A New Look at the Nature of Insect Juvenile Hormone with Particular Reference to Studies Carried out in the Czech Republic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Larval Protein Quality of Six Species of Lepidoptera (Saturniidaeo Sphingidae, Noctuidae)
Larval Protein Quality of Six Species of Lepidoptera (Saturniidaeo Sphingidae, Noctuidae) STEPHEN V. LANDRY,I GENE R. DEFOLIART,IANP MILTON L. SUNDE, University of Wisconsin, Madison, Wisconsin 53706 J. Econ. Entomol. 79; 600-604 (I98€) ABSTRACT Six lepidopteran species representing three families were evaluated for their potential use as protein supplements for poultry. Proximate and amino acid analyses were conducted on larval powders of each species. Larvae ranged from 49.4 to 58.1% crude protein on a dry-weight basis. Amino acid analysis indicated deficiencies in arginine, me- thionine, cysteine, and possibly lysine, when larvae are used in chick rations. In a chick- feeding trial with three of the species, however, these deffciencies were not substantiated: the average weight gained by chicks fed the lepidopteran-supplemented dlet did not differ significantly from that of.chicks fed a conventional corn/soybean control diet. LnprpoptBne ARE among the many species of in- by feeding trials on poultry (Ichhponani and Ma- sects that have played an important role in nutri- Iek 1971, Wijayasinghe and Rajaguru 1977). tion, especially in areas where human and domes- To determine and compare the protein quality tic animal populations are subject to chronic protein of a wider assortment of lepidopterous larvae, we deficiency (e.g., Bodenheimer 1951, Quin 1959, conducted proximate and amino acid analyses on Ruddle 1973, Conconi and Bourges 1977, Malaise larvae of six species representing three families. and Parent 1980, Conconi et al. 1984). Conconi et These included the cecropia moth, Hgalophora ce- al. (f9Sa), for example, listed 12 species in 8 fam- cropia (L.), and the promethea moth, Callosamia ilies that are gathered and consumed in Mexico. -
Juvenile Hormone Affects the Development and Strength of Circadian
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.24.101915; this version posted May 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Juvenile hormone affects the development and strength of circadian rhythms in young bumble bee (Bombus terrestris) workers Atul Pandey1, Uzi Motro1,2, Guy Bloch1,2* 1) Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel 2) The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel *Corresponding author Guy Bloch: [email protected], Phone: +972-26584320 Short title: The juvenile hormone affects circadian rhythms in a bumble bee Keywords: (5 minimum) Hormone, Juvenile hormone; bumble bee, Bombus terrestris; circadian rhythms; locomotor activity; sleep, gonadotropin bioRxiv preprint doi: https://doi.org/10.1101/2020.05.24.101915; this version posted May 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The circadian and endocrine systems influence many physiological processes in animals, but little is known on the ways they interact in insects. We tested the hypothesis that juvenile hormone (JH) influences circadian rhythms in the social bumble bee Bombus terrestris. JH is the major gonadotropin in this species coordinating processes such as vitellogenesis, oogenesis, wax production, and behaviors associated with reproduction. It is unknown however, whether it also influences circadian processes. We topically treated newly-emerged bees with the allatoxin Precocene-I (P-I) to reduce circulating JH titers and applied the natural JH (JH-III) for replacement therapy. -
Juvenile Hormone Esterases of Lepidoptera I
