Differences in Signal Intensity and Enhancement on MR Images of the Perivascular Spaces in the Basal Ganglia Versus Those in White Matter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review Article Meninges: from Protective Membrane to Stem Cell Niche
Am J Stem Cell 2012;1(2):92-105 www.AJSC.us /ISSN: 2160-4150/AJSC1205003 Review Article Meninges: from protective membrane to stem cell niche Ilaria Decimo1, Guido Fumagalli1, Valeria Berton1, Mauro Krampera2, Francesco Bifari2 1Department of Public Health and Community Medicine, Section of Pharmacology, University of Verona, Italy; 2De- partment of Medicine, Stem Cell Laboratory, Section of Hematology, University of Verona, Italy Received May 16, 2012; accepted May 23, 2012; Epub 28, 2012; Published June 30, 2012 Abstract: Meninges are a three tissue membrane primarily known as coverings of the brain. More in depth studies on meningeal function and ultrastructure have recently changed the view of meninges as a merely protective mem- brane. Accurate evaluation of the anatomical distribution in the CNS reveals that meninges largely penetrate inside the neural tissue. Meninges enter the CNS by projecting between structures, in the stroma of choroid plexus and form the perivascular space (Virchow-Robin) of every parenchymal vessel. Thus, meninges may modulate most of the physiological and pathological events of the CNS throughout the life. Meninges are present since the very early em- bryonic stages of cortical development and appear to be necessary for normal corticogenesis and brain structures formation. In adulthood meninges contribute to neural tissue homeostasis by secreting several trophic factors includ- ing FGF2 and SDF-1. Recently, for the first time, we have identified the presence of a stem cell population with neural differentiation potential in meninges. In addition, we and other groups have further described the presence in men- inges of injury responsive neural precursors. In this review we will give a comprehensive view of meninges and their multiple roles in the context of a functional network with the neural tissue. -
Perivascular Space Semi-Automatic Segmentation (PVSSAS): a Tool for Segmenting, Viewing and Editing Perivascular Spaces
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.385336; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Perivascular Space Semi-Automatic Segmentation (PVSSAS): A Tool for Segmenting, Viewing and Editing Perivascular Spaces Authors: Derek A Smith, BA a,b,d, (212) 824-8497, [email protected] Gaurav Verma, PhD a,b,d, [email protected] Daniel Ranti, BS, a,b,f, (617) 645-8004, [email protected] Matthew Markowitz, PhD, g, (212)413-3300, [email protected] Priti Balchandani, PhD a,b,c,d,e, (212) 241-0695, [email protected] Laurel Morris, PhD a,b,d,f, (212) 241-2774, [email protected] Keywords: Perivascular Spaces, Semi-Automated, Frangi filter, Matlab, 7 T MRI, User-friendly #Pages: 8 #Words: 1833 #References: 30 #Figs: 2 #Tables: 0 Affiliation Addresses: a Icahn School of Medicine at Mount Sinai, Hess CSM Building (1470 Madison Avenue, New York, NY, 10029) b BioMedical Engineering and Imaging Institute at Mount Sinai School of Medicine, Leon and Norma Hess Center for Science and Medicine, 1470 Madison Avenue, New York, NY 10029 c Fishberg Department of Neuroscience at the Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029 d Department of Radiology at the Icahn School of Medicine at Mount Sinai, 1 Gustave L. -
Subcortical Cystic Lesions Within the Anterior Superior Temporal Gyrus: a Newly Recognized Characteristic Location for Dilated Perivascular Spaces
