<<

ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Pressureeffectsonthestructuralandelectronic

propertiesofABX 4scintillatingcrystals

DanielErrandonea 1, ∗andFranciscoJavierManjón 2

1MALTAConsoliderTeam,DepartamentodeFísicaAplicada–ICMUV,Universitat

deValència,c/Dr.Moliner50,46100Burjassot(Valencia),Spain

2MALTAConsoliderTeam,DepartamentodeFísicaAplicada–IDF,Universitat

PolitècnicadeValència,Cno.deVeras/n,46022València,Spain

Abstract

Studiesathighpressuresandtemperaturesarehelpfulforunderstandingthe physicalpropertiesofthesolidstate,includingsuchclassesofmaterialsas,metals,

semiconductors, superconductors, or . In particular, the phase behaviour of

ABX 4 scintillating materials is a challenging problem with many implications for

otherfieldsincludingtechnologicalapplicationsandEarthandplanetarysciences.A

greatprogresshasbeendoneinthelastyearsinthestudyofthepressureeffectson

the structural and electronic properties of these compounds. In particular, the high pressure structural sequence followed by these compounds seems now to be better ∗Correspondingauthor,Email:[email protected],Fax:(34)963543146,Tel.:(34)963544475

1 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008 understoodthankstorecentexperimentalandtheoreticalstudies.Here,wewillreview studiesonthephasebehaviourofdifferentABX 4scintillatingmaterials.Inparticular, wewillfocusondiscussingtheresultsobtainedbydifferentgroupsforthe structured orthotungstates, which have been extensively studied up to 50 GPa. We will also describe different experimental techniques for obtaining reliable data at simultaneouslyhighpressureandhightemperature.Drawbacksandadvantagesofthe different techniques are discussed along with recent developments involving synchrotron xray diffraction, Raman scattering, and ab initio calculations.

Differences and similarities of the phase behaviour of these materials will be discussed, on the light of the Fukunaga and Yamaoka´s and Bastide´s diagrams, aimingtoimprovetheactualunderstandingoftheirhighpressurebehaviour.Possible technological and geophysical implications of the reviewed results will be also commented.

PACSNumbers:62.50.+p,61.50.Ks,61.10.Ht,71.15.Mb,63.20.e,78.30.j

Keywords:Highpressure,scintillatingmaterials,phasetransitions,xraydiffraction,

Ramanscattering, ab initio calculations,scheelite,,fergusonite,.

2 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Contents

1. Introduction………………………………………………………………………5

2. Historicalbackground……………………………………………………………7

3. Crystalstructure………………………………………………………………...11

4. HighpressurestructuralstudiesonAWO 4orthotungstates:pressureeffectsonthe

scheelitestructure……………………………………………………………….14

4.1.Xraydiffractionexperiments……………………………………………...14

4.2.Xrayabsorptionmeasurements……………………………………………17

4.3.Ramanspectroscopy………………………………………………………..19

4.4.Otherexperimentalstudies:neutrondiffraction,shockwaveexperiments,and

Brillouinspectroscopy……………………………………………………..23

4.5.Ab initio calculations……………………………………………………….25

5. Pressureinducedphasetransitions……………………………………………..27

5.1.Scheelitetofergusonitetransition…………………………………………27

5.2.Postfergusonitestructures…………………………………………………36

5.3.Pressureinducedamorphization…………………………………………...41

5.4.Highpressurehightemperaturephases……………………………………43

5.5.Wolframitetoβfergusonitephasetransition…………………………...…46

6. HighpressurephasetransitionsinotherABX 4materials:molybdates,vanadates,

chromates, silicates, germanates, niobates, tantalates, perrhenates, periodates,

phosphates,andfluorides……………………………………………………….47

7. Towardasystematicunderstanding…………………………………………….52

7.1.Crystalchemistryofscheelitesand………………………………..52

7.2.Size criterion: A correlation between the packing ratio and transition

pressuresinscheeliteABX 4compounds…………………………………...55

3 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

7.3.CommontrendsofpressureinducedphasetransitionsinABX 4compounds:

