Manifold - Wikipedia, the Free Encyclopedia Page 1 of 19

Total Page:16

File Type:pdf, Size:1020Kb

Manifold - Wikipedia, the Free Encyclopedia Page 1 of 19 Manifold - Wikipedia, the free encyclopedia Page 1 of 19 Manifold From Wikipedia, the free encyclopedia In mathematics (specifically in differential geometry and topology), a manifold is a topological space that on a small enough scale resembles the Euclidean space of a specific dimension, called the dimension of the manifold. Thus, a line and a circle are one- dimensional manifolds, a plane and sphere (the surface of a ball) are two-dimensional manifolds, and so on into high-dimensional space. More formally, every point of an n-dimensional manifold has a neighborhood homeomorphic to an open subset of the n-dimensional space Rn. Although manifolds resemble Euclidean spaces near each point ("locally"), the global structure of a manifold may be more complicated. For example, The sphere (surface of a ball) is a two-dimensional any point on the usual two-dimensional surface of a manifold since it can be represented by a collection sphere is surrounded by a circular region that can be of two-dimensional maps. flattened to a circular region of the plane, as in a geographical map. However, the sphere differs from the plane "in the large": in the language of topology, they are not homeomorphic. The structure of a manifold is encoded by a collection of charts that form an atlas , in analogy with an atlas consisting of charts of the surface of the Earth. The concept of manifolds is central to many parts of geometry and modern mathematical physics because it allows more complicated structures to be expressed and understood in terms of the relatively well-understood properties of simpler spaces. For example, a manifold is typically endowed with a differentiable structure that allows one to do calculus and a Riemannian metric that allows one to measure distances and angles. Symplectic manifolds serve as the phase spaces in the Hamiltonian formalism of classical mechanics, while four-dimensional Lorentzian manifolds model space-time in general relativity. Contents 1 Motivational examples 1.1 Circle 1.2 Other curves 1.3 Enriched circle 2 History 2.1 Early development 2.2 Synthesis 2.3 Topology of manifolds: highlights 3 Mathematical definition 3.1 Broad definition 4 Charts, atlases, and transition maps 4.1 Charts http://en.wikipedia.org/wiki/Manifold 5/23/2011 Manifold - Wikipedia, the free encyclopedia Page 2 of 19 4.2 Atlases 4.3 Transition maps 4.4 Additional structure 5 Construction 5.1 Charts 5.1.1 Sphere with charts 5.2 Patchwork 5.2.1 Intrinsic and extrinsic view 5.2.2 n-Sphere as a patchwork 5.3 Identifying points of a manifold 5.4 Manifold with boundary 5.5 Gluing along boundaries 5.6 Cartesian products 6 Manifolds with additional structure 6.1 Topological manifolds 6.2 Differentiable manifolds 6.3 Riemannian manifolds 6.4 Finsler manifolds 6.5 Lie groups 6.6 Other types of manifolds 7 Classification and invariants 8 Examples of surfaces 8.1 Orientability 8.1.1 Möbius strip 8.1.2 Klein bottle 8.1.3 Real projective plane 8.2 Genus and the Euler characteristic 9 Maps of manifolds 9.1 Scalar-valued functions 10 Generalizations of manifolds 11 See also 11.1 By dimension 12 Notes 13 References 14 External links Motivational examples Circle Main article: Circle After a line, the circle is the simplest example of a topological manifold. Topology ignores bending, so a small piece of a circle is treated exactly the same as a small piece of a line. Consider, for instance, the top half of the unit http://en.wikipedia.org/wiki/Manifold 5/23/2011 Manifold - Wikipedia, the free encyclopedia Page 3 of 19 circle, x2 + y2 = 1, where the y-coordinate is positive (indicated by the yellow arc in Figure 1 ). Any point of this semicircle can be uniquely described by its x-coordinate. So, projection onto the first coordinate is a continuous, and invertible, mapping from the upper semicircle to the open interval (−1,1): Such functions along with the open regions they map are called chart s. Similarly, there are charts for the bottom (red), left (blue), and right (green) parts of the circle. Together, these parts cover the whole circle and the four charts form an atlas for the circle. The top and right charts overlap: their intersection lies in the Figure 1: The four charts each map quarter of the circle where both the x- and the y-coordinates are part of the circle to an open interval, positive. The two charts χtop and χright each map this part into the and together cover the whole circle. interval (0, 1). Thus a function T from (0, 1) to itself can be constructed, which first uses the inverse of the top chart to reach the circle and then follows the right chart back to the interval. Let a be any number in (0, 1), then: Such a function is called a transition map . The top, bottom, left, and right charts show that the circle is a manifold, but they do not form the only possible atlas. Charts need not be geometric projections, and the number of charts is a matter of some choice. Consider the charts and Here s is the slope of the line through the point at coordinates Figure 2: A circle manifold chart (x,y) and the fixed pivot point (−1, 0); t is the mirror image, with based on slope, covering all but one pivot point (+1, 0). The inverse mapping from s to ( x, y) is given point of the circle. by http://en.wikipedia.org/wiki/Manifold 5/23/2011 Manifold - Wikipedia, the free encyclopedia Page 4 of 19 It can easily be confirmed that x2 + y2 = 1 for all values of the slope s. These two charts provide a second atlas for the circle, with Each chart omits a single point, either (−1, 0) for s or (+1, 0) for t, so neither chart alone is sufficient to cover the whole circle. It can be proved that it is not possible to cover the full circle with a single chart. For example, although it is possible to construct a circle from a single line interval by overlapping and "gluing" the ends, this does not produce a chart; a portion of the circle will be mapped to both ends at once, losing invertibility. Other curves Manifolds need not be connected (all in "one piece"); an example is a pair of separate circles. In this example we see that a manifold need not have any well-defined notion of distance, for there is no way to define the distance between points that don't lie in the same piece. Manifolds need not be closed; thus a line segment without its end points is a manifold. And they are never countable, unless the dimension of the manifold is 0. Putting these freedoms together, other examples of manifolds are a parabola, a hyperbola (two open, infinite pieces) and the locus of points on a cubic curve y2 = x3−x (a closed loop piece and an open, infinite piece). However, we exclude examples like two touching circles that Four manifolds from algebraic share a point to form a figure-8; at the shared point we cannot curves: create a satisfactory chart. Even with the bending allowed by topology, the vicinity of the shared point looks like a "+", not a ■ circles, ■ parabola, ■ hyperbola, line (a + is not homeomorphic to a closed interval (line segment) ■ cubic. since deleting the center point from the + gives a space with four components (i.e., pieces) whereas deleting a point from a closed interval gives a space with at most two pieces; topological operations always preserve the number of pieces). Enriched circle Viewed using calculus, the circle transition function T is simply a function between open intervals, which gives a meaning to the statement that T is differentiable. The transition map T, and all the others, are differentiable on (0, 1); therefore, with this atlas the circle is a differentiable manifold . It is also smooth and analytic because the transition functions have these properties as well. Other circle properties allow it to meet the requirements of more specialized types of manifold. For http://en.wikipedia.org/wiki/Manifold 5/23/2011 Manifold - Wikipedia, the free encyclopedia Page 5 of 19 example, the circle has a notion of distance between two points, the arc -length between the points; hence it is a Riemannian manifold . History For more details on this topic, see History of manifolds and varieties. The study of manifolds combines many important areas of mathematics: it generalizes concepts such as curves and surfaces as well as ideas from linear algebra and topology. Early development Before the modern concept of a manifold there were several important results. Non -Euclidean geometry considers spaces where Euclid's parallel postulate fails. Saccheri first studied them in 1733. Lobachevsky, Bolyai, and Riemann developed them 100 years later. Their research uncovered two types of spaces whose geometric structures differ from that of classical Euclidean space; these gave rise to hyperbolic geometry and elliptic geometry. In the modern theory of manifolds, these notions correspond to Riemannian manifolds with constant negative and positive curvature, respectively. Carl Friedrich Gauss may have been the first to consider abstract spaces as mathematical objects in their own right. His theorema egregium gives a method for computing the curvature of a surface without considering the ambient space in which the surface lies. Such a surface would, in modern terminology, be called a manifold; and in modern terms, the theorem proved that the curvature of the surface is an intrinsic property. Manifold theory has come to focus exclusively on these intrinsic properties (or invariants), while largely ignoring the extrinsic properties of the ambient space.