Journal J Comp Physiol (1982) 148:1-10 of Comparative Physiology, B Springer-Verlag 1982 Juvenile Hormone Esterases of Lepidoptera I. Activity in the Hemolymph During the Last Larval Instar of 1 ! Species Davy Jones, Grace Jones, Keith D. Wing, Maria Rudnicka*, and Bruce D. Hammock Departments of Entomology and Environmental Toxicology, University of California, Davis, California 95616, USA Accepted May 1, 1982 Summary. The juvenile hormone esterase (JHE) ined and has been suggested as a mode of JH titer titer was measured during the last larval instar of regulation necessary for normal development (Gil- 11 species of Lepidoptera (Pier& rapae, Junonia bert et al. 1978). In fact, recent data are consistent coenia, Danaus plexippus, Hernileuca nevadensis, with a model in which JH biosynthesis by the cor- Pectinophora gossypiella, Spodoptera exigua, Or- pora allata is reduced but not halted, and the low gyia vetusta, Ephestia elutella, Galleria mellonella, JH titers necessary for prothoracicotropic hor- Manduca sexta and Estigmene acrea). All species mone effects result from increased JH hydrolysis had a peak of JHE at or near the time of wander- (Sparks and Hammock 1980). The first lepidop- ing. The peak activity at this time ranged from teran titered during the last larval instar for ihemo- 0.8 to 388 nmoles JH III cleaved/min-ml. All spe- lymph JH esterase (JHE) activity (Manduca sexta cies except J. coenia had a second peak of JHE L.) possessed two peaks of JHE, each correlated during the late prepupal stage. The height of the with an abrupt decline in hemolymph JH (Weirich second peak ranged from 0.4 to 98.4 nmoles/min. -
Juvenile Hormone Regulation of Drosophila Aging Rochele Yamamoto Brown University
Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2013 Juvenile hormone regulation of Drosophila aging Rochele Yamamoto Brown University Hua Bai Brown University Adam G. Dolezal Iowa State University, [email protected] Gro Amdam Arizona State University Marc Tatar Brown University Follow this and additional works at: http://lib.dr.iastate.edu/eeob_ag_pubs Part of the Cell and Developmental Biology Commons, Ecology and Evolutionary Biology Commons, Entomology Commons, and the Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ eeob_ag_pubs/206. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Yamamoto et al. BMC Biology 2013, 11:85 http://www.biomedcentral.com/1741-7007/11/85 RESEARCH ARTICLE Open Access Juvenile hormone regulation of Drosophila aging Rochele Yamamoto1, Hua Bai1, Adam G Dolezal2,3, Gro Amdam2 and Marc Tatar1* Abstract Background: Juvenile hormone (JH) has been demonstrated to control adult lifespan in a number of non-model insects where surgical removal of the corpora allata eliminates the hormone’s source. In contrast, little is known about how juvenile hormone affects adult Drosophila melanogaster. Previous work suggests that insulin signaling may modulate Drosophila aging in part through its impact on juvenile hormone titer, but no data yet address whether reduction of juvenile hormone is sufficient to control Drosophila life span. -
Geographical Distribution and Selection of European Honey Bees Resistant to Varroa Destructor
insects Review Geographical Distribution and Selection of European Honey Bees Resistant to Varroa destructor Yves Le Conte 1,* , Marina D. Meixner 2, Annely Brandt 2, Norman L. Carreck 3,4 , Cecilia Costa 5, Fanny Mondet 1 and Ralph Büchler 2 1 INRAE, Abeilles et Environnement, 84914 Avignon, France; [email protected] 2 Landesbetrieb Landwirtschaft Hessen, Bee Institute, Erlenstrasse 9, 35274 Kirchhain, Germany; [email protected] (M.D.M.); [email protected] (A.B.); [email protected] (R.B.) 3 Carreck Consultancy Ltd., Woodside Cottage, Dragons Lane, Shipley RH13 8GD, West Sussex, UK; [email protected] 4 Laboratory of Apiculture and Social Insects, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK 5 CREA Research Centre for Agriculture and Environment, via di Saliceto 80, 40128 Bologna, Italy; [email protected] * Correspondence: [email protected] Received: 15 October 2020; Accepted: 3 December 2020; Published: 8 December 2020 Simple Summary: The parasitic mite Varroa destructor is a major challenge to honey bee populations worldwide. Some honey bee populations are resistant to the mite, but most of the commercially used stocks are not and rely on chemical treatment. In this article, we describe known varroa-resistant populations and the mechanisms which have been identified as responsible for survival of colonies without beekeeper intervention to control the mite. We review traits that have potential in breeding programs, discuss the role played by V. destructor as a vector for virus infections, and the changes in mite and virus virulence which could play a role in colony resistance. -