CLINICAL REPORT BRAIN Subcortical Cystic Lesions within the Anterior Superior Temporal Gyrus: A Newly Recognized Characteristic Location for Dilated Perivascular Spaces S. Rawal, S.E. Croul, R.A. Willinsky, M. Tymianski, and T. Krings ABSTRACT SUMMARY: Cystic parenchymal lesions may pose an important diagnostic challenge, particularly when encountered in unexpected locations. Dilated perivascular spaces, which may mimic cystic neoplasms, are known to occur in the inferior basal ganglia and mesen- cephalothalamic regions; a focal preference within the subcortical white matter has not been reported. This series describes 15 cases of patients with cystic lesions within the subcortical white matter of the anterior superior temporal lobe, which followed a CSF signal; were located adjacent to a subarachnoid space; demonstrated variable surrounding signal change; and, in those that were followed up, showed stability. Pathology study results obtained in 1 patient demonstrated chronic gliosis surrounding innumerable dilated perivascular spaces. These findings suggest that dilated perivascular spaces may exhibit a regional preference for the subcortical white matter of the anterior superior temporal lobe. Other features—lack of clinical symptoms, proximity to the subarachnoid space, identification of an adjacent vessel, and stability with time—may help in confidently making the prospective diagnosis of a dilated perivascular space, thereby preventing unnecessary invasive management. ABBREVIATION: SAS ϭ subarachnoid space ystic lesions of the brain -
Perivascular Space Fluid Contributes to Diffusion Tensor Imaging Changes in White Matter
bioRxiv preprint doi: https://doi.org/10.1101/395012; this version posted January 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Perivascular space fluid contributes to diffusion tensor imaging changes in white matter Running title: A systematic bias in DTI findings Authors: Farshid Sepehrband Ph.D.1, *, Ryan P Cabeen Ph.D.1, Jeiran Choupan Ph.D.1, 2, Giuseppe Barisano M.D.1, 3, Meng Law M.D.1, 4, Arthur W Toga Ph.D.1, for the Alzheimer’s Disease Neuroimaging Initiative Affiliations: 1. Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA 2. Department of Psychology, University of Southern California, Los Angeles, USA 3. Neuroscience Graduate Program, University of Southern California, Los Angeles, USA 4. Radiology and Nuclear Medicine, Alfred Health, Melbourne, Australia Correspondence to: Farshid Sepehrband, PhD Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA T: (+1) 323-442-7246 E: [email protected] Word count: 4700 Number of figures: 7 Number of tables: 0 Keywords: diffusion tensor imaging, bias, perivascular space Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. -
White Matter Hyperintensity Accumulation During Treatment of Late-Life Depression
Neuropsychopharmacology (2015) 40, 3027–3035 © 2015 American College of Neuropsychopharmacology. All rights reserved 0893-133X/15 www.neuropsychopharmacology.org White Matter Hyperintensity Accumulation During Treatment of Late-Life Depression 1 1 1 1 1 Alexander Khalaf , Kathryn Edelman , Dana Tudorascu , Carmen Andreescu , Charles F Reynolds and ,1 Howard Aizenstein* 1 Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA White matter hyperintensities (WMHs) have been shown to be associated with the development of late-life depression (LLD) and eventual treatment outcomes. This study sought to investigate longitudinal WMH changes in patients with LLD during a 12-week antidepressant treatment course. Forty-seven depressed elderly patients were included in this analysis. All depressed subjects started pharmacological treatment for depression shortly after a baseline magnetic resonance imaging (MRI) scan. At 12 weeks, patients = = underwent a follow-up MRI scan, and were categorized as either treatment remitters (n 23) or non-remitters (n 24). Among all patients, there was as a significant increase in WMHs over 12 weeks (t(46) = 2.36, P = 0.02). When patients were stratified by remission status, non-remitters demonstrated a significant increase in WMHs (t(23) = 2.17, P = 0.04), but this was not observed in remitters (t(22) = 1.09, P = 0.29). Other markers of brain integrity were also investigated including whole brain gray matter volume, hippocampal volume, and fractional anisotropy. No significant differences were observed in any of these markers during treatment, including when patients were stratified based on remission status. These results add to existing literature showing the association between WMH accumulation and LLD treatment outcomes. -