Recommended publications
  • On the Stable Classification of Certain 4-Manifolds
    BULL. AUSTRAL. MATH. SOC. 57N65, 57R67, 57Q10, 57Q20 VOL. 52 (1995) [385-398] ON THE STABLE CLASSIFICATION OF CERTAIN 4-MANIFOLDS ALBERTO CAVICCHIOLI, FRIEDRICH HEGENBARTH AND DUSAN REPOVS We study the s-cobordism type of closed orientable (smooth or PL) 4—manifolds with free or surface fundamental groups. We prove stable classification theorems for these classes of manifolds by using surgery theory. 1. INTRODUCTION In this paper we shall study closed connected (smooth or PL) 4—manifolds with special fundamental groups as free products or surface groups. For convenience, all manifolds considered will be assumed to be orientable although our results work also in the general case, provided the first Stiefel-Whitney classes coincide. The starting point for classifying manifolds is the determination of their homotopy type. For 4- manifolds having finite fundamental groups with periodic homology of period four, this was done in [12] (see also [1] and [2]). The case of a cyclic fundamental group of prime order was first treated in [23]. The homotopy type of 4-manifolds with free or surface fundamental groups was completely classified in [6] and [7] respectively. In particular, closed 4-manifolds M with a free fundamental group IIi(M) = *PZ (free product of p factors Z ) are classified, up to homotopy, by the isomorphism class of their intersection pairings AM : B2{M\K) x H2(M;A) —> A over the integral group ring A = Z[IIi(M)]. For Ui(M) = Z, we observe that the arguments developed in [11] classify these 4-manifolds, up to TOP homeomorphism, in terms of their intersection forms over Z.
    [Show full text]
  • Finite Group Actions on Kervaire Manifolds 3
    FINITE GROUP ACTIONS ON KERVAIRE MANIFOLDS DIARMUID CROWLEY AND IAN HAMBLETON M4k+2 Abstract. Let K be the Kervaire manifold: a closed, piecewise linear (PL) mani- fold with Kervaire invariant 1 and the same homology as the product S2k+1 × S2k+1 of M4k+2 spheres. We show that a finite group of odd order acts freely on K if and only if 2k+1 2k+1 it acts freely on S × S . If MK is smoothable, then each smooth structure on M j M4k+2 K admits a free smooth involution. If k 6= 2 − 1, then K does not admit any M30 M62 free TOP involutions. Free “exotic” (PL) involutions are constructed on K , K , and M126 M30 Z Z K . Each smooth structure on K admits a free /2 × /2 action. 1. Introduction One of the main themes in geometric topology is the study of smooth manifolds and their piece-wise linear (PL) triangulations. Shortly after Milnor’s discovery [54] of exotic smooth 7-spheres, Kervaire [39] constructed the first example (in dimension 10) of a PL- manifold with no differentiable structure, and a new exotic smooth 9-sphere Σ9. The construction of Kervaire’s 10-dimensional manifold was generalized to all dimen- sions of the form m ≡ 2 (mod 4), via “plumbing” (see [36, §8]). Let P 4k+2 denote the smooth, parallelizable manifold of dimension 4k+2, k ≥ 0, constructed by plumbing two copies of the the unit tangent disc bundle of S2k+1. The boundary Σ4k+1 = ∂P 4k+2 is a smooth homotopy sphere, now usually called the Kervaire sphere.