Resistance to Juvenile Hormone and an Insect Growth Regulator In
Proc. Natl. Acad. Sci. USA Vol. 87, pp. 2072-2076, March 1990 Agricultural Sciences Resistance to juvenile hormone and an insect growth regulator in Drosophila is associated with an altered cytosolic juvenile hormone-binding protein (insecticide resistance) LIRIM SHEMSHEDINI* AND THOMAS G. WILSONt Department of Zoology, University of Vermont, Burlington, VT 05405 Communicated by Robert L. Metcalf, December 26, 1989 ABSTRACT The Met mutant ofDrosophila melanogaster is suggesting a target-site insensitivity mechanism of resis- highly resistant tojuvenile hormone Im (JH III) or its chemical tance. analog, methoprene, an insect growth regulator. Five major mechanisms ofinsecticide resistance were examined in Met and susceptible Met+ flies. These two strains showed only minor EXPERIMENTAL PROCEDURES differences when penetration, excretion, tissue sequestration, JHs and Insects. JH III (Sigma) and [3H]JH III (New or metabolism of [3H]JH m was measured. In contrast, when England Nuclear; specific activity, 11.9 Ci/mmol; 1 Ci = 37 we examined JH III binding by a cytosolic binding protein from GBq) were racemic mixes. [3H]Methoprene (R isomer, 83.9 a JH target tissue, Met strains had a 10-fold lower binding Ci/mmol) was a generous gift of G. Prestwich (Stony Brook, affmity than did Met+ strains. Studies using deficiency-bearing NY). Each was stored in a stock solution in hexane at -20'C. chromosomes provide strong evidence that the Met locus con- Purity was monitored periodically by thin-layer chromatog- trols the binding protein characteristics and may encode the raphy. Breakdown was almost negligible over a 1-year period protein. These studies indicate that resistance in Met flies under these conditions. -
Juvenile Hormone Biosynthesis in the Cockroach, Diploptera
Juvenile hormone biosynthesis in the cockroach, Diploptera punctata: the characterization of the biosynthetic pathway and the regulatory roles of allatostatins and NMDA receptor by Juan Huang A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Cell and Systems Biology University of Toronto © Copyright by Juan Huang (2015) Juvenile hormone biosynthesis in the cockroach, Diploptera punctata: the characterization of the biosynthetic pathway and the regulatory roles of allatostatins and NMDA receptor Juan Huang Doctor of Philosophy (2015), Department of Cell and Systems Biology, University of Toronto Abstract The juvenile hormones (JH) play essential roles in regulating growth, development, metamorphosis, ageing, caste differentiation and reproduction in insects. Diploptera punctata, the only truly viviparous cockroach is a well-known model system in the study of JH biosynthesis and its regulation. The physiology of this animal is characterized by very stable and high rates of JH biosynthesis and precise and predictable reproductive events that correlate well with rates of JH production. Many studies have been performed on D. punctata to determine the function of JH. However, the pathway of JH biosynthesis has not been identified. In addition, although many factors are known to regulate JH biosynthesis, the exact mechanisms remain unclear. The aim of my research was to elucidate the JH biosynthetic pathway in D. punctata and study the mechanisms by which allatostatin (AST) and N-methyl-D-aspartate (NMDA) receptor regulate JH production. I have (1) identified genes in the JH biosynthetic pathway, and determined their roles in JH biosynthesis; (2) investigated the mode of action of AST by determining the signaling pathway of AstR and the target of AST action; (3) determined the role of the NMDA receptor in JH biosynthesis using RNA interference and treatment with an NMDA receptor antagonist. -
Patterns of Herbivory in a Tropical Deciduous Forest1