TheFukunagaandYamaoka’sdiagramandtheBastide’sdiagram………58

7.4.Spontaneousstrainandtheferroelasticnatureofthescheelitetofergusonite

phasetransition…………………………………………………………….67

7.5.Equation of state of ABX 4 compounds and the relationship between bulk

compressibilityandpolyhedralcompressibility……………………………71

8. Studiesoftheelectronicproperties…………………………………………..…75

8.1.Opticalabsorptionmeasurements………………………………………….75

8.2.Luminescencestudies………………………………………………………77

9. Technologicalandgeophysicalimplications………………………………...…79

10.Futureprospects………………………………………………………………...82

11.Concludingremarks…………………………………………………………….84

Acknowledgments.……………………………………………………………….…85

References…………………………………………………………………………..87

4 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

1. Introduction

ScheelitestructuredABO 4ternaryoxidesareimportantmaterialsfrombotha

theoreticalandatechnologicalpointofview.Inparticular,CaWO 4,SrWO 4,BaWO 4,

and PbWO 4 are promising materials for the next generation of cryogenic phonon

scintillation detectors [1]. This fact has motivated a renewed interest in the

fundamental physical and chemical properties of the AWO 4 orthotungstates and

relatedABX 4compounds(e.g.YLiF 4andBiVO 4)aswellasintheirbehaviourunder

compression.Thesecompoundsareinfacttechnologicallyimportantmaterialswithin

a wider scope and have a long history of practical application since CaWO 4 (the

scheelite[2])wasfirstusedbyThomasA.Edisonin1896todetectxrays

[3]. In particular, scheelitetype AWO 4 compounds possess very attractive

luminescence properties; e.g. they fluoresce bright bluishwhite in ultraviolet

radiation, a distinguishing feature utilized in prospecting and mining. Among other

applications, these compounds have been used during the last years as solidstate

scintillators [4, 5], laserhost materials [6], and in other optoelectronic devices like

eyesafeRamanlasers[79].Theyhaveseveraladvantagesoverotherscintillating

materials due to its relatively large xray absorption coefficient and scintillation

output,reasonthathavemadethemverypopularfordetectingxraysandγraysin

medical applications [10]. On top of that, recent studies on scheelitetype ABO 4

compounds have shown that these crystals have good prospects as heterogeneous

catalysts[11],oxideionconductors[12],andpossiblenegativeelectrodematerialsto

replacethegraphitepresentlybeingusedintheLiionbatteries[13].Asignificant

amount of research work on the highpressure behaviour of ABX 4 compounds has been performed in the last lustrum and this corpus forms a solid background for

understandingthemainphysicalpropertiesofthesematerials[14–32].Duetothe

5 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

importance of these highpressure studies, several laboratories across the world are

involvednowinsuchstudies.

Here we will review recent studies of the structural properties of scheelite

structured ABX 4 scintillating crystals under compression up to 50 GPa. We will

comment on recent results regarding AWO 4 orthotungstates and AMoO 4

orthomolybdates obtained using different methods. These methods include angle

dispersive xray powder diffraction (ADXRD) [14 21] andxrayabsorption near

edge structure (XANES) [17, 19, 22], using synchrotron radiation, ab initio total

energy calculations [17, 19, 23 25], Raman spectroscopy measurements [20, 26

30],andotherexperimentaltechniques,suchasneutrondiffraction[21]andshock

wavemeasurements[31].Thecombinationoftheexperimentalmeasurementsand ab

initio calculations reveal the existence of complex highpressure phasediagrams in

ABX 4 materials and in some cases the occurrence of a pressureinduced

amorphization. A review of the above mentioned studies is timely, because the

number of observed structural transformations driven by pressure in ABX 4

scintillating crystals has increased considerably. Among other things, here we will present a systematic of the structural sequence undergone by ABX 4 materials upon

compression.Accordingwiththissystematic,thestructuralsequencesandtransition pressuresinthesematerialsarerelatedwiththepackingefficiencyoftheanionicBX 4

unitsaroundtheAcations.Inaddition,arelationshipbetweenthechargedensityin

theAX 8 bisdisphenoidsofABX 4scheeliterelatedstructuresandtheirbulkmodulusis

discussed and used to predict the bulk modulus of other materials of technological

interest, like ceramic TiSiO 4 and new scheelite oxynitrides [33]. Furthermore, a

comparative analysis of the crystal chemistry of ABX 4 compounds under high pressurewillbedoneinordertopresentthewholebodyofstructuralstudiesavailable

6 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

intheliteratureinaconsistentfashion,andtosuggestopportunitiesforfuturework.