    [Show full text]
  • Mapping Surgery to Analysis III: Exact Sequences
    K-Theory (2004) 33:325–346 © Springer 2005 DOI 10.1007/s10977-005-1554-7 Mapping Surgery to Analysis III: Exact Sequences NIGEL HIGSON and JOHN ROE Department of Mathematics, Penn State University, University Park, Pennsylvania 16802. e-mail: [email protected]; [email protected] (Received: February 2004) Abstract. Using the constructions of the preceding two papers, we construct a natural transformation (after inverting 2) from the Browder–Novikov–Sullivan–Wall surgery exact sequence of a compact manifold to a certain exact sequence of C∗-algebra K-theory groups. Mathematics Subject Classifications (1991): 19J25, 19K99. Key words: C∗-algebras, L-theory, Poincare´ duality, signature operator. This is the final paper in a series of three whose objective is to construct a natural transformation from the surgery exact sequence of Browder, Novikov, Sullivan and Wall [17,21] to a long exact sequence of K-theory groups associated to a certain C∗-algebra extension; we finally achieve this objective in Theorem 5.4. In the first paper [5], we have shown how to associate a homotopy invariant C∗-algebraic signature to suitable chain complexes of Hilbert modules satisfying Poincare´ duality. In the second paper, we have shown that such Hilbert–Poincare´ complexes arise natu- rally from geometric examples of manifolds and Poincare´ complexes. The C∗-algebras that are involved in these calculations are analytic reflections of the equivariant and/or controlled structure of the underlying topology. In paper II [6] we have also clarified the relationship between the analytic signature, defined by the procedure of paper I for suitable Poincare´ com- plexes, and the analytic index of the signature operator, defined only for manifolds.
    [Show full text]
  • Surgery on Compact Manifolds, Second Edition, 1999 68 David A
    http://dx.doi.org/10.1090/surv/069 Selected Titles in This Series 69 C. T. C. Wall (A. A. Ranicki, Editor), Surgery on compact manifolds, Second Edition, 1999 68 David A. Cox and Sheldon Katz, Mirror symmetry and algebraic geometry, 1999 67 A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Second Edition, 1999 66 Yu. Ilyashenko and Weigu Li, Nonlocal bifurcations, 1999 65 Carl Faith, Rings and things and a fine array of twentieth century associative algebra, 1999 64 Rene A. Carmona and Boris Rozovskii, Editors, Stochastic partial differential equations: Six perspectives, 1999 63 Mark Hovey, Model categories, 1999 62 Vladimir I. Bogachev, Gaussian measures, 1998 61 W. Norrie Everitt and Lawrence Markus, Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, 1999 60 Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace C*-algebras, 1998 59 Paul Howard and Jean E. Rubin, Consequences of the axiom of choice, 1998 58 Pavel I. Etingof, Igor B. Frenkel, and Alexander A. Kirillov, Jr., Lectures on representation theory and Knizhnik-Zamolodchikov equations, 1998 57 Marc Levine, Mixed motives, 1998 56 Leonid I. Korogodski and Yan S. Soibelman, Algebras of functions on quantum groups: Part I, 1998 55 J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, 1998 54 Casper Goffman, Togo Nishiura, and Daniel Waterman, Homeomorphisms in analysis, 1997 53 Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, 1997 52 V. A. Kozlov, V. G. Maz'ya> and J. Rossmann, Elliptic boundary value problems in domains with point singularities, 1997 51 Jan Maly and William P.
    [Show full text]
  • Milnor, John W. Groups of Homotopy Spheres
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 699–710 http://dx.doi.org/10.1090/bull/1506 Article electronically published on June 12, 2015 SELECTED MATHEMATICAL REVIEWS related to the paper in the previous section by JOHN MILNOR MR0148075 (26 #5584) 57.10 Kervaire, Michel A.; Milnor, John W. Groups of homotopy spheres. I. Annals of Mathematics. Second Series 77 (1963), 504–537. The authors aim to study the set of h-cobordism classes of smooth homotopy n-spheres; they call this set Θn. They remark that for n =3 , 4thesetΘn can also be described as the set of diffeomorphism classes of differentiable structures on Sn; but this observation rests on the “higher-dimensional Poincar´e conjecture” plus work of Smale [Amer. J. Math. 84 (1962), 387–399], and it does not really form part of the logical structure of the paper. The authors show (Theorem 1.1) that Θn is an abelian group under the connected sum operation. (In § 2, the authors give a careful treatment of the connected sum and of the lemmas necessary to prove Theorem 1.1.) The main task of the present paper, Part I, is to set up methods for use in Part II, and to prove that for n = 3 the group Θn is finite (Theorem 1.2). (For n =3the authors’ methods break down; but the Poincar´e conjecture for n =3wouldimply that Θ3 = 0.) We are promised more detailed information about the groups Θn in Part II. The authors’ method depends on introducing a subgroup bPn+1 ⊂ Θn;asmooth homotopy n-sphere qualifies for bPn+1 if it is the boundary of a parallelizable man- ifold.