Patterns of Herbivory in a Tropical Deciduous Forest1 Daniel H. Janzen Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A. ABSTRACT In the lowland deciduous and riparian evergreen forests of Guanacaste Province, Costa Rica, the insect seed predators are highly host-specific and display a variery of traits suggesting that the ways they use hosts are not randomly distributed. The vertebrate seed predators may feed on many species of seeds over the course of a year or within the animal popula tion, but, at any one time or with any one individual, strong facultative host-specificiry occurs. Furthermore, the verte brates have a variery of species-specific behaviors that suggest specialization to overcome the defenses of particular seed species. Even the dispersal agents kill seeds as they pass through their guts, and the details of seed-defecation patterns should be important to the seed. Within this forest, leaf-eating caterpillars seem to be either specialized on one or a few species of plants, or spread over many. While an entire forest is never defoliated at one time, defoliations and severe herbivory occur with many plant species in various seasons or years. Herbivory by large herbivores is probably trivial when compared to that of the insects. Furthermore, the defenses that the large herbivores have to overcome may well have been selected for by both insects and extinct Pleistocene large herbivores. I suspect that many of the animal-plant interactions in this forest are not coevolved, and those that are coevolved will be difficult to distinguish from those that are not. -
A List of Cuban Lepidoptera (Arthropoda: Insecta)
TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3384: 1–59 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) A list of Cuban Lepidoptera (Arthropoda: Insecta) RAYNER NÚÑEZ AGUILA1,3 & ALEJANDRO BARRO CAÑAMERO2 1División de Colecciones Zoológicas y Sistemática, Instituto de Ecología y Sistemática, Carretera de Varona km 3. 5, Capdevila, Boyeros, Ciudad de La Habana, Cuba. CP 11900. Habana 19 2Facultad de Biología, Universidad de La Habana, 25 esq. J, Vedado, Plaza de La Revolución, La Habana, Cuba. 3Corresponding author. E-mail: rayner@ecologia. cu Table of contents Abstract . 1 Introduction . 1 Materials and methods. 2 Results and discussion . 2 List of the Lepidoptera of Cuba . 4 Notes . 48 Acknowledgments . 51 References . 51 Appendix . 56 Abstract A total of 1557 species belonging to 56 families of the order Lepidoptera is listed from Cuba, along with the source of each record. Additional literature references treating Cuban Lepidoptera are also provided. The list is based primarily on literature records, although some collections were examined: the Instituto de Ecología y Sistemática collection, Havana, Cuba; the Museo Felipe Poey collection, University of Havana; the Fernando de Zayas private collection, Havana; and the United States National Museum collection, Smithsonian Institution, Washington DC. One family, Schreckensteinidae, and 113 species constitute new records to the Cuban fauna. The following nomenclatural changes are proposed: Paucivena hoffmanni (Koehler 1939) (Psychidae), new comb., and Gonodontodes chionosticta Hampson 1913 (Erebidae), syn. -
Histological and Ultrastructural Aspects of Larval Corpus Allatum Of
Journal of Entomology and Zoology Studies 2018; 6(3): 864-872 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Histological and ultrastructural aspects of larval JEZS 2018; 6(3): 864-872 © 2018 JEZS corpus allatum of Spodoptera littoralis (Boisd.) Received: 15-03-2018 Accepted: 16-04-2018 (Lepidoptera: Noctuidae) treated with Saleh TA diflubenzuron and chromafenozide Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Egypt Saleh TA, Ahmed KS, El-Bermawy SM, Ismail EH and Abdel-Gawad RM Ahmed KS Abstract Biological and Geological The present investigation was undertaken to follow the two insect growth regulators (IGRs), Sciences Department, diflubenzuron and chromafenozide, possible effects on the histology and ultrastructure aspects of corpus Faculty of Education, th allatum (CA) of 6 instar larvae of Spodoptera littoralis. Therefore, the LC50 (3 ppm of diflubenzuron Ain Shams University, Egypt th th and 0.1 ppm of chromafenozide) were applied to the 4 larval instar. The CA of 6 larval instar treated El-Bermawy SM with LC50 of diflubenzuron appeared with rounded shape and decreased size (265.625 µm width & Biological and Geological 331.25 µm length) and the capsular fibrous sheath (3.380 µm) also reduced. Contradictory, cellular Sciences Department, cortex was increased in size (71.875 µm), as well as glandular cell numbers were increased, and their Faculty of Education, nuclei were lost their spheroid shape. Disturbance in cytoplasmic organelles pushed glandular cell to Ain Shams University, Egypt switch off or to be inactive. Also, damage was pronounced in the CA of the LC50- chromafenozide treated larvae. The present work investigates the high potency and efficacy of the two IGRs towards S. -