Association Between Carotid Hemodynamics and Asymptomatic White and Gray Matter Lesions in Patients with Essential Hypertension
797 Hypertens Res Vol.28 (2005) No.10 p.797-803 Original Article Association between Carotid Hemodynamics and Asymptomatic White and Gray Matter Lesions in Patients with Essential Hypertension Mie KURATA, Takafumi OKURA, Sanae WATANABE, and Jitsuo HIGAKI The aim of this study was to clarify the magnitude of common carotid artery (CCA) structural and hemody- namic parameters on brain white and gray matter lesions in patients with essential hypertension (EHT). The study subjects were 49 EHT patients without a history of previous myocardial infarction, atrial fibrillation, diabetes mellitus, impaired glucose tolerance, chronic renal failure, symptomatic cerebrovascular events, or asymptomatic carotid artery stenosis. All patients underwent brain MRI and ultrasound imaging of the CCA. MRI findings were evaluated by periventricular hyperintensity (PVH), deep and subcortical white matter hyperintensity (DSWMH), and état criblé according to the Japanese Brain dock Guidelines of 2003. Intima media thickness (IMT), and mean diastolic (Vd) and systolic (Vs) velocities were evaluated by carotid ultra- sound. The Vd/Vs ratio was further calculated as a relative diastolic flow velocity. The mean IMT and max IMT were positively associated with PVH, DSWMH, and état criblé (mean IMT: = 0.473, 0.465, 0.494, p=0.0007, 0.0014, 0.0008, respectively; max IMT: = 0.558, 0.443, 0.514, p=0.0001, 0.0024, 0.0004, respec- tively). Vd/Vs was negatively associated with état criblé ( = - 0.418, p=0.0038). Carotid structure and hemo- dynamics are potentially related to asymptomatic lesions in the cerebrum, and might be predictors of future cerebral vascular events in patients with EHT. -
Persistent Parkinsonism After High Dose Intravenous Methamphetamine: a Case Report
Neurology Asia 2017; 22(1) : 77 – 80 Persistent parkinsonism after high dose intravenous methamphetamine: A case report 1Ka Lam Alan Tang MD, 1Huajun Liang PhD, 1Yong Lin MPhil, 1Chenxi Zhang MPhil, 1Wai Kwong Tang MD, 2Winnie Chui Wing Chu MD, 3,4Gabor Sandor UngvariMD PhD 1Department of Psychiatry, 2Department of Imaging & Interventional Radiology, Chinese University of Hong Kong, Hong Kong SAR, China; 3The University of Notre Dame Australia / Marian Centre, Perth; 4School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, Australia Abstract A patient developed persistent parkinsonism after intravenously injecting a high dose of methamphetamine. Magnetic resonance imaging revealed bilateral hypoxic/ischemic basal ganglia damage, which could have been caused by the vasoconstrictive effect of methamphetamine. This case adds some circumstantial evidence to the association between methamphetamine and Parkinsonism. Key words: Parkinsonism, methamphetamine, substance use disorders. INTRODUCTION Over the years, the patient developed multiple complications including hepatitis C infection with Methamphetamine use has been hypothetically Child’s B cirrhosis, a lung abscess, Volkmann’s linked to Parkinsonism.1-4However,there are no contracture of the left hand, and chronic bilateral reports of Parkinsonism developing after acute/ deep vein thrombosis. He was last seen 17 days chronic use of methamphetamine. Here, we before the index admission and there was no describe a polysubstance user who developed parkinsonian features detected on that visit. persistent Parkinsonism following a high-dose Immediately prior to his admission to ED, intravenous injection of methamphetamine. the patient injected1.2 grams of heroin (cost: HK$1,000), slightly more than his usual dose CASE REPORT together with midazolam and oral chlorpromazine This is a 46-year-old unemployed man with an (300 mg), trifluoperazine(20 mg), and citalopram almost 30-year-history of polysubstance abuse, (20 mg). -
Hydraulic Resistance of Perivascular Spaces in the Brain
Tithof et al. Fluids Barriers CNS (2019) 16:19 https://doi.org/10.1186/s12987-019-0140-y Fluids and Barriers of the CNS RESEARCH Open Access Hydraulic resistance of periarterial spaces in the brain Jefrey Tithof1, Douglas H. Kelley1, Humberto Mestre2, Maiken Nedergaard2 and John H. Thomas1* Abstract Background: Periarterial spaces (PASs) are annular channels that surround arteries in the brain and contain cerebro- spinal fuid (CSF): a fow of CSF in these channels is thought to be an important part of the brain’s system for clearing metabolic wastes. In vivo observations reveal that they are not concentric, circular annuli, however: the outer bounda- ries are often oblate, and the arteries that form the inner boundaries are often ofset from the central axis. Methods: We model PAS cross-sections as circles surrounded by ellipses and vary the radii of the circles, major and minor axes of the ellipses, and two-dimensional eccentricities of the circles with respect to the ellipses. For each shape, we solve the governing Navier–Stokes equation to determine the velocity profle for steady laminar fow and then compute the corresponding hydraulic resistance. Results: We fnd that the observed shapes of PASs have lower hydraulic resistance than concentric, circular annuli of the same size, and therefore allow faster, more efcient fow of cerebrospinal fuid. We fnd that the minimum hydraulic resistance (and therefore maximum fow rate) for a given PAS cross-sectional area occurs when the ellipse is elongated and intersects the circle, dividing the PAS into two lobes, as is common around pial arteries. -
Demyelination and Remyelination Detected in an Alternative Cuprizone
www.nature.com/scientificreports OPEN Demyelination and remyelination detected in an alternative cuprizone mouse model of multiple sclerosis with 7.0 T multiparameter magnetic resonance imaging Shuang Ding1, Yu Guo2, Xiaoya Chen1, Silin Du1, Yongliang Han1, Zichun Yan1, Qiyuan Zhu1 & Yongmei Li1* The aim of this study was to investigate the mechanisms underlying demyelination and remyelination with 7.0 T multiparameter magnetic resonance imaging (MRI) in an alternative cuprizone (CPZ) mouse model of multiple sclerosis (MS). Sixty mice were divided into six groups (n = 10, each), and these groups were imaged with 7.0 T multiparameter MRI and treated with an alternative CPZ administration schedule. T2-weighted imaging (T2WI), susceptibility-weighted imaging (SWI), and difusion tensor imaging (DTI) were used to compare the splenium of the corpus callosum (sCC) among the groups. Prussian blue and Luxol fast blue staining were performed to assess pathology. The correlations of the mean grayscale value (mGSV) of the pathology results and the MRI metrics were analyzed to evaluate the multiparameter MRI results. One-way ANOVA and post hoc comparison showed that the normalized T2WI (T2-nor), fractional anisotropy (FA), mean difusivity (MD), radial difusivity (RD), and axial difusivity (AD) values were signifcantly diferent among the six groups, while the mean phase (Φ) value of SWI was not signifcantly diferent among the groups. Correlation analysis showed that the correlation between the T2-nor and mGSV was higher than that among the other values. The correlations among the FA, RD, MD, and mGSV remained instructive. In conclusion, ultrahigh-feld multiparameter MRI can refect the pathological changes associated with and the underlying mechanisms of demyelination and remyelination in MS after the successful establishment of an acute CPZ-induced model. -
The Meninges As Barriers and Facilitators for the Movement of Fluid, Cells and Pathogens Related to the Rodent and Human CNS
The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS Weller, Roy O.; Sharp, Matthew M.; Christodoulides, Myron; Carare, Roxana O.; Møllgård, Kjeld Published in: Acta Neuropathologica DOI: 10.1007/s00401-018-1809-z Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O., & Møllgård, K. (2018). The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathologica, 135(3), 363-385. https://doi.org/10.1007/s00401-018-1809-z Download date: 28. Sep. 2021 Acta Neuropathologica (2018) 135:363–385 https://doi.org/10.1007/s00401-018-1809-z REVIEW The meninges as barriers and facilitators for the movement of fuid, cells and pathogens related to the rodent and human CNS Roy O. Weller1 · Matthew M. Sharp1 · Myron Christodoulides2 · Roxana O. Carare1 · Kjeld Møllgård3 Received: 5 November 2017 / Revised: 2 January 2018 / Accepted: 15 January 2018 / Published online: 24 January 2018 © The Author(s) 2018. This article is an open access publication Abstract Meninges that surround the CNS consist of an outer fbrous sheet of dura mater (pachymeninx) that is also the inner peri- osteum of the skull. Underlying the dura are the arachnoid and pia mater (leptomeninges) that form the boundaries of the subarachnoid space. In this review we (1) examine the development of leptomeninges and their role as barriers and facilita- tors in the foetal CNS. -
The New Classes of Synthetic Illicit Drugs Can Significantly Harm the Brain: a Neuro Imaging Perspective with Full Review of MRI Findings
Clinical Radiology & Imaging Journal The New Classes of Synthetic Illicit Drugs Can Significantly Harm the Brain: A Neuro Imaging Perspective with Full Review of MRI Findings Creagh S1*, Warden D2, Latif MA3 and Paydar A4 Review Article 1 Ponce Health Sciences University, Ponce, PR Volume 2 Issue 1 2Diagnostic Radiologist, Florida Hospital-Orlando Received Date: March 31, 2018 3Diagnostic Radiologist, Mount Sinai Medical Center- Miami Beach, FL Published Date: April 25, 2018 4Diagnostic Radiologist, Florida Hospital-Orlando, University of Central Florida College of Medicine, and Florida State University College of Medicine *Corresponding author: Susana Creagh Reyes, Ponce Health Sciences University, 888 Biscayne Blvd, Apt 3809, USA, Tel: 7873613988; Email: [email protected] Abstract Synthetic drugs contain substances that are pharmacologically similar to those found in traditional illicit drugs. Some of the most commonly abused synthetic drugs include synthetic marijuana, bath salts, ecstasy, N-bomb, methamphetamine and anabolic steroids. Many of them share the same chemical properties and physiologic responses with the drugs they mimic and may exaggerate the pathologic response in the brain leading to addiction. These drugs have detrimental (and often irreversible) effects on the brain and primarily affect the central nervous system by two mechanisms: 1) Neural hyper stimulation via increasing activation of certain neurotransmitters (norepinephrine, dopamine, and serotonin), 2) Cause significant reduction in CNS neural connectivity affecting various brain regions such as the basal ganglia, hippocampus, cerebellum, parietal lobe, and globus pallidus. Furthermore these drugs sometimes have severe, life- threatening adverse effects on the human body. A few structural MRI studies have been conducted in synthetic drug abusers to reveal the effects of these drugs on the brain parenchyma. -
Defective Oligodendrocyte Development and Function in An
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.09.418657; this version posted December 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Defective oligodendrocyte development and function in an RNA polymerase III mutant leukodystrophic mouse Emilio Merheba, Min-Hui Cuib,c, Juwen C. DuBoisd, Craig A. Branchb,c, Maria Gulinelloe, Bridget Shafit-Zagardod, Robyn D. Moira, Ian M. Willisa,f,* a Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461; b Department of Radiology, Albert Einstein College of Medicine, Bronx, NY 10461; c Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY 10461; d Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461; e Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461; f Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461 * Corresponding author: Ian M Willis. Email: [email protected] Author Contributions: R.D.M. and I.M.W. conceived the study. E.M acquired and analyzed data. J.C.D contributed to the immunohistochemistry. M.G. designed and supervised behavioral studies and reviewed the statistical analysis. M-H.C. performed and analyzed the MRI, DTI and MRS data and designed these experiments together with C.A.B. B.S-Z. contributed to the design and interpretation of immunohistochemistry and TEM data. E.M and I.M.W wrote the manuscript with contributions from the other authors.