    [Show full text]
  • Arxiv:1506.05408V1 [Math.AT]
    NOVIKOV’S CONJECTURE JONATHAN ROSENBERG Abstract. We describe Novikov’s “higher signature conjecture,” which dates back to the late 1960’s, as well as many alternative formulations and related problems. The Novikov Conjecture is perhaps the most important unsolved problem in high-dimensional manifold topology, but more importantly, vari- ants and analogues permeate many other areas of mathematics, from geometry to operator algebras to representation theory. 1. Origins of the Original Conjecture The Novikov Conjecture is perhaps the most important unsolved problem in the topology of high-dimensional manifolds. It was first stated by Sergei Novikov, in various forms, in his lectures at the International Congresses of Mathematicians in Moscow in 1966 and in Nice in 1970, and in a few other papers [84, 87, 86, 85]. For an annotated version of the original formulation, in both Russian and English, we refer the reader to [37]. Here we will try instead to put the problem in context and explain why it might be of interest to the average mathematician. For a nice book- length exposition of this subject, we recommend [65]. Many treatments of various aspects of the problem can also be found in the many papers in the collections [38, 39]. For the typical mathematician, the most important topological spaces are smooth manifolds, which were introduced by Riemann in the 1850’s. However, it took about 100 years for the tools for classifying manifolds (except in dimension 1, which is trivial, and dimension 2, which is relatively easy) to be developed. The problem is that manifolds have no local invariants (except for the dimension); all manifolds of the same dimension look the same locally.
    [Show full text]
  • Geometric Periodicity and the Invariants of Manifolds
    GEOMETRIC PERIODICITY AND THE INVARIANTS OF MANIFOLDS Dennis Sullivan There is a surprisingly rich structure in the theory of manifolds within a given homotovy type, We begin with a geometric procedure for constructing an isomorphism between two manifolds - either smooth, combinatorial, or topological - in the homotopy class of a given hcmlotopy equivalence between them. This method which combines transversality and surgery inside these manifolds leads to three natural obstruction theories for the three situations. The obstructions up to codimension two are stable in a certain sense and much of our discuss}nn concerns them. The unstable eodimenslon two obstruction has not been analyzed. The interesting structure in these theories ariseson the one hand from the natural invariants which can be associated to a homotopy equiyalence M --f-f> L . These enable us to obtain a-priorl information about the obstructions encountered in constructing an isomorphism between ~ and L . By transversality the "varieties in L" can be pulled back to "varieties in M" . This correspondence is a rather deep geometric invariant of f . By a charac- teristic invariant of f we mean any invariant defined using the induced diagram f M >L l l V + L is a variety in L . f_iv fV -> V For example when V is a manifold fV has a well defined surgery obstruction like I/8 (signature f-IV - signature V) ~ Z or Z/n , dim V = 4i ~(f, V) ]Arf invariant (kernel fJ , Z/2)~ Z/2, dim V = 4i + ~ . Consider the homotopy equivalence M f > L where M and L are simply connected and have dimension at least five.