The Role of Nutrition in Creation of the Eye Imaginal Disc and Initiation of Metamorphosis in Manduca Sexta
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Developmental Biology 285 (2005) 285 – 297 www.elsevier.com/locate/ydbio The role of nutrition in creation of the eye imaginal disc and initiation of metamorphosis in Manduca sexta Steven G.B. MacWhinniea, J. Paul Alleea, Charles A. Nelsonb, Lynn M. Riddifordb, James W. Trumanb, David T. Champlina,* aDepartment of Biology, University of Southern Maine, 96 Falmouth Street, Portland, ME 04103-9300, USA bDepartment of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, WA 98195-1800, USA Received for publication 31 May 2005, revised 1 June 2005, accepted 1 June 2005 Available online 15 August 2005 Abstract With the exception of the wing imaginal discs, the imaginal discs of Manduca sexta are not formed until early in the final larval instar. An early step in the development of these late-forming imaginal discs from the imaginal primordia appears to be an irreversible commitment to form pupal cuticle at the next molt. Similar to pupal commitment in other tissues at later stages, activation of broad expression is correlated with pupal commitment in the adult eye primordia. Feeding is required during the final larval instar for activation of broad expression in the eye primordia, and dietary sugar is the specific nutritional cue required. Dietary protein is also necessary during this time to initiate the proliferative program and growth of the eye imaginal disc. Although the hemolymph titer of juvenile hormone normally decreases to low levels early in the final larval instar, eye disc development begins even if the juvenile hormone titer is artificially maintained at high levels. -
Activity of Juvenile Hormone Acid in Brainless, Allatectomized Diapausing Cecropia Pupae
GENERAL AND COMPARATIVE ENDOCRINOLOGY 42, 129- 133 (1980) Activity of Juvenile Hormone Acid in Brainless, Allatectomized Diapausing Cecropia Pupae G. BHASKARAN,G. DELEON, B. LOOMAN,P. D. SHIRK,'AND H. ROLLER Institute of Developmental Biologj~,Texas A&M University, College Stution, Texas 77843 Accepted March 31, 1980 Pupal diapause in the cecropia silkmoth is terminated by activation of the prothoracic glands. Implantation of adult male cecropia corpora allata or injection of juvenile hormone-I (JH-I) or juvenile hormone-I acid (JH-I acid) causes initiation of development in debrained, allatectomized diapausing pupae. The subsequent development results in formation of sec- ond pupae or pupal-adult intermediates. The dose-response patterns for JH-I acid and JH-I are nearly identical. These data suggest that JH-I acid activates prothoracic glands and in addition acts like a morphogenetic hormone. Diapause in saturniid pupae results from observations that adult male CA can acti- the programmed inactivation of the brain- vate PG and cause pupal-adult develop- prothoracic gland system and is termin- ment were puzzling since JH acid was re- ated by activation of the prothoracic ported to be inactive when bioassayed glands (PG) which leads to the secretion of (Slade and Zibitt, 1972) and has generally ecdysone (Williams, 1952). Removal of the been considered to be an inactive precursor brain from such pupae keeps them in a state or catabolite with no known hormonal ac- of permanent diapause (dauerpupae) which tivity. To resolve this paradox, we injected can be terminated by implantation of active various concentrations of JH-I acid into brains or active corpora allata (Williams, brainless, allatectomized diapausing ce- 1952, 1959; Ichikawa and Nishiitsutsuji- cropia pupae.