We will also review in detail, how the changes of the structural properties of

scintillating scheelitestructured compounds affect their electronic properties,

commenting recent opticalabsorption and luminescence measurements and

discussingtheresultsintermsoftheelectronicstructure.Theconclusionsextracted

fromthedifferentstudiesherereviewedhaveimportantimplicationsforthedifferent

technological applications described above. They may have also important

geophysical and geochemical implications since ABO 4 ternary oxides are common

accessorymineralsinvariouskindsofrocksintheEarth’suppermantle,andhave beenalsofoundinmeteoriteimpactdebris.

2. Historical background The observation of pressuredriven phase transitions in ABX 4 compounds

dates back to the early 1960s. Dachille and Glasser showed that BAsO 4 and BPO 4

crystallizinginthehighcristobalitestructureatambientconditionstransformtothe

lowquartz structure at 5 GPa and 500ºC [34]. Young et al. found that AlAsO 4,

crystallizing in the lowquartz structure at ambient conditions, transforms under pressure to the rutile structure at 9 GPa and 900ºC [35]. Seifert discovered that

InSbO 4 with the rutile structure at ambient conditions transformed to the αPbO 2

structurearound11GPaand800ºC[36].SnymanandPistoriusobservedthatmany

seleniates(e.g.MgSeO 4andZnSeO 4)isomorphoustothezincositestructure(ZnSO 4)

transformedtotheCrVO 4–typestructureundercompression[37].Stubicanreported

that several vanadates and arsenates crystallizing in the zircon or in the monazite

structuresatambientconditionstransformedtothescheelitestructurebetween2and8

GPa[38].YoungandSchwartzfoundthatmanytungstatesandmolybdateswiththe

wolframitestructuretransformtoanunknownhighpressureformaround6GPaand

7 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

900ºC [39]. In addition, in the 1970s, Muller et al. observed that CdCrO 4 with the

monoclinic C2/m structureatambientconditionstransformedtothescheelitestructure

at4GPaand200ºC[40].Finally,TamurafoundthatFeTaO 4withtherutilestructure

atambientconditionstransformedtothewolframitestructureat2.5GPaand1200ºC

[41].

Regarding the scheelitestructured molybdates and tungstates, the first high pressurestudieswerecarriedoutalsoduringthe1970s.Inthesestudies,Nicoland

Durana [42, 43] reported the vibrational Raman spectra for CaMoO 4, CaWO 4, and

SrWO 4atpressuresashighas4GPaforthetetragonalscheelitephase[spacegroup

(S.G.): I4 1/a , No. 88, Z = 4] [44] and a previously unknown highpressure phase.

BaseduponthechangesfoundintheRamanspectra,theypostulatedthatthehigh pressurephaseshadamonoclinicwolframitetypestructure(S.G.: P2/c ,No.14,Z=

2) [45]. In contemporary studies, the existence of highpressure (HP) high

temperature (HT) phases in BaWO 4 and PbWO 4 was discovered [46, 47]. These phases were quenched from HPHT conditions to ambient conditions and the

metastable products were characterized by xray powder diffraction. The

crystallographicstructureoftheseHPHTphaseswassolvedbyKawada et al. [48]

andRichter et al. [49],correspondingtoamonoclinicstructure(S.G.: P2 1/n ,No.14,

Z=8)namedBaWO 4II.Inspiredbythehighpressurestructuralstudiespreviously

carriedoutbyothers[34–49],inthelate1970s,FukunagaandYamaokatriedtogive

a systematic explanation of the pressureinduced phase transitions in ABO 4

compounds [50]. In their study, they classified all ABO 4 compounds in a two

dimensionalphasediagramonthebasisofthemeancationtoanionionicradiiratio

andthecationAtocationBionicradiiratio.