    [Show full text]
  • Manifold Aspects of the Novikov Conjecture
    Manifold aspects of the Novikov Conjecture James F. Davis§ 4 Let LM H §(M; Q) be the Hirzebruch L-class of an oriented manifold M. Let Bº2 (or K(º, 1)) denote any aspherical space with fundamental group º. (A space is aspherical if it has a contractible universal cover.) In 1970 Novikov made the following conjecture. Novikov Conjecture. Let h : M 0 M be an orientation-preserving ho- motopy equivalence between closed,! oriented manifolds.1 For any discrete group º and any map f : M Bº, ! f h (LM [M 0]) = f (LM [M]) H (Bº; Q) § ± § 0 \ § \ 2 § Many surveys have been written on the Novikov Conjecture. The goal here is to give an old-fashioned point of view, and emphasize connections with characteristic classes and the topology of manifolds. For more on the topology of manifolds and the Novikov Conjecture see [58], [47], [17]. This article ignores completely connections with C§-algebras (see the articles of Mishchenko, Kasparov, and Rosenberg in [15]), applications of the Novikov conjecture (see [58],[9]), and most sadly, the beautiful work and mathemat- ical ideas uncovered in proving the Novikov Conjecture in special cases (see [14]). The level of exposition in this survey starts at the level of a reader of Milnor-StasheÆ’s book Characteristic Classes, but by the end demands more topological prerequisites. Here is a table of contents: § Partially supported by the NSF. This survey is based on lectures given in Mainz, Germany in the Fall of 1993. The author wishes to thank the seminar participants as well as Paul Kirk, Chuck McGibbon, and Shmuel Weinberger for clarifying conversations.
    [Show full text]
  • Kreck-Stolz Invariants for Quaternionic Line Bundles
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 365, Number 6, June 2013, Pages 3193–3225 S 0002-9947(2012)05732-1 Article electronically published on November 20, 2012 KRECK-STOLZ INVARIANTS FOR QUATERNIONIC LINE BUNDLES DIARMUID CROWLEY AND SEBASTIAN GOETTE Abstract. We generalise the Kreck-Stolz invariants s2 and s3 by defining a new invariant, the t-invariant, for quaternionic line bundles E over closed spin- 3 4 manifolds M of dimension 4k−1withH (M; Q) = 0 such that c2(E) ∈ H (M) is torsion. The t-invariant classifies closed smooth oriented 2-connected ratio- nal homology 7-spheres up to almost-diffeomorphism, that is, diffeomorphism up to a connected sum with an exotic sphere. It also detects exotic homeo- morphisms between such manifolds. The t-invariant also gives information about quaternionic line bundles over a fixed manifold, and we use it to give a new proof of a theorem of Feder and Gitler about the values of the second Chern classes of quaternionic line bundles over HP k.Thet-invariant for S4k−1 is closely related to the Adams e-invariant on the (4k − 5)-stem. Introduction In [25], Kreck and Stolz introduced invariants s1, s2, s3 ∈ Q/Z of certain closed smooth oriented simply connected 7-manifolds M that completely characterise M up to diffeomorphism. The s-invariants are defect invariants based on index theo- rems for Dirac operators on 8-manifolds: the invariant s1, which equals the Eells- Kuiper invariant μ of [17] if M is spin, is the defect of the untwisted Dirac operator, whereas s2 and s3 are the defects of the Dirac operator twisted by certain complex line bundles.
