Effect of Plant Resistance in Castor on Endolarval Parasitoid Snellenius Maculipennis (Szepligate) of Castor Semilooper Achaea Janata L

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Plant Resistance in Castor on Endolarval Parasitoid Snellenius Maculipennis (Szepligate) of Castor Semilooper Achaea Janata L Available online at www.ijpab.com Chakkani Priya et al Int. J. Pure App. Biosci. 6 (5): 243-256 (2018) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.6950 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 6 (5): 243-256 (2018) Research Article Effect of Plant Resistance in Castor on Endolarval Parasitoid Snellenius maculipennis (Szepligate) of Castor Semilooper Achaea janata L. K. Chakkani Priya*, K. V. Hari Prasad, N. C. Venkateswarlu and V. Umamahesh Agricultural entomology, Acharya N.G Ranga Agricultural University, Lam, Guntur, Andhra Pradesh *Corresponding Author E-mail: [email protected] Received: 16.06.2018 | Revised: 20.07.2018 | Accepted: 27.07.2018 ABSTRACT A study on correlation between biological parameters of S. maculipennis with biophysical (epicuticular wax content) and biochemical (total free amino acids, proteins, carbohydrates and phenols) constituents of castor genotypes revealed that wax content was significantly negatively correlated with per cent parasitisation (-0.445*); total free amino acids were significantly negatively correlated with per cent parasitisation (-0.702**) and egg and larval period (- 0.546**); the proteins were significantly positively correlated with per cent parasitisation (0.938**); carbohydrates were significantly positively correlated with per cent parasitisation (0.957**) and significantly negatively correlated with adult longevity (-0.622**) and phenols were significantly negatively correlated with per cent parasitisation (-0.759**) and egg and larval period (-0.486*). Key words: Snellenius maculipennis, Achaea janata, Genotypes, Correlation, Parasitisation. INTRODUCTION which India, China, Brazil, USSR, Thailand, Castor, Ricinus communis L. is one of the most Ethiopia and Philippines are major castor important commercial, non-edible oilseed crop growing accounts for majority of the world's in Euphorbiaceae family. The genus, "Ricinus" production (http://www.commoditiescontrol. is derived from Latin word meaning "dog tick" com). because of it's seed resemblance to the India is the world's single largest common pest of dog. It is reported to have producer of castor seed accounting for more originated in the tropical belt of both India and than 85% followed by China with about 7% Africa. Castor is cultivated around the world and Brazil with about 5% of world castor seed because of the commercial importance of its output. There has been a consistent increase in oil. Historically, Brazil, China and India have output primarily on account of rise in levels in been the key producing countries meeting India. In recent years, however, Brazil and global requirements. It is cultivated in 30 China have experienced stagnation in Castor different countries on commercial scale, of crop (http://www.commoditiescontrol.com). Cite this article: Chakkani Priya, K., Hari Prasad, K.V., Venkateswarlu, N.C. and Umamahesh, V., Effect of Plant Resistance in Castor on Endolarval Parasitoid Snellenius maculipennis (Szepligate) of Castor Semilooper Achaea janata L., Int. J. Pure App. Biosci. 6(5): 243-256 (2018). doi: http://dx.doi.org/10.18782/2320-7051.6950 Copyright © Sept.-Oct., 2018; IJPAB 243 Chakkani Priya et al Int. J. Pure App. Biosci. 6 (5): 243-256 (2018) ISSN: 2320 – 7051 India is the world's single largest producer of Achaea janata (Linnaeus); castor shoot and castor seed accounting for more than 85% capsule borer, Dichocrocis punctiferalis followed by China with about 7% and Brazil (Guenee); hairy caterpillar, Euproctisfraterna with about 5% of world castor seed (Moore); tobacco caterpillar, Spodoptera litura output. There has been a consistent increase in (Fabricius) and sucking pests, such as output primarily on account of rise in levels in leafhopper, Amrasca biguttula biguttula India. In recent years, however, Brazil and (Ishida); white fly, Trialeurodes ricini (Misra); China have experienced stagnation in Castor thrips, Retithrips syriacus (Mayet) and mites, crop (http://www.commoditiescontrol.com). Tetranychus telarius (Linnaeus)19. Castor oil and its derivatives, besides Castor semilooper A. janata is a major being used in medicine, are also used in a wide defoliator and under severe infestations, range of sectors including