8 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Thestudiesdescribedaboveshowedthatscheelitewasahighpressureformof many other ABO 4 compounds with zircon, monazite or CrVO 4–type structures and thatwolframitewasahighpressureformofrutile.Theseresultsmotivatedduringthe

1980s and 1990s an intensive effort to discover the highpressure phases of the wolframite and scheelitestructured compounds and to check whether or not wolframitecouldtransformintoscheeliteunderpressureorconversely.Jayaraman et al. performedhighpressureRamanstudiesofscheelitetypeABO 4compounds like alkalineearthtungstates(CaWO 4,SrWO 4,BaWO 4)[51],PbWO 4andPbMoO 4[52] up to 9 GPa. They found that the scheelitestructure remains stable in CaWO 4 and

SrWO 4 up to the highest pressure reached in their experiments and reported the occurrence of pressuredriven phase transitions in BaWO 4, PbWO 4, and PbMoO 4 around 6.5 GPa, 4.5 GPa, and 9 GPa, respectively. They also suggested that these highpressurephasescouldhaveanoctahedralWOcoordinationasintheHgWO 4 typestructure (S.G.: C2/c ,No.15, Z =4)[53].They alsoperformedhighpressure

RamanstudiesofscheelitetypeCdMoO 4andwolframitetypeCdWO 4compoundsup to40GPafindingtwophasetransitionsnear12GPaand25GPainCdMoO 4[54] and near 10 GPa and 20 GPa in CdWO 4 [55]. Other highpressure Raman studies wereconductedinthe1980sand1990sonpseudoscheelitestructuredcompoundslike alkaline perrhenates and periodates; e.g. KReO 4, RbReO 4, CsReO 4, TlReO 4, KIO 4,

RbIO 4,andCsIO 4[5659].

Inthe1980s,Hazen et al. performedbythefirsttimexraydiffractionstudies under compression in scheelitetype tungstates and molybdates (CaWO 4, PbWO 4,

CaMoO 4,PbMoO 4,andCdMoO 4)usingaanvilcell(DAC)[60].ADACis a device that consists basically of two opposing coneshaped diamondanvils squeezedtogether.Theresultanthighpressuresareproducedwhenforceisappliedto

9 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

thesmallareasoftheopposingdiamondculets,beingpossibletoreachwiththeDAC pressures of up to 500 GPa [61]. Hazen et al. did not find in their singlecrystal experimentsanypressureinducedphasetransitionupto6GPaforthe fivestudied compounds. However, they showed that the BO 4 (WO 4 and MoO 4) tetrahedra in

scheeliteoxideswereratherincompressibleandthatthecompressibilityofscheelite

structuredcompoundswasmainlyduetothecompressionoftheAO 8polyhedra(e.g.

CaO 8). These studies were followed by Macavei and Schulz who performed xray

diffractionstudiesundercompressioninsomewolframitetypetungstates(MgWO 4,

MnWO 4, and CdWO 4) using a DAC up to 8 GPa [62]. They also showed that the

WO 6 octahedra in wolframite oxides were rather incompressible and that the

compressibility of wolframitestructured compounds was mainly due to the

compressionoftheAO 6octahedra.Finally,inthelate1980s,Bastidetriedtogivea

systematicexplanationofthepressureinducedphasetransitionsinABX 4 compounds

[63].HeclassifiedallABX 4compoundsinatwodimensionalphasediagramonthe basisoftheircationAandcationBtoanionXionicradiiratiosandestablishedarule

forthehighpressurephasetransitionsinABX 4compounds.

Inthelastdecade,thedevelopmentofthediamondanvilcelltechnology[61]

andofdedicatedhighpressurefacilitiesatsynchrotronlightsources[64]hasbrought

a rebirth of the research on the highpressure behaviour of ABX 4 compounds, in particularofthescheelitetypeones.Initially,Ramanstudiesunderpressurefounda phasetransitionabove10GPainCaWO 4andSrWO4[26,65]andaround12GPain

SrMoO 4andCdMoO 4[54,66]. Besides, asecondtransitioninCdMoO 4wasfoundat

25GPa[54].Inparallelwiththesestudies,itwasdonethefirstattempttosolvethe

crystalline structure of the highpressure phases of scheelitestructured compounds.

Jayaraman et al. performedenergydispersivepowderxraydiffraction(EDXRD)on

10 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

CdMoO 4andconcludedthatthefirsthighpressurephase,observedabove12GPa,

had a wolframitetype structure and that the second highpressure phase, observed beyond 25 GPa, had a BaWO 4IItype structure [67]. Similar studies performed in

CaWO 4reachedasimilarconclusionforthefirsthighpressurephase[68].Additional

EDXRDstudiesonCaWO 4extendingthepressurerangeupto65GPa,observedthat

CaWO 4becomesamorphousatpressuresexceeding40GPa.Thesestudiesalsofound

thatanovelhighpressurephaseofCaWO 4canbeobtainedat45GPaafterheatingto

477Kandquenchingtoroomtemperature(RT)anamorphoussample[69].