    [Show full text]
  • A Composition Formula for Manifold Structures
    1 A COMPOSITION FORMULA FOR MANIFOLD STRUCTURES Andrew Ranicki (Edinburgh) Paper: http://www.maths.ed.ac.uk/eaar/papers/compo.pdf Slides: http://www.maths.ed.ac.uk/eaar/slides/bonn.pdf Bonn, 4th December, 2007 2 Homotopy equivalences and homeomorphisms I Every homotopy equivalence of 2-dimensional manifolds is homotopic to a homeomorphism. I For n > 3 a homotopy equivalence of n-dimensional manifolds f : N ! M is not in general homotopic to a homeomorphism, e.g. lens spaces for n = 3. I There are surgery obstructions to making the normal maps f j : f −1(L) ! L normal bordant to homotopy equivalences for every submanifold L ⊂ M. For n > 5 f is homotopic to a homeomorphism if and only if there exist such normal bordisms which are compatible with each other. I Novikov (1964) used surgery to construct homotopy p q equivalences f : N ! M = S × S for certain p; q > 2, which are not homotopic to homeomorphisms. 3 The topological structure set STOP (M) TOP I The structure set S (M) of an n-dimensional topological manifold M is the pointed set of equivalence classes of pairs (N; f ) with N an n-dimensional topological manifold and f : N ! M a homotopy equivalence. 0 0 −1 0 0 I (N; f ) ∼ (N ; f ) if (f )f : N ! N is homotopic to a homeomorphism. TOP I Base point (M; 1) 2 S (M). TOP n I Poincar´econjecture S (S ) = {∗}. TOP I Borel conjecture If M is aspherical then S (M) = {∗}. TOP I For n > 5 surgery theory expresses S (M) in terms of topological K-theory of the homotopy type of M and TOP algebraic L-theory of Z[π1(M)].
    [Show full text]
  • Manifold from Wikipedia, the Free Encyclopedia Contents
    Manifold From Wikipedia, the free encyclopedia Contents 1 Atlas (topology) 1 1.1 Charts ................................................. 1 1.2 Formal definition of atlas ....................................... 1 1.2.1 Maximal atlas ......................................... 1 1.3 Transition maps ............................................ 2 1.4 More structure ............................................. 2 1.5 References ............................................... 2 1.6 External links ............................................. 3 2 Manifold 4 2.1 Motivational examples ........................................ 5 2.1.1 Circle ............................................. 5 2.1.2 Enriched circle ........................................ 8 2.1.3 Sphere ............................................ 8 2.1.4 Other curves ......................................... 8 2.2 History ................................................ 8 2.2.1 Early development ...................................... 9 2.2.2 Synthesis ........................................... 10 2.2.3 Poincaré's definition ...................................... 10 2.2.4 Topology of manifolds: highlights .............................. 11 2.3 Mathematical definition ........................................ 11 2.3.1 Broad definition ....................................... 12 2.4 Charts, atlases, and transition maps .................................. 12 2.4.1 Charts ............................................. 12 2.4.2 Atlases ............................................ 12 2.4.3 Transition
    [Show full text]
  • On the Browder-Levine-Novikov Embedding Theorems 3
    ON THE BROWDER-LEVINE-NOVIKOV EMBEDDING THEOREMS M. Cencelj, D. Repovˇs and A. Skopenkov Abstract. In this survey we present applications of the ideas of complement and neigh- borhood in the theory embeddings of manifolds into Euclidean space (in codimension at least three). We describe how the combination of these ideas gives a reduction of em- beddability and isotopy problems to algebraic problems. We present a more clarified exposition of the Browder-Levine theorem on realization of normal systems. Most of the survey is accessible to non-specialists in the theory of embeddings. Introduction Three important classical problems in topology are the following, cf. [Ze93, p. 3]. (1) The Manifold Problem: find conditions under which two spaces are homeomor- phic (and also describe the homeomorphism classes of manifolds from a given class); (2) The Embedding Problem: find conditions under which a space embeds into Sm for a given m; and (3) The Knotting Problem: find conditions under which two embeddings are isotopic (and also describe the isotopy classes of embeddings N → Sm). This survey is concerned with the second and the third problem. We show how the ideas of complement and neighborhood can be used to study embeddings. Then we combine these two ideas and formulate the Browder-Levine-Novikov Theorems 6 and 8, and the Browder-Wall Conjecture 9. Such an exposition of these results has apparently not been published yet. In this survey we present classical theorems that give readily calculable results [Sk16, Remark 1.2], at least for particular cases. So we do not mention other results like Browder-Haefliger-Casson-Sullivan-Wall theorem stating that a homotopy equivalence between a closed k-manifold and an m-manifold with boundary is homotopic to an arXiv:2104.01820v1 [math.GT] 5 Apr 2021 embedding (in the smooth category for 2m ≥ 3k +3, in the Pl category for m ≥ k +3).
    [Show full text]