agriculture, textile completely devour the green foliage, leaving industry, paper industry, plastic engineering, only the veins and enforce the farmers to re- rubber and pharmaceuticals4. sow the crop. It causes yield reduction to the Castor oil is also used in many veterinary extent of 20 to 23%9. medicines, as an emollient, soothing medium Castor semilooper, A. janata is when dropped into the eyes of animals after regulated by hymenopteran endolarval removal of foreign bodies. In eri silk- parasitoid Snellenius (=Microplitis) producing areas, castor leaves are fed to eri maculipennis (Szepligate) (Hymenoptera: worms. After extraction of oil, castor cake is Braconidae) which is cosmopolitan in valued as manure. It contains 6.4% N, 2.5% distribution8. Under field conditions, it is phosphoric acid and 1% K and some capable of parasitizing up to 77.31% of micronutrients. Castor is also valued for its semilooper population29. The early instars of anti-termite properties. Consequently, there A. janata were attacked by the parasitoid and has been a steady increase in the demand for parasitized larvae did not feed and died later castor oil and its products in the world market on40. owing to their renewable nature, Indiscriminate use of pesticides leads biodegradability and eco-friendliness4. to development of resistance in insects to Castor (Ricinuscommunis L.) is insecticides, toxic effect on natural enemies, cultivated around the world because of the pest resurgence and pesticide residues on food commercial importance of its oil. India is and adverse effect on human beings and the world’s largest producer of castor seed and causes environmental pollution23. These meets most of the global demand for castor oil. negative externalities, though cannot be It contributes about eight lakh tonnes of castor eliminated altogether, their intensity can be seed and three lakh tonnes of castor oil and minimized through development, sharing 65% and 51% respectively in the dissemination and promotion of alternative world total production. Gujarat, Rajasthan and technologies such as integrated pest Andhra Pradesh are the major castor growing management as well as good agronomic states in India. In Andhra Pradesh, castor practices rather relaying solely on chemical occupied about 0.33 lakh ha area in 2016-17 pesticides. Integrated Pest Management (IPM) and production was estimated about 0.16 lakh means a careful consideration of all available tonnes against 0.51 lakh ha area and 0.29 lakh pest control techniques and subsequent tonnes production in 2015- integration of appropriate measures that 16(https://www.indiastat.com). discourage the development of pest Both biotic and abiotic stresses are the populations by keeping pesticides and other major constraints for decline in castor interventions to levels that are economically production. Insect pests are the major biotic justified and reduce or minimize risks to factors in lowering of castor yield. The most human health and the environment. important insect pests are castor semilooper, Copyright © Sept.-Oct., 2018; IJPAB 244 Chakkani Priya et al Int. J. Pure App. Biosci. 6 (5): 243-256 (2018) ISSN: 2320 – 7051 One of the important components of integrated RH during 2017-18. Adults of A. janata were pest management is the use of natural enemies collected from college farm and Regional as biocontrol agents. This has many Agricultural Research Station, Tirupati and advantages over the traditional method of released into oviposition cages (32 cm × 30 cm chemical control34. With regard to parasitoids × 30 cm) for mating and were provided with as biocontrol agents, they assume immense 20% honey solution mixed with vitamin - E importance as they account for 87% tablets in cotton swabs. The petioles of castor suppression of insect pest in nature in leaves were kept in conical flasks by placing comparison to 12% by predators and 1% by the cut end of petioles dipped in water pathogens20. containing 10% sugar solution, these leaves Host plant resistance along with acted as substrate for oviposition and old natural enemies and cultural practices is a leaves were replaced with fresh leaves as and central component of any pest management when required. After one or two days of strategy. Resistance in the form of plant exposure, leaves having eggs of A. janata were defence is a physiochemical characteristic of shifted to another separate plastic troughs of plant, which influence the behaviour, biology, 25 cm diameter and 10 cm height where the survival and reproduction of insects38. eggs were allowed to hatch. Fresh leaves were The characteristics of plant structure provided adlib to the newly hatched larvae and and texture can affect herbivores, natural the rearing troughs were cleaned regularly to enemies of herbivores, and their interaction. keep a healthy stock culture. These effects may be genetically variable Pupae formed from the stock culture among plants and induced in individual plants were collected and kept in separate oviposition by herbivore attack, and are mediated by cages for adult emergence for further rearing primary plant attributes (i.e., nutritional quality as described above. The first instars were used and physical structure) and defense-related for all the experiments in the present products (i.e., secondary
Recommended publications
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS INDONESIA January 2007 Forest Resources Development Service Working Paper FBS/19E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests - Indonesia DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Indonesia. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests - Indonesia TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]
  • Meta-Barcoding for Assessment of Risks Posed by Genetically Modified Crops to Farmland Arthropods
    Meta-barcoding for assessment of risks posed by genetically modified crops to farmland arthropods By Trace Akankunda A thesis submitted for the partial fulfilment of the requirements of the Master of Biotechnology (Plant Biotechnology) The University of Adelaide Faculty of Sciences School of Agriculture, Food & Wine Waite Campus 2014 Declaration I declare that this thesis is a record of original work and contains no material which has been accepted for the award of any other degree or diploma in any university. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text. Akankunda Trace i Table of Contents Preface .............................................................................................................................................. iii Abstract ............................................................................................................................................. 1 1. Introduction ............................................................................................................................... 2 2. Methodology ............................................................................................................................. 7 2.1. Sampling sites and sampling design .................................................................................... 7 2.2. DNA extraction for the reference samples .........................................................................
    [Show full text]
  • Microplitis Rufiventris Kokujev, 1914 (Braconidae: Microgastrinae) from Iran Istributio
    Check List 10(2): 441–444, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N First record of Microplitis rufiventris Kokujev, 1914 (Braconidae: Microgastrinae) from Iran ISTRIBUTIO D Samira Farahani 1, Ali Asghar Talebi 1*, Cornelis van Achterberg 2 and Ehsan Rakhshani 3 RAPHIC 1 Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box 14115-336, Tehran, Iran. G 2 Senior Researcher & Curator Hymenoptera, Department of Terrestrial Zoology, Netherlands Centre for Biodiversity Naturalis, Postbox 9517, EO 2300 RA Leiden, The Netherlands. G 3 Department of Plant Protection, College of Agriculture, University of Zabol, P. O. Box 98615-538, Zabol, Iran. N O * Corresponding author. E-mail: [email protected] OTES N Abstract: Occurrence of the genus Microplitis Forster (Braconidae, Microgastrinae) was surveyed in the Northern part of Iran. The specimens were collected using Malaise traps during 2010–2011. Two species, Microplitis rufiventris Kokujev, 1914 and M. ochraceus Szepligeti, 1896 were collected and identified of which the first species is newly recorded from Iran. Diagnostic characters and geographical distribution of the species are briefly discussed. Microgastrinae Förster, 1862 is one of the revised Indian Microplitis species and described one new largest subfamilies of Braconidae (Hymenoptera: species. Ichneumonoidea) (van Achterberg 1976). All species Not much research has been done on the fauna of attack and develop in larval stage of insects especially Microplitis in Iran. So far, six species of Microplitis have Lepidoptera and Coleoptera and exit from the host to been recorded from Iran (Telenga 1955; Nixon 1968; pupate (Shaw and Huddleston 1991).
    [Show full text]
  • PACIFIC INSECTS MONOGRAPH Ll
    PACIFIC INSECTS MONOGRAPH ll Lepidoptera of American Samoa with particular reference to biology and ecology By John Adams Comstock Published by Entomology Department, Bernice P. Bishop Museum Honolulu, Hawaii, U. S. A. 1966 PACIFIC INSECTS MONOGRAPHS Published by Entomology Department, Bernice P. Bishop Museum, Honolulu, Hawaii, 96819, U. S. A. Editorial Committee: J. L. Gressitt, Editor (Honolulu), S. Asahina (Tokyo), R. G. Fennah (London), R. A. Harrison (Christchurch), T. C. Maa (Honolulu & Taipei), C. W. Sabrosky (Washington, D. C), R. L. Usinger (Berkeley), J. van der Vecht (Leiden), K. Yasumatsu (Fukuoka), E. C. Zimmerman (New Hampshire). Assistant Editors: P. D. Ashlock (Honolulu), Carol Higa (Honolulu), Naoko Kunimori (Fukuoka), Setsuko Nakata (Honolulu), Toshi Takata (Fukuoka). Business Manager: C. M. Yoshimoto (Honolulu). Business Assistant: Doris Anbe (Honolulu). Business Agent in Japan: K. Yasumatsu (Fukuoka). Entomological staff, Bishop Museum, 1966: Doris Anbe, Hatsuko Arakaki, P. D. Ashlock, S. Azuma, Madaline Boyes, Candida Cardenas, Ann Cutting, M. L. Goff, J. L. Gressitt (Chairman), J. Harrell, Carol Higa, Y. Hirashima, Shirley Hokama, E. Holzapfel, Dorothy Hoxie, Helen Hurd, June Ibara, Naoko Kuni­ mori, T. C. Maa, Grace Nakahashi, Setsuko Nakata (Adm. Asst.), Tulene Nonomura, Carol Okuma, Ka­ tharine Pigue, Linda Reineccius, T. Saigusa, I. Sakakibara, Judy Sakamoto, G. A. Samuelson, Sybil Seto, W. A. Steffan, Amy Suehiro, Grace Thompson, Clara Uchida, J. R. Vockeroth, Nixon Wilson, Mabel Ya- tsuoka, C. M. Yoshimoto, E. C. Zimmermann. Field associates: M. J. Fitzsimons, E. E. Gless, G. E. Lip- pert, V. Peckham, D. S. Rabor, J. Sedlacek, M. Sedlacek, P. Shanahan, R. Straatman, J. Strong, H. M. Tor- revillas, A.
    [Show full text]
  • Hymenoptera: Braconidae) JEZS 2015; 3 (1): 310-317 © 2015 JEZS Collected from Khyber Pakhtunkhwa, Pakistan Received: 19-09-2014
    Journal of Entomology and Zoology Studies 2015; 3 (1): 310-317 ISSN 2320-7078 Genera of Microgastrinae (Hymenoptera: Braconidae) JEZS 2015; 3 (1): 310-317 © 2015 JEZS collected from Khyber Pakhtunkhwa, Pakistan Received: 19-09-2014 Accepted: 05-02-2015 Fakhruddin and Mian Inayatullah Fakhruddin Department of Entomology, Abstract The University of Agriculture Microgastrines were collected from nine districts of Khyber Pakhtunkhwa, Pakistan. More than 1200 Peshawar, 25000, Pakistan. specimens were collected and examined for proper identification.Results show that a total of nine genera occured in Khyber Pakhtunkhwa viz; Apanteles Foerster, Cotesia Cameron, Dolichogenidea Viereck, Mian Inayatullah Diolcogaster Ashmead, Glyptapanteles Ashmead, Snellenius Westwood, Microplitis Foerster, Department of Entomology, The University of Agriculture Microgaster Latreille, and Paroplitis Wasmaeli. The genus Paroplitis Wasmaeli had been recorded for the Peshawar, 25000, Pakistan. first time as new record from Pakistan. The most speciose and diverse genus was Cotesia Cameron, having eight species and was recorded from different argro-ecological zones of Khyber Pakhtunkhwa. The other genera Microplitis Foerster and Apanteles Foerster having five species each and Dolichogenidea Viereck, Diolcogaster Ashmead, Glyptapanteles Ashmead, Microgaster Latreille, Snellenius Westwood represented by one species each respectively. Distributional notes and images of key morphological features are provided for each genus and a new key to the microgastrine genera of
    [Show full text]
  • Dysdercus Cingulatus
    Prelims (F) Page i Monday, August 25, 2003 9:52 AM Biological Control of Insect Pests: Southeast Asian Prospects D.F. Waterhouse (ACIAR Consultant in Plant Protection) Australian Centre for International Agricultural Research Canberra 1998 Prelims (F) Page ii Monday, August 25, 2003 9:52 AM The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World ©Australian Centre for International Agricultural Research GPO Box 1571, Canberra, ACT 2601. Waterhouse, D.F. 1998, Biological Control of Insect Pests: Southeast Asian Prospects. ACIAR Monograph No. 51, 548 pp + viii, 1 fig. 16 maps. ISBN 1 86320 221 8 Design and layout by Arawang Communication Group, Canberra Cover: Nezara viridula adult, egg rafts and hatching nymphs. Printed by Brown Prior Anderson, Melbourne ii Prelims (F) Page iii Monday, August 25, 2003 9:52 AM Contents Foreword vii 1 Abstract 1 2 Estimation of biological control
    [Show full text]
  • Erebidae-Erebinae.Pdf
    Erebidae Erebinae Achaea janata (Linnaeus, 1758) Taxonomy: Phalaena janata Linnaeus, 1758; 527.– . Phalaena melicerta Drury, [1773]:46,. – India (Bombay). Noctua tigrina Fabricius, 1775. Noctua cyathina Macleay, 1826 . Catocala traversii Fereday, 1877. Ophiusa ekeikei Bethune-Baker, 1906. melicertoides Strand, 1914: 74. Imago melicertella Strand, 1914: 74. Achaea melicertoides Gaede, 1938. Achaea melicertella Gaede, 1938. Hostplant: Flight period: viii. Altitude: 460 m. Distribution map Erebidae Erebinae Achaea serva (Fabricius, 1775) Taxonomy: Noctua serva Fabricius, 1775. Achaea fasciculipes Walker, 1858. fuscosuffusa Strand, 1914: 73. Achaea fuscosuffusa Gaede, 1938. Hostplant: Flight period: ix. Altitude: 2900 m. Imago Distribution map Erebidae Erebinae Agonista hypoleuca Guenee, 1852 Taxonomy Hostplant Flight period Altitude Imago Male genitalia Distribution map Female genitalia Erebidae Erebinae Arcte polygrapha Kollar, 1844 Taxonomy: Arcte polygrapha Kollar, 1844± ./ In- dia (Himalaya) Hostplant Flight period: v, viii. Altitude: 460-1975 m. Imago Distribution map Erebidae Erebinae Artena dotata (Fabricius, 1794) Taxonomy: Noctua dotata Fabricius, 1794: 55.– E. India. Hostplant: Flight period: v-vi. Altitude: 1580-2020 m. Imago Distribution map Erebidae Erebinae Blepharidia griseirufa Hampson, 1894 Taxonomy Hostplant Flight period Altitude Imago Male genitalia Distribution map Female genitalia Erebidae Erebinae Capnodes caustiplaga Hampson, 1895 Taxonomy Hostplant Flight period Altitude Imago Male genitalia Distribution map Female genitalia Erebidae Erebinae Capnodes pustulifera Walker, 1864 Taxonomy Hostplant Flight period Altitude Imago Male genitalia Distribution map Female genitalia Erebidae Erebinae Catocala nupta (Linnaeus, 1767) Taxonomy: Phalaena nupta Linnaeus, 1767: 841.– Germany. Catocala unicuba Walker, [1858]:1210.– India. Hostplant: Populus, P. nigra, Salix, S. fragilis Flight period: ix. Altitude: 2900 m. Imago Distribution map Erebidae Erebinae Chrysopera combinans (Walker, 1858) Taxonomy: Achaea combinans Walker, 1858: 1399.- Ceylon.
    [Show full text]
  • Biology of Achaea Janata Linneaus on Castor and Rose N.K.S
    Agric. Sci. Digest, 22 (3) : 213 - 214,2002 BIOLOGY OF ACHAEA JANATA LINNEAUS ON CASTOR AND ROSE N.K.S. Bhadauria, U.C. Singh and U.S. Dwivedi Department of Entomology, College of Agriculture, JNKW Campus, Gwalior - 474 002, India ABSTRACT Biology ofAchaeajanata Linneaus was studied on the two principal hosts viz., castor and rose to find suitable host for development of this insect under laboratory conditions. Castor was found more suitable host than rose on the basis of more number of eggs, shorter larval and pupal period with lower larval and pupal mortality and higher per cent adult emergence. The castor semilooper, Achaeajanata with filter paper. The adults emerging on the (Lepidoptera: Noctuidati} is a serious pest of same day (Male, female) were paired and castor in many castor growing states of India. released for egg laying in oviposition cages (45 Besides castor, it feeds on different host plants x 45 x 45 cm). Honey sulution (5%) was like pomegranate, rose, dudhi etc. Food plants provided as foot to adults. Observations on play a vital role in the development, survival various developmental stages Le. eggs to adults and reproductive potential of insects (Painter, were recorded on both the hosts. Experiment 1951). The present contribution deals with was performed in four sets. the stYEIies on the biology of the pest on castor The number of eggs laid on castor was and rose. more (535.3 ± 26.8 egs/female) than rose The biology of castor semi looper was :(250.4 ± 12.5/female) (Table 1). Gaikwad studied in the laboratory.
    [Show full text]
  • Influence of Castor Genotypes with Different Wax Blooms on Oviposition
    Journal of Pharmacognosy and Phytochemistry 2018; 7(5): 2711-2715 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; 7(5): 2711-2715 Influence of castor genotypes with different wax Received: 01-07-2018 Accepted: 03-08-2018 blooms on oviposition preference of endolarval parasitoid Snellenius maculipennis (Szepligate) of K Chakkani Priya Acharya N.G. Ranga castor semilooper Achaea janata L Agricultural University, Lam, Guntur, Andhra Pradesh, India KV Hari Prasad K Chakkani Priya, KV Hari Prasad, NC Venkateswarlu and V Umamahesh Acharya N.G. Ranga Agricultural University, Lam, Abstract Guntur, Andhra Pradesh, India The A. janata larvae reared on susceptible genotype DPC-9 had significantly greater parasitisation by S. maculipennis than the moderately resistant genotype 48-1 and resistant genotype GCH-4 tested under no- NC Venkateswarlu choice, dual-choice and multi-choice conditions, suggesting that host genotypes plays a significant role in Acharya N.G. Ranga the effectiveness of S. maculipennis in parasitisation of A. janata larvae. The increased parasitism of A. Agricultural University, Lam, Guntur, Andhra Pradesh, India janata larvae by S. maculipennis on the susceptible genotype DPC-9 might be due to the fact that the host larvae was healthy on the susceptible genotype because lack of resistance to the herbivore. Percentage V Umamahesh parasitism was greater under no-choice condition as compared to that under multi-choice and dual choice Acharya N.G. Ranga conditions, which may be largely because of non-availability of alternate host plant to the females of S. Agricultural University, Lam, maculipennis in no choice condition. The genotype DPC-9 was hospitable to S.
    [Show full text]
  • Green Synthesis of Silver Nanoparticles Using Euphorbia Hirta
    Euphorbia hirta silver nanopaticles JBiopest 5(1): 1-6 JBiopest 7(Supp.): 54-66(2014) Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) G. Durga Devi* K. Murugan and C. Panneer Selvam ABSTRACT Biosynthesis of insecticides from plant extracts is currently under exploitation. Plant extracts are very cost effective and eco-friendly and thus can be an economic and efficient alternative for the large-scale synthesis of synthetic and other chemical insecticides. So the present study was carried out to establish the larvicidal effect of synthesized silver nanoparticles (AgNPs) using leaf extract of Euphorbia hirta (Euphorbiaceae) against the first to fourth instar larvae and pupae of the crop pest of cotton boll worm , Helicoverpa armigera. The production of the AgNPs synthesized using leaf extract of Euphorbia hirta was evaluated through a UV–Vis spectrophotometer in a wavelength range of 200 to 700 nm. An SEM micrograph showed 30- 60-nm-size aggregates of spherical- and cubic-shaped nanoparticles. EDX showed the complete chemical composition of the synthesized nanoparticles of silver. The results showed that the considerable larval mortality was found in the synthesized AgNPs against the I instar to IV instar larvae and pupae of Helicoverpa armigera. The leaf extract exhibited larval toxicity against the I instar to IV instar larvae and pupae of Helicoverpa armigera. The chi-square value was significant at p<0.05 level. Nanoparticle treatment showed toxicity against larval instars of Helicoverpa armigera and had impact on the biological parameters of Helicoverpa armigera.
    [Show full text]
  • Pests of Gingelly, Castor, Mustard and Linseed
    Lecture No 9 PESTS OF GINGELLY, CASTOR, MUSTARD AND LINSEED Pests of Gingelly Though a dozen pests attack gingelly, only leaf webber, gall fly and leaf hopper as vector are important and cause economic damage in gingelly. Major pests 1. Leaf webber Antigastra catalaunalis Pyralidae Lepidoptera 2. Sphinx moth Acherontia styx Sphingidae Lepidoptera 3. Gall fly Asphondylia sesami Cecidomyiidae Diptera 4. Leaf hopper Orosius albicinctus Cicadallidae Hemiptera 5. Pod bug Elasmolomus sordidus Lygaeidae Hemiptera Minor pests 6. Aphid Aphis gossypii Aphididae Hemiptera I. Leaf feeders 1. Leaf webber: Antigastra catalaunalis (Pyralidae: Lepidoptera) Distribution and status: India, Africa, South Europe, Malta, Burma, Bangladesh, Indonesia, Sri Lanka and U.S.S.R. Host range: Sesame, Antirrhinum and Duranta. Damage symptoms Larva webs the top leaves together and bore the tender shoots in the vegetative phase. Flowers and young capsules are bored at reproductive stage. Bionomics Moth is brown with yellowish brown wings. It lays eggs on tender parts of plants. The egg period is 4-5 days. Fully grown pale green larva with black head and dots all over the body measures 20 mm in length. The larval period is 11-16 days. It pupates in leaf folds in a white silken cocoon for 4-7 days. ETL: 2 webbed leaves/sq.m. (or) 10% damage. Management 1. Culture of sesame like EH7, 57, 84, 105, 106 and 156 should be encouraged as these are observed to be completely resistant against A. catalaunalis. 2. Dusting the crop with 2% parathion. 3. Spraying with dimethoate 30 EC 500 ml or methyl parathion 50 EC 500 ml or endosulfan 35 EC 1.25 L or carbaryl 50% WP I kg in 700 L water per hectare.
    [Show full text]
  • Antifeedant, Larvicidal and Ovicidal Efficacy of Citrus Limetta And
    ISSN: 2319 – 8753 International Journal of Innovative Research in Science, Engineering and Technology Vol. 1, Issue 2, December 2012 Antifeedant, larvicidal and ovicidal efficacy of Citrus limetta and Syzygium cumini against pod borer larvae of Helicoverpa armigera (Hub.) (Noctuidae:Lepidoptera) and crotton catterpiller Achaea janata (Noctuidae:Lepidoptera) *S. Senthilmurugan Department of Zoology, Annamalai University, Annamalainagar, Tamilnadu, India ABSTRACT: To estimate the feeding deterrent, larvicidal and ovicidal activity of ethyl acetate, chloroform, methanol and hexane extracts of important medicinal plants of Citrus limetta and Syzygium cumini at various concentrations against most devasting agricultural field pest of Helicoverpa armigera and Achaea janata. The feeding deterrent activity were used as various solvent of methanol, ethyl acetate, chloroform, and hexane, the valuable medicinal plants C .limetta and S. Cumini, used in the experimental site. The highest antifeedant activity of methanol crude extract of C .limetta against H .armigera and A .janata 99.8%, 96.2%, and S. cumini against H .armigera and A .janata 94.2% and 90.8%. Highest ovicidal activity of C .limetta and S. cumini methanol extract was 98.6 and 95.2% against H .armigera at 375ppm. To study report that the important medicinal plant C .limetta and S. Cumini it is a potential source of natural antifeedant, larvicidal and ovicidal properties against the lepidopteran pest of Helicoverpa armigera and Achaea janata. KEYWORDS: Medicinal plants, Helicoverpa armigera, Antifeedant activity, Larvicidal activity. I. INTRODUCTION Noctuidae is the largest family in order lepidptera, and it contains some of the most destructive insect pest of agriculture [1]. The noctuide moths feed on commercial important of plant verities and severe infestation of worldwide agricultural crop.
    [Show full text]