Inspiteofalltheseeffortsmadetounderstandthehighpressurebehaviourof

ABX 4compoundsduringthreedecades,ithasbeenonlyinthelastlustrumthatthe

mostsignificantcontributionsdeterminingthehighpressurephasesofscheeliteand

wolframitestructuredcompoundshavebeendone.Inparticular,thecombinationof

recent ab initio calculations[17,19,23–25],Ramanspectroscopystudies[20,26–

30], and xray diffraction and absorption measurements [14 – 22] have allowed to

clearly establish the sequence of the pressuredriven structural phase transitions

undergonebyscheelitetypecompounds.Thesetechniquesarenowalsobeingusedto

explore the unknown highpressure phases of wolframite and fergusonite structures

[70].Adetailreviewofthesestudiesandthemainconclusionsextractedfromthem

willbedoneinthefollowingsections.

3.

Metal orthomolybdates (AMoO 4) and orthotungstates (AWO 4) of relatively

largebivalentcations(ionicradius>0.99Å;A=Ca,Ba,Sr,PborEu,andCdonly

for the molybdates) and many other ABX 4 compounds crystallize in the socalled

scheelitestructure[71].ScheeliteisthenameofthemineralCaWO 4,whichisusedto

describe the family of all the minerals isostructural to CaWO 4, like powellite

11 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

(CaMoO 4), (PbWO 4), and (PbMoO 4). Scheelite crystals have a

tetragonal symmetry, appearing as dipyramidal pseudooctahedra. They posses

distinctplanesanditsmaybesubconchoidaltouneven.Twinningis

alsocommonlyobservedinnaturalcrystals.Inadditiontothemineralsources,single

crystalscheeliteshavebeensynthesizedusingdifferentmethodssincethelate1940s

to satisfy the needs of different applications [72]. Nowadays, highquality large

crystalscanbeobtainedviatheCzochralskiprocess[73].

ThecrystallinestructureofscheelitewassolvedbySillenandNylander[74]

who in the 1940s reviewed earlier works and by means of xray diffraction

determined the oxygen atomic positions. Moreprecise refinements of this structure

were obtained during the 1960s by means of xray diffraction [44] and neutron

diffraction [75] experiments. The scheelite crystal structure is characterized by the

tetragonal space group I4 1/a listed as No. 88 in the International Tables of

Crystallography.Inthisstructure,theprimitiveunitcellhastwoABX 4units.TheA

andBsiteshaveS 4pointsymmetry,andthecrystalhasaninversioncenter.TheX

siteshaveonlyonetrivialpointsymmetry.Thescheelitecrystalshavethreecrystal parameters(x,y,z)whichdescribethelocationoftheX(e.g.oxygen)sitesatthe16f

Wyckoffpositions.Thereareanumberofequivalentwaystodescribethescheelite

structurewhichhaveappearedintheliterature[74].Asanexample, Table I givesthe

WyckoffpositionsoftheatomsandlatticeparametersofCaWO 4intheconventional

setting[60].

The scheelite crystal structure can be described as highly ionic with A +2

2 cationsandtetrahedralBX 4 anions.EachBsiteissurroundedbyfourequivalentX

2 sitesintetrahedralsymmetryandthetetrahedralBX 4 anionshaveshortBXbond

lengthsofapproximately1.78Åwhicharequiterigidevenundercompression[11,

12 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

+2 +2 12,60].EachA cationsharescornerswitheightadjacentBX 4tetrahedraandtheA

cations are surrounded by eight X sites at bond lengths of around 2.45 Å in

approximately octahedral symmetry forming bisdisphenoids. Figure 1 shows a perspectivedrawingofthecrystalstructureCaWO 4atambientconditions( a= b=

5.2429Å, c=11.3737Å)intheconventionalunitcell,indicatingthe a, b,and caxes

and the nearly tetrahedral bonds between W and O and the dodecahedral bonds betweenCaandO. Inthescheelitestructure,theBX 4tetrahedrahavetheXatoms

locatedattwodifferentzvalues,withtwoXatomslyingatthesamezandtheother

two at another z. In the tetragonal zircon structure the same is true and the XX

directionofthetwoXatomslyinginthesamezintheBX 4tetrahedraarealigned

withthe aand baxes.However,inthescheelitestructuretheXXdirectionofthetwo

X atoms lying in the same z is rotated with respect to the axes. Each scheelite

structurehasacharacteristicsettingangle φ ( between0and45º)whichdeterminesthe

minimumanglebetweentheXXdirectionandthe aaxis.

On the other hand, metal tungstates (AWO 4) and molybdates (AMoO 4) of

relativelysmallbivalentcations(ionicradius<0.99Å;A=Mg,Fe,Mn,Ni,Co,Zn),

CdWO 4,andMnReO 4crystallizeinthesocalledwolframitestructure[71].Someof

these molybdates show an interesting polymorphism crystallizing also in different

structures[76].Thewolframitestructurebelongstothemonoclinicspacegroup P2/c

andhastwoformulaunitspercrystallographiccell[45].Itconsistsofinfinitezigzag

chains, running parallel to [001] composed entirely of AO 6 octahedra and WO 6

octahedra which shares two corners with its neighbours. In particular, the WO 6

(MoO 6)octahedraarehighlydistortedsincetwooftheWOdistancesaremuchlarger

thantheotherfourdistances.Asinthecaseofthescheelites,twiningisalsocommon

inon{100},usuallyassimplecontacttwins.

13 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

On top of that, the metal molybdates (AMoO4; A = Mn, Mg, Fe) of some

smallbivalentcationsalsocrystallizeintheCrVO4typestructure,whereasCuWO 4

and CuMoO 4 crystallize in the triclinic P1 structure (CuWO 4type) at ambient

conditions.ZnMoO 4 couldalsocrystallizeinthisstructure.AlthoughtheCuWO 4type

structureistriclinic(S.G.: P1 ,No.2,Z=2),itisalsotopologicallysimilartothe

wolframitestructure[77].WhereasinwolframitetheA 2+ ionsarepresentinaxially

2+ compressedAO 6octahedra,intheCuWO 4typestructuretheA ionsareresponsible

forasignificantJahnTellerdistortionandimposealargeaxialelongationuponthe

AO 6octahedra.RegardingtheorthorhombicCrVO 4typestructure(S.G.: Cmcm ,No.

63, Z = 4) [78], it consists of AO 6 octahedra sharing edges to form chains that propagateinthe cdirection,withthechainslinkedtooneanotherbyBO 4tetrahedral

sharingcornerswiththeoctahedralofthechains.Finally,therearesomemolybdates

like CoMoO 4, MnMoO 4, and NiMoO 4 that can also crystallize in a monoclinic

structurewithspacegroup C2/m (S.G.No.12,Z=8)[76,79],astructurethathas beenalsoobservedunderhighpressureandhightemperatureconditionsinCaWO 4

[69]. This structure is a closepacked arrangement of oxygen octahedra about both

typesofcationsandcanbethoughtofasadistortedmodificationoftheCoOstructure

[76].

4. High-pressure structural studies on AWO 4 orthotungstates: pressure effects on

the scheelite structure

444.1. X-ray diffraction experiments

AfterafirstADXRDstudybyGrzechnik et al. onthehighpressurestructural behaviour of YLiF 4, where a scheelitetofergusonite phase transition was reported

[80],similarstudieshavebeencarriedoutinCaWO4,SrWO 4,BaWO 4,andPbWO 4

[14,15,17,18,19,21].Theywereperformeduptopressuresofapproximately20

14 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

GPa,butinthecaseofBaWO 4thepressurerangewasextendedupto56GPa[19].In

theseexperimentsfinepowdersamplesofthesecompoundswereloadedintoaDAC.

TheADXRDpatternsweremeasuredusingamicronsizebeamofmonochromaticx

ray radiation produced either by a synchrotron source or rotating anode xray

generatorsatwavelengthsrangingfrom0.3679Åto0.7093Å.Moredetailsaboutthe

experimentscanbefoundintheabovecitedreferences.

Figure 2 shows in situ ADXRD data measured at different pressures for

CaWO 4. The xray patterns could be indexed with the scheelite structure from

ambient pressure (0.0001 GPa) up to 9.7 GPa. A splitting and a broadening of the

diffraction peaks are observed at 11.3 GPa together with the appearance of new

reflections,inparticulartheweakpeaklocatedaround2 θ = 3 .9°whichisdepictedby

arrowsin Figure 2 .Thesefactsareindicativeofastructuralphasetransitionwhich

occursat10.5(8)GPaaccordingwithRef.[17]andaround10GPainRef.[14].A

similarbehaviourhasbeenfoundinSrWO 4,BaWO 4,andPbWO 4,beingthephase

transformationdetectedaround10GPa[17,18],7GPa[15,19],and5–9GPa[19,

21],respectively.FromtheADXRDdatatheevolutionwithpressureofthevolume,

lattice parameters, and axial ratios can be extracted. Figure 3 shows the results

obtainedforCaWO 4andSrWO 4.Thedatareportedbydifferentauthorsagreewell

within the uncertainty of the experiments [14, 17, 18, 44, 68, 81]. The pressure

volume(PV)curvesforthefourorthotungstateshavebeenanalyzedinthestandard

wayusingathirdorderBirchMurnaghanequationofstate(EOS)[82].Aselectionof

the obtained zeropressure volume (V 0), bulk modulus (B 0), and its pressure

derivative (B 0’) are shown in Table II . The parameters of the EOS obtained from

EDXRDdataforEuWO 4arealsoshownforcomparison[32].Thereisanexcellent

agreementamongthevaluespublishedfortheseparametersbydifferentauthors.

15 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

AcomparisonofthevolumeofallthescheelitestructuredAWO 4compounds

showsthatthereisadirectrelationbetweentheionicradiioftheA 2+ cationandthe

equilibrium volume. A similar fact is also observed in the scheelitetype

orthomolybdates[71].Inadditiontothat,ithasbeenfoundthatthecompressibilityof

theorthotungstatesincreasesfollowingthesequenceCaWO 4>SrWO 4>EuWO 4>

PbWO 4>BaWO 4.Thisfactisadirectconsequenceofthedifferentcompressibilityof

the caxis in the different compounds; see Figure 3 for comparing CaWO 4 and

SrWO 4.In Figure 3 ,itcanbealsoseenthatthelinearcompressibilityofthe caxisis

larger than that of the aaxis. As a consequence of this fact the anisotropy of the

crystalsdecreaseundercompression,beingthisdecreasealsorelatedwiththesizeof

the A 2+ cation. It is important to mention here that the presence of large uniaxial

strainsintheexperimentsseemstoaffectboththeaxialandbulkcompressibilityof

thecompoundsofinterestforthisreview.Thiscanbeseenin Figure 3 ,wherethe

results obtained under nonhydrostatic conditions () [68] tends to slightly

underestimatethecompressibilityofCaWO 4.

Itisveryinterestingtopayattentionalsototheevolutionofthecationanion

distancesinthescheelitetypeAWO 4compounds.IthasbeenshownthattheAWO 4

scheelitescanbeunderstoodasmadeofhardanionlikeWO 4tetrahedrasurrounded bychargecompensatingcations[17,19,60]. Figure 4 showsthepressureevolution

of the PbO and WO distances in PbWO 4, which is in fully agreement with this picture. There, it can be seen that when pressure is applied the WO 4 units remain

essentiallyundistorted.Therefore,thereductionoftheunitcellsizeshouldbemainly

associatedtothecompressionoftheA(Pb)cationpolyhedralenvironment.Onthe

otherhand,alongthe aaxistheWO 4unitsaredirectlyaligned,whereasalongthe c

axis there is an A cation between two WO 4 tetrahedra (see Figure 1 ). Thus, the

16 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

differentarrangementofhardWO 4tetrahedraalongthe cand aaxisaccountsforthe

differentcompressibilityofthetwounitcellaxis.Thedifferentpressurebehaviourof

thetwoAOdistances( Figure 4 )isalsoassociatedwiththedifferentcompressibility

of the unitcell parameters. Effectively, the longest AO distance has the largest projection along the caxis. It is important to point out here that the asymmetric behaviour of the c and aaxis is also revealed in their different thermal expansion

[83]aswellasintheevolutionofthe c/a ratioalongthecationicAseries.

4.2. X-ray absorption measurements

Xrayabsorptionspectroscopyisanexperimentalmethodusedtodetermine the bonding of solids by analyzing oscillations in xray absorption versus photon energythatarecausedbyinterference[84].Xrayabsorptionmeasurementsprovide information about the geometrical arrangement of the atoms surrounding the absorbing atom. The measured spectra do not depend on long range order, so the information that they provide is complementary to the one yielded by xray diffraction. As a sensitive tool to the local atomic structure, xray absorption measurements can be used to obtain information about pressuredriven structural changes. In the materials we are interested, highpressure xray absorption measurementshavebeenperformedinCaWO 4,SrWO 4,BaWO 4,andPbWO 4inorder

tostudythepressureeffectsonthecoordinationenvironmentofW.Extendedxray

absorption fine structure (EXAFS) measurements were performed on SrWO 4 by

Kuzmin et al. up to 30 GPa [22] working at the W L 3edge (10.207 keV) using

synchrotron radiation and a DAC at LURE. Xrayabsorption nearedge structure

(XANES) measurements were performed by Errandonea et al. on CaWO 4, SrWO4,

BaWO 4,andPbWO 4uptonearly24GPausingalsoaDACandsynchrotronradiation

(W L 3edge) [17, 19]. The last experiments were carried out using the energy

17 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

dispersive setup of the ID24 beamline of the European Synchrotron Radiation

Facility(ESRF).Moredetailsontheseexperimentscanbefoundelsewhere[17,19,

22].

TheexperimentalXANESspectraobtainedforPbWO 4undercompressionare

shown in Figure 5 . These results are representative of those obtained in the

isostructural orthotungstates. As is shown in the figure, the spectra of the scheelite

structure show five significant resonances labeled A, B, C, D, E. There is a clear

tendency observed in the AWO 4 series: the intensity of the E resonance slightly

increaseswhereastheresonancesB,C,andDbecomelesspronouncedastheAcation becomesheavier.InthecaseofPbWO 4,theevolutionofthespectraissmoothupto9

GPa, suggesting that the WO coordination environment is slightly modified by pressure,ingoodagreementwiththeconclusionextractedfromtheADXRDstudies

[17,19].In Figure 5 ,itcanbealsoseenthatat10.9GPatheBresonancefadesout

andnewweakresonancesJ,K,andLappear.ThesechangessuggestthattheWO

coordination changes and that a pressureinduced phase transition takes place.

Additionalchangescorrespondingtoasecondphasetransitionareobservedat16.7

GPa. These phase transitions will be discussed in detail in the next section of the

manuscript. The experiments performed in CaWO 4, SrWO 4, and BaWO 4 provide

similar results than those carried out in PbWO 4. According to the EXAFS and

XANES experiments the range of stability of the scheelite phase extended from

ambientpressureupto11.3GPainCaWO 4,11.2–12.4GPainSrWO 4,9.8GPain

BaWO 4,and10.9GPainPbWO 4.Theseresultsarequalitativelyingoodagreement

withthoseobtainedfromtheADXRDstudies[14,15,17,18,19,21].However,as

theresonancesoftheXANESspectrabecomelesspronouncedastheAcationatomic

numberincreases,thetransitionismoredifficulttodetectinBaWO 4thaninSrWO 4

18 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

andCaWO 4.Infact,theXANESmeasurementsdetectedthetransitioninCaWO 4at

thesamepressurethantheADXRDmeasurements,butinSrWO 4XANESdetected

thetransitionatapressure1GPahigherthanADXRD,andthepressuredifferenceis

about2GPainBaWO 4.

4.3. Raman spectroscopy

Raman scattering spectroscopy is an experimental technique that provides

information about the vibrational properties of materials. This technique allows

measuringtheopticalphononsofamaterialatthecentreoftheBrillouinzone,which

are characteristic of both the structure and chemical composition of the material.

Therefore,Ramanscatteringprovidesbothchemicalandstructuralinformation.The

chemical information comes from the fact that the frequency of the vibrations is

related to the atomic mass and bonding force between the atoms. The structural

informationcomesfromthefactthatRamanscatteringissensitivetolongrangeorder

interactionsbetweentheatomsanditissubjectedtostrictselectionrulesimposedby

the structural symmetry of the compound under study. Raman scattering is a

technique complementary to ADXRD and XANES measurements for analyzing

structuralphasetransitionsbecauseitisasubtlelocalprobecapableofdistinguishing

smalltracesofvariouslocalphasescoexistