Environmentally Friendly Pultrusion

Total Page:16

File Type:pdf, Size:1020Kb

Environmentally Friendly Pultrusion ENVIRONMENTALLY FRIENDLY PULTRUSION MUHAMMAD SHAFIQ IRFAN A thesis submitted to the University of Birmingham for thee degree of DOCTOR OF PHILOSOPHY School of Metallurgy and Materials College of Engineering and Physical Sciences University of Birmingham, U.K. May 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT The primary aim of this research programme was to develop an environmentally-friendly pultrusion technique for the production of fibre-reinforced composites. This technique is referred to as “clean pultrusion”. In this new manufacturing technique, the resin bath used in the conventional pultrusion process was replaced with a custom-built resin impregnator. The resin impregnator was designed and built to impregnate the rovings using a combination of pin, injection and capillary-based impregnation. An integral aspect of the clean pultrusion process was the spreading of the filaments in the rovings, via mechanical means, prior to impregnation. A new method was developed and modelled to spread the filaments in the rovings via a “tension-release” process. The observations made during the initial fibre spreading experiments were used to design and construct an automated fibre spreading rig. The Taguchi method was used to design the experimental matrix to optimise the parameters that were considered to affect the spreading of the filaments in the rovings via the custom- made fibre spreading rig. The conventional and clean pultrusion techniques were used in conjunction with E-glass fibres and three classes of resins: epoxy, vinyl ester and polyurethane. The clean pultrusion technique was demonstrated successfully in the laboratory and at the premises of Pultrex Ltd, UK. With reference to the polyurethane resin system, a custom-built resin dispenser was provided by CTM Equipment & CTM UK Ltd. Here, the isocyanate and polyol were contained in separate reservoirs and delivered, on demand, via precision gear pumps to a Kenics® static mixer. The static mixer was connected to the resin impregnator where the spread fibres were impregnated. In the case of the epoxy and vinyl ester resin systems, pre- mixed resins were dispensed to the resin impregnator via a pressure-pot. The physical, mechanical and thermo-mechanical properties of the composites pultruded using the clean and conventional techniques were analysed and compared. It was found that the composites manufactured using the clean pultrusion had lower void content when compared to those manufactured using the conventional resin bath-based technique. It was also found that the composites manufactured via the clean pultrusion technique exhibited better mechanical properties. i It is common practice for an internal mould release to be blended in with the resin formulation. This study found that in instances where the internal mould release was applied externally, the mechanical properties were superior. The thermo-mechanical properties of the pultruded composites were similar for each class of resin system when using the conventional and clean pultrusion techniques. Visual inspection and optical microscopy of polished sections demonstrated that the degree of impregnation was consistently higher for the composites manufactured via the clean pultrusion method. A life cycle assessment (LCA) was performed to compare the environmental impact of the clean and conventional pultrusion processes. The LCA demonstrated conclusively that the clean pultrusion technique offers several significant advantages with regard to: (i) reduction in the volume of solvent required to clean the equipment at the end of each production schedule; (ii) reduction in the volume of waste resin; (iii) reduction in the time taken to clean the equipment; and (iv) situations where the resin dispenser is used in conjunction with the clean pultrusion technique, the need for manual mixing of the components of the resin is avoided. The new pultrusion technique consisting of an integrated fibre spreading rig, a resin dispensing unit and an impregnation unit was demonstrated as being a viable method to pultrude composites without using a resin bath. ii This thesis is dedicated to my late wife and daughter (their sudden departure taught me that there are certain things in life which are uncontrollable) & my parents and siblings (for their unconditional love and support during the time I spent away from home for my studies). iii ACKNOWLEDGEMENTS I would like to thank my supervisor Professor Gerard Fernando for giving me the opportunity to work on this project. His deep sense of knowledge, guidance, thoughtfulness and dedication to his work always inspired me to a great extent. I am also hugely indebted to Prof. Fernando’s immense support during the write-up of my thesis. Appreciation is due to my colleagues in the Sensors and Composites Group for their help and support. Especially to Dr Raj Machavaram, a great friend, who not only helped me in my research work but with whom I explored a lot of cinemas and restaurants in Birmingham. I would also like to thank Dr Liwei Wang, Dr Surya Pandita, Mark Paget, Frank Biddlestone, Fran Nieves, Claire Wait, Mick Cunningham, Mrs. Tracy Parkes, Mrs. Anne Cabezas, Mrs. Kay Jones, Mrs. Jenny Henderson, Dr Nick Shotton-Gale, Dr Ramani Mahendran, Dr Dee Harris, Sebastian Ballard, Richard Murray, Samuel Ojo and Abilash Kumar for helping me during my work in one way or another. I am very grateful for the funding and support given by the Engineering and Physical Sciences Research Council (EPSRC) and Technology Strategy Board (TSB). Appreciation is due to the industrial partners involved in the project including Colin Leek (Pultrex Ltd.), Shane and Ruth Wootton (CTM Equipment & CTM UK Ltd), Mark Hudson (PPG Industries), Merv Laycock and Stefan Helsemans (Huntsman Polyurethanes). Also I wish to extend my thanks to the University of Engineering and Technology, Lahore, Pakistan for granting me leave to continue my higher education. I am also grateful to my friends Sarmad Ali Khan and Debajyoti Bhaduri with whom I spent some great time during my stay in the UK. Finally, I am indebted to my parents and siblings for their support and unconditional love. I can never re-pay their dedication and the sacrifices they have made for me. iv TABLE OF CONTENTS 1 INTRODUCTION ----------------------------------------------------------------- 1 1.1 BACKGROUND -------------------------------------------------------------------------------------- 1 1.2 AIMS OF THE STUDY ----------------------------------------------------------------------------- 5 1.3 STRUCTURE OF THE THESIS ------------------------------------------------------------------ 5 2 LITERATURE REVIEW -------------------------------------------------------- 7 2.1 PULTRUSION ---------------------------------------------------------------------------------------- 7 2.1.1 Description of the process ---------------------------------------------------------------------------------- 7 2.1.2 Fibre reinforcements ---------------------------------------------------------------------------------------- 9 2.1.3 Thermosetting resins --------------------------------------------------------------------------------------- 12 2.1.4 Important features associated with pultrusion ---------------------------------------------------------- 14 2.1.5 Impregnation methods ------------------------------------------------------------------------------------- 17 2.2 FIBRE SPREADING -------------------------------------------------------------------------------- 22 2.2.1 Rationale for fibre spreading ------------------------------------------------------------------------------ 22 2.2.2 Techniques for fibre spreading ---------------------------------------------------------------------------- 24 2.2.2.1 Mechanical -------------------------------------------------------------------------------------------- 24 2.2.2.2 Vibration ----------------------------------------------------------------------------------------------- 28 2.2.2.3 Pneumatic/Vacuum ----------------------------------------------------------------------------------- 32 2.2.2.4 Acoustic ------------------------------------------------------------------------------------------------ 36 2.2.2.5 Electrostatic ------------------------------------------------------------------------------------------- 38 2.2.3 Hypothesis on mechanically-induced fibre spreading ------------------------------------------------- 38 2.2.4 Wilson’s model --------------------------------------------------------------------------------------------- 40 2.3 RESIN IMPREGNATION ------------------------------------------------------------------------- 42 2.3.1 Basic equations relating to impregnation ---------------------------------------------------------------- 42 2.3.2 The coefficient of permeability (K) ---------------------------------------------------------------------- 46 2.3.3 Factors affecting resin impregnation ---------------------------------------------------------------------
Recommended publications
  • Coupled Glass-Fiber Reinforced Polyoxymethylene Gekoppeltes Glasfaserverstärktes Polyoxymethylen Polyoxyméthylène Renforcé Par Fibre De Verre Couplée
    (19) TZZ ZZ__T (11) EP 2 652 001 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C08G 18/56 (2006.01) C08G 18/76 (2006.01) 26.12.2018 Bulletin 2018/52 C08K 7/14 (2006.01) C08J 5/04 (2006.01) (21) Application number: 11769886.0 (86) International application number: PCT/EP2011/067992 (22) Date of filing: 14.10.2011 (87) International publication number: WO 2012/049293 (19.04.2012 Gazette 2012/16) (54) COUPLED GLASS-FIBER REINFORCED POLYOXYMETHYLENE GEKOPPELTES GLASFASERVERSTÄRKTES POLYOXYMETHYLEN POLYOXYMÉTHYLÈNE RENFORCÉ PAR FIBRE DE VERRE COUPLÉE (84) Designated Contracting States: (74) Representative: Lahrtz, Fritz et al AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Isenbruck Bösl Hörschler LLP GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Patentanwälte PL PT RO RS SE SI SK SM TR Prinzregentenstrasse 68 81675 München (DE) (30) Priority: 14.10.2010 EP 10187614 (56) References cited: (43) Date of publication of application: EP-A1- 1 630 198 WO-A1-2006/105918 23.10.2013 Bulletin 2013/43 DE-A1- 2 162 345 US-A1- 2005 107 513 (73) Proprietor: Celanese Sales Germany GmbH • DATABASE WPI Week 201025 Thomson 65843 Sulzbach (DE) Scientific, London, GB; AN 2010-D80494 XP002615422, -& WO 2010/035351 A1 (72) Inventors: (POLYPLASTICS KK) 1 April 2010 (2010-04-01) • MARKGRAF, Kirsten • K. KAWAGUCHI, E. MASUDA, Y. TAJIMA: 69469 Weinheim (DE) "Tensile Behavior of Glass-Fiber-Filled • LARSON, Lowell Polyacetal: Influence of the Functional Groups of Independence, KY 41051 (US) Polymer Matrices", JOURNAL OF APPLIED POLYMER SCIENCE, vol.
    [Show full text]
  • Fiber Reinforced Polymer (FRP) Composites
    Fiber Reinforced Polymer (FRP) Composites Gevin McDaniel, P.E. Roadway Design Standards Administrator & Chase Knight, PhD Composite Materials Research Specialist Topics Covered Overview of FRP Composites Currently Available National Specifications FDOT Design Criteria and Specifications Acceptable FDOT Applications Research on FRP Composites District 7 Demonstration Project Chase Knight, PhD - Usage (Characteristics/Durability) Questions 2 FRP Overview: What is FRP? General Composition Carbon, Glass, Etc. Polymer 3 FRP Overview: Fibers Common Fiber Types: Aramid - Extremely sensitive to environmental conditions Glass (Most Widely Used) - Subject to creep under high sustained loading - Subject to degradation in alkaline environment Carbon - Premium Cost Basalt - The future of FRP fibers? 4 FRP Overview: Fibers Used in many different forms: Short Fibers Chopped Fibers Long Fibers Woven Fibers 5 FRP Overview: Resins Two Categories: Thermoset Resins (most common for structural uses) - Liquid state at room temperature prior to curing - Impregnated into reinforcing fibers prior to heating - Chemical reaction occurs during heating/curing - Solid after heating/curing; Can’t be reversed/reformed Thermoplastic Resins - Solid at room temperature (recycled plastic pellets) - Heated to liquid state and pressurized to impregnate reinforcing fibers - Cooled under pressure; Can be reversed/reformed 6 FRP Overview: Resins Common Thermoset Resin Types Polyester - Lowest Cost Vinyl ester - Industry Standard Polyurethane - Premium Cost
    [Show full text]
  • CV TJH January 2021
    Arrabon Technologies Limited Dr Trevor J. Hutley MBA Global Polymer Industry Consultant Research & Innovation Advisor Technical & Management Consultant Experience Summary A career polymer and petrochemical industry specialist with global experience in many pioneering and complex situations. An unusual combination of broad and deep technology and science knowledge; an understanding of intellectual property; combined with finance, marketing, manufacturing and business experience, deployed in technical service, problem solving, new product / new market / new business development and technology commercialisation, in industry, business and educational spheres, in many cultural contexts. A continuous track record of the commercial development and application of technology and science in a multitude of market sectors. Kaizen [continuous improvement] is part of his DNA. Very strong market and customer focus. A strategic and global business thinker. High energy, serious commitment to the task. Very pro-active. Passionate. Analytical driver. Very high personal standards of achievement with impeccable integrity, and a good sense of humour. A very fast learner, with a teachable spirit. Adaptable. Flexible. Highly creative. Excellent presentation and communication skills, confident public speaker. A frequently invited speaker, chairman and moderator at international conferences. Credentials Brunel University UK BTech First Class Polymer Technology Cranfield Institute of Technology PhD in Polymer Engineering Business School, Lausanne CH MBA summa cum
    [Show full text]
  • Materials for Polymer Composites
    Module 2 - Materials For Polymer Composites Module 2 - Materials for Polymer Composites Introduction Major constituents in a fiber-reinforced composite material are the reinforcing fibers and a matrix, which acts as a binder for the fibers. Other constituents that may also be found are coupling agents, coatings, and fillers. Coupling agents and coatings are applied on the fibers to improve their wetting with the matrix as well as to promote bonding across the fiber–matrix interface. Both in turn promote a better load transfer between the fibers and the matrix. Fillers are used with some polymeric matrices primarily to reduce cost and improve their dimensional stability. Manufacturing of a composite structure starts with the incorporation of a large number of fibers into a thin layer of matrix to form a lamina (ply). The thickness of a lamina is usually in the range of 0.1–1 mm. If continuous (long) fibers are used in making the lamina, they may be arranged either in a unidirectional orientation (i.e., all fibers in one direction, Figure 2.1a), in a bidirectional orientation (i.e., fibers in two directions, usually normal to each other, Figure 2.1b), or in a multidirectional orientation (i.e., fibers in more than two directions, Figure 2.1c). The bi- or multidirectional orientation of fibers is obtained by weaving or other processes used in the textile industry. For a lamina containing unidirectional fibers, the composite material has the highest strength and modulus in the longitudinal direction of the fibers. However, in the transverse direction, its strength and modulus are very low.
    [Show full text]
  • Development of Thermoplastic Pultrusion with Modeling And
    Development of Thermoplastic Pultrusion with Modeling and Experiments Khongor Jamiyanaa and Uday Vaidya University of Alabama at Birmingham (UAB) GATE Scholar Project ID: LM085 Project No: DE-EE-0005580 Program Manager: Adrienne Riggi This presentation does not contain any proprietary or confidential information Project Summary* (The budget below represents the entire GATE Center. This presentation is only a sub-set of the DOE GATE effort.) Barriers Timeline • Limited information on Project Start - Oct 2011 advanced materials Project End – Sep 2016 database 72.6 % complete • Lack of high temperature properties Budget (Overall GATE Center) Total project: $750,000* Partners DOE portion: $600,000 • ORNL University Cost Share: $150,000 • MIT- RCF $447,420 DOE • Owens Corning $325,000 Expended • Polystrand, PPG 72.6% complete • CIC, Canada Khongor Jamiyanaa (GATE Scholar) - Background • Graduated from Colorado State Univ. in 2010 • BS in Mechanical Engineering, Minor in Mathematics • Graduated from Univ. of Alabama at Birmingham in 2014 • MS in Materials Science and Engineering • Research Thesis: Design and modeling of Thermoplastic Pultrusion Process • 1yr Co-op internship at Owens Corning Science & Technology center in 2013. • Application Development Engineer RELEVANCE Pultrusion Applications in Automotive, Truck and Mass Transit Wide Ranges of Pultrusion Offers: cosmetic and structural Frame • High strength-to- Members applications: weight ratio • Transportation Brackets Grates • Corrosion • Truck frame resistance members Pultrusion • Vehicle
    [Show full text]
  • Pultex Pultrusion Design Manual of Standard and Custom Fiber Reinforced Polymer Structural Profiles Imperial Version Volume 5 – Revision 3
    The Pultex® Pultrusion Design Manual of Standard and Custom Fiber Reinforced Polymer Structural Profiles Imperial Version Volume 5 – Revision 3 Featuring PultexStandard Structural Profiles Pultex SuperStructural Profiles Nuclear test tower constructed using Pultex® Standard Structural Profiles Creative Pultrusions, Inc. reserves the right to edit and modify literature, please consult the web site for the most current version of this document. “The first Pultex® Design Manual was published in 1973. The New and Improved Pultex® Pultrusion Design Manual of Standard and Custom Fiber Reinforced Polymer Structural Profiles, 2004 Edition, Volume 5 – Revision 3 is a tool for engineers to specify Pultex® pultruded standard structural profiles. Creative Pultrusions, Inc. consistently improves its information to function as a solid reference for engineers.” “No portion of this Design Manual may be reproduced in any form without the prior written consent of Creative Pultrusions, Inc.” Volume 5 - Revision 3 Copyright© 2016 by Creative Pultrusions, Inc. All Rights Reserved Creative Pultrusions®, Flowgrip®, Pultex®, Supergrate®, SUPERPILE®, Superplank®, SuperLoc® and Superdeck® are registered trademarks of Creative Pultrusions, Inc. Superstud!™, Superstud!™/Nuts!, SUPURTUF™, Tuf-dek™, SuperWale™, SuperCap™ and SuperRod™are trademarks of Creative Pultrusions, Inc. i The New and Improved Pultex® Pultrusion Global Design Manual Contents The New and Improved Pultex® Pultrusion Design Manual of Standard and Custom Fiber Reinforced Polymer Structural Profiles,
    [Show full text]
  • A Review of Long Fibre-Reinforced Thermoplastic Or Long Fibre Thermoplastic (LFT) Composites
    International Materials Reviews ISSN: 0950-6608 (Print) 1743-2804 (Online) Journal homepage: https://www.tandfonline.com/loi/yimr20 A review of Long fibre-reinforced thermoplastic or long fibre thermoplastic (LFT) composites Haibin Ning, Na Lu, Ahmed Arabi Hassen, Krishan Chawla, Mohamed Selim & Selvum Pillay To cite this article: Haibin Ning, Na Lu, Ahmed Arabi Hassen, Krishan Chawla, Mohamed Selim & Selvum Pillay (2019): A review of Long fibre-reinforced thermoplastic or long fibre thermoplastic (LFT) composites, International Materials Reviews, DOI: 10.1080/09506608.2019.1585004 To link to this article: https://doi.org/10.1080/09506608.2019.1585004 Published online: 11 Mar 2019. Submit your article to this journal Article views: 1 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=yimr20 INTERNATIONAL MATERIALS REVIEWS https://doi.org/10.1080/09506608.2019.1585004 A review of Long fibre-reinforced thermoplastic or long fibre thermoplastic (LFT) composites Haibin Ning a,NaLub, Ahmed Arabi Hassenc, Krishan Chawlaa, Mohamed Selima and Selvum Pillaya aDepartment of Materials Science and Engineering, Materials Processing and Applications Development (MPAD) Centre, University of Alabama at Birmingham, Birmingham, AL, USA; bLyles School of Civil Engineering, School of Materials Engineering, Purdue University, West Lafayette, IN, USA; cManufacturing Demonstration Facility (MDF), Oak Ridge National Laboratory (ORNL), Knoxville, TN, USA ABSTRACT ARTICLE HISTORY Long fibre-reinforced thermoplastic or long fibre thermoplastic (LFT) composites possess Received 8 August 2018 superior specific modulus and strength, excellent impact resistance, and other advantages Accepted 15 February 2019 such as ease of processability, recyclability, and excellent corrosion resistance.
    [Show full text]
  • Optimized Resins and Sizings for Vinyl Ester/Carbon Fiber Composites
    IACMI/0001-2018/5.3 Optimized Resins and Sizings for Vinyl Ester/Carbon Fiber Composites Authors: Joseph R. Fox Date Published June 19, 2018 Approved for Public Release. Distribution is Unlimited. i DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website http://www.osti.gov/scitech/ Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Website http://www.ntis.gov/help/ordermethods.aspx Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following Disclaimer: “The information, data, or work presented herein was funded in part by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.” ii FINAL TECHNICAL REPORT Optimized Resins and Sizings for Vinyl Ester/ Carbon Fiber Composites Principal Investigator: Joseph R.
