis, 357 – with one solid phase, 384 TEM characterization, 300 terpolymers, 258 TEM examination, 301 testing fracture energy, 238 TEM images, 461 tetramethyl polycarbonate (TMPC), 49, 343

– of casted NR/PU/layered silica 50/50/10, 315 Tg – of fluorocarbon elastomer/HNBR – vs. amorphous phase composition, 110 blends, 328 – vs. composition behaviors, 81 – of NR/BR blends, 308 theoretical fundamentals of polymer – of NR/BR blends with different blending blends, 335 ratios, 312 thermal analysis, 302 – of NR/SBR blends, 306 thermal equilibrium, 54 – of 45/55 PMMA/PS binary, 381 thermal expansion coefficients, 74 TEM micrographs, 370 thermal gradient, 54 – of BR/CIIR/CB 50/50/50 compounded using thermally reduced graphene (TRG), 427 different approaches, 319 thermal motion, 340 – microsectioned vulcanizates of blends, 312 thermal stability, 323 – of ultrathin sections, 380 thermal stimulated currents (TSC), 246 temperature modulation thermal stirring, 340 – amplitude of, 56 thermoanalytical techniques, characteristics – DSC, 245 of, 51 temperatures, 235, 245 thermodynamic affinity, 404 tensile properties, 232, 325 thermodynamically achievable polymer/ tensile strength, 234, 235, 237, 316, 390, 392 layered silicate nanocomposites Index 503

– schematic illustration, 405 transitions, 245 thermodynamically immiscible, 135 transition temperatures, 42, 74 thermodynamic conditions, 364 translational motion, 24 thermodynamic considerations, predictions transmission electron microscopy (TEM), 248, based, 85 300 thermodynamic critical point, 26 transmission light microscopy, 247 thermodynamic effects, 231 trans-1,4-polyisoprene (TPI), 314 thermodynamic entropy, 85 triangular concentration diagram,showing thermodynamic equilibrium regions of morphological states, 370 temperatures, 141 triangular region, 341 thermodynamic-induced phase-separation TTS method, 415 mechanisms, 421 tunable morphologies in ternary blends, 377 thermodynamic parameters, 147 turbidity points in chloroform solution, 338 – wetting parameters, 473 twin-screw extruders, 231 thermodynamic phase transitions, 4 two-dimensional (2D) images, 312 thermodynamic potential, 339, 340 thermodynamic preferences, 434 u thermodynamic solubility parameters, 232 ultrasonic velocity, 323 thermodynamic stability, 339, 340 – measurement, 323 thermodynamic transition ultrathin films, 47 – low-temperature, 32 universal values, 29 thermogravimetry analysis, 445 UV–visible spectroscopy, 254 thermomechanical analysis, 57 thermoplastic, 234, 235 v thermoplastic butyl rubber thermoset van der Waals gap, 402 compounds, 283 van Gurp–Palmen plot, 413 thermoplastic elastomer (TPE), 45, 260, 323 Van Gurp plot of phase angles, 446 thermoplastic matrix, 229, 235, 237, 239 VanOene theory, 348, 355 thermoplastic polymers, 56 vapor grown carbon fibers (VGCF), 166 – matrix, 279 VFTH equation, 16, 24 thermoplastics, 229, 235 vinyl acetate, 287 thermoplastic vulcanizate (TPV), 231, 279 4-vinylpyridine, 103 – principal classifications, 282 viscoelastic measurements, 346, 415, 454 thiophosphoryl disulfide, 324 viscoelastic phase separation (VPS), 416 three-dimensional (3D) chemical network, 299 – mechanism, 430

TiO2 nanoparticles, 468 viscoelastic properties, 347 tissue engineering scaffolds, 358 – of blended polymers, 347 TMA curves, schematic representation of, 59 , 230, 231, 236, 256, 307, 310, 315, Tool–Narayanaswamy–Moynihan 318, 323, 348, 357, 359, 364, 383, 389 formula, 17 – melts, 364 toughening effect, 238 – ratio, 305, 307, 364, 365 toughening, factors affecting extent and – of rubber, 230 magnitude, 240 viscous and surface properties, blends toughness, 230, 390 measured, 379 TPEg, 170 viscous liquid, solidification of, 1 TPVs, 279 visualization, for these immiscible blends, 231 TPVs, improved properties over simple vitrification, 2 blends, 280 Vogel–Fulcher–Tammann–Hesse trans- and cis-1,4-polyisoprene, 135 equations, 15 transesterification reaction, 138, 172 Vogel temperature, 16 – in PET/PC blends, 172 volume fraction, 307 transferring crystals, 145 volumetric deformation, 239 transformation, 359 vulcanization, 230, 232, 310, 311, 323, 327 504 Index

– of blends, 322 x – of elastomer phases, 232 X-ray diffraction (XRD), 409 – system, 280 X-ray microscopy, 251

w y water–polymer interactions, 63 Young’s equation, 349, 434 WAXD measurements, 274 Young’s modulus, 58, 271, 406 wettability of a liquid, 349 wetting behaviors, 349, 352 z wetting blend phase, 464 zero thermodynamic temperature, wetting morphologies for the ternary 58 blends, 378 Ziabicki method, 151 whitening in the fracture process, 237 Ziegler–Natta processes, 286 wide-angle X-ray scattering (WAXS), 240 – iPP, 270 Williams–Landel–Ferry, 15 zinc oxide, 322, 323 + Wunderlich’s rule, 54 Zn2 -neutralized EPDM ionomer, 272