    [Show full text]
  • Miniaturised Rod-Shaped Polymer Structures with Wire Or Fibre Reinforcement—Manufacturing and Testing
    Article Miniaturised Rod-Shaped Polymer Structures with Wire or Fibre Reinforcement—Manufacturing and Testing Michael Kucher , Martin Dannemann * , Ansgar Heide, Anja Winkler and Niels Modler Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, Holbeinstraße 3, 01307 Dresden, Germany; [email protected] (M.K.); [email protected] (A.H.); [email protected] (A.W.); [email protected] (N.M.) * Correspondence: [email protected]; Tel.: +49-351-463-38134 Received: 29 May 2020; Accepted: 26 June 2020; Published: 27 June 2020 Abstract: Rod-shaped polymer-based composite structures are applied to a wide range of applications in the process engineering, automotive, aviation, aerospace and marine industries. Therefore, the adequate knowledge of manufacturing methods is essential, covering the fabrication of small amounts of specimens as well as the low-cost manufacturing of high quantities of solid rods using continuous manufacturing processes. To assess the different manufacturing methods and compare the resulting quality of the semi-finished products, the cross-sectional and bending properties of rod-shaped structures obtained from a thermoplastic micro-pultrusion process, conventional fibre reinforced epoxy resin-based solid rods and fibre reinforced thermoplastic polymers manufactured by means of an implemented shrink tube consolidation process, were statistically analysed. Using the statistical method one-way analysis of variance (ANOVA), the differences between groups were calculated. The statistical results show that the flexural moduli of carbon fibre reinforced polymers were statistically significantly higher than the modulus of all other investigated specimens (probability value P < 0.001). The discontinuous shrink tube consolidation process resulted in specimens with a smooth outer contour and a high level of roundness.
    [Show full text]
  • Sustainable Plastics Strategy
    Sustainable Plastics Strategy suschem.org Contributing partners: SusChem Cefic PlasticsEurope EuPC ECP4 Sustainable Plastic Strategy Edition 2, December 2020 Content 4 Sustainable Recycling 28 1 1. Plastic stream preparation (waste pre-treatment) 28 2. Plastic waste preparation 29 Introduction 7 3. Sorting and separation 29 2 3.1. Improve sorting 31 3.2. Improve separation 32 Methodology 11 4. Recycling technologies 34 4.1. Chemical recycling of plastics waste by pyrolysis 36 3 4.2. Chemical recycling of plastic waste by gasification 37 4.3. Chemical recycling of plastics Sustainable-by-Design 16 waste by depolymerization/solvolysis 38 1. Material design 16 4.4. Recycling by dissolution of 1.1. Extend lifetime 16 multi-polymer systems 38 1.2. Material usage vs 4.5. Mechanical recycling 39 performance 19 5. Post-processing 40 1.3. Increase recyclability 19 1.4. Biodegradation 21 1.5. Addressing micro 5 and nano-plastics 22 2. Article Design 24 Alternative Feedstock 43 2.1. Design for dismantling 24 1. Agricultural and forest 2.2. Decrease material usage 24 biomass waste based raw 2.3. Monolayer pouch and in-mold labelling 25 materials 43 2.4. Refillable and recyclable 2. CO2/CO-based 44 PET bottles 26 6 Glossary 49 About the partners 50 About Suschem 51 6 • SUSTAINABLE PLASTICS STRATEGY Introduction Plastic waste is ending up in the environment, feedstock for pure polymers by using chemical and unmanaged, is amongst the greatest recycling. global environmental challenges of our time12. As an industry, we believe plastic waste in the We need a holistic approach to plastic waste environment is unacceptable and represents a based on a measurable science-based massive loss of a valuable resource.
    [Show full text]
  • Plastics Engineering Doctoral Thesis List 11/13/08
    Plastics Engineering Doctoral Thesis List 11/13/08 1989 PL-1* Li-Kuo Sun,“The Effect of Plasticizer Structure on Plasticizer Solvency, Permanence and Efficiency” (Advisor: S.P. McCarthy). 1990 PL-1* •David A. Cinquegrana, “Knowledge-Based Injection Mold Design Automation” (Advisor: S.P. McCarthy). PL-2* •John J. DeLuca , “Development of Turbine Containments for Aircraft” (Advisor: ). PL-3* Amar Khelifi, “Compatibilization of Polyethylene Terephthalate and High Density Polyethylene” (Advisor: F.S. Lai). PL-4* Young Roak Kim, “Behavior of Fiber Reinforcements and Resin Flow During the Injection-Pultrusion Process” (Advisor: S.P. McCarthy). 1991 PL-1* •Jong-Liang Wu, “Cavity Pressure-Based Expert System for Injection Molding - A Coupled Numerical and Rule-Based Approach” (Advisor: S.J. Chen). PL-1* Ling C. Yang, “Solidification of Polymer Melt Flowing in a Round Tube” (Advisor: S.J. Chen). PL-2* Toshikazu Katoh, “Processing of Liquid Crystalline Polymer and Engineering Plastics Blends” (Advisor: N.R. Schott). PL-3* Han-Hsiu Tseng, “Software Design and Experimental Verification of Polymer Flow Through a Pipe Extrusion Die” (Advisor: F.S. Lai). 1992 PL-1* Chongkue Yoon, “Fiber Degradation During Reciprocating-Screw Plastication” (Advisor: R.E. Nunn). PL-2* David C. Raia, “Design of a Professional High-Powered Loudspeaker and Its System Integration” (Advisor: N.R. Schott). PL-3* Sang Wook , Park“A Study of the Processing Effect on the Morphology of Biodegradable Blends of Polystyrene and Hydroxypropylcellulose” (Advisor: S.P. McCarthy). PL-4* Gaurang V. Shah, “Toughened Composites for Personal Safety” (Advisors: R.E. Nunn/N.R. Schott). PL-5* Ho-Seon Jin, “γ Radiation-Induced Changes in the Chemical and Physical Structure of Poly (Ethylene Terephthalate)” (Advisor: A.M.
    [Show full text]
  • Crystic Composites Handbook | Scott Bader
    Composites Handbook Performance Resins in Composites 50 years of reliability, experience and innovation. The Crystic family of resins is at the heart of our success. In 1946 Scott Bader were the first UK company to manufacture unsaturated polyester resins in Europe. In 1953 the Crystic range of polyesters was introduced and its revolutionary applications have meant that Crystic has been the byword for superior technological achievement ever since. CONTENTS Introduction Plastics The nature of reinforced plastics Materials Resins Unsaturated polyesters - DCPD polyesters - Epoxies - Vinyl esters - Phenolics - Hybrids Reinforcements Glass fibre - Carbon fibre - Polyaramid fibre - Glass combinations - Hybrid combinations Speciality materials Catalysts MEKP’s - CHP’s - AAP’s - BPO’s - TBPO’s & TBPB’s Accelerators Cobalts - Amines Fillers Calcium carbonate - Talc - Metal powders - Silica - Microspheres - Alumina tri-hydrate Pigments Polyester pigment pastes Release Agents Polyvinyl alcohol - Wax - Semi-permanents - Wax/semi- permanent hybrids - Release film - Internal release systems Core materials 2-component polyurethane foam - Polyurethane foam sheet - PVC foam - Polyetheramide foam - Styrene acryilonitrile foam - Balsa wood - Honeycomb cores - Non-woven cores Adhesives Polyesters - Epoxies - Acrylics (methacrylates) - Polyurethanes - Urethane acrylates (Crestomer) Mould making materials Flexible materials - Plaster & clay - Composites Ancillary products Polishing compounds Processes Open mould processes Gelcoating - Laminating - Hand lay-up
    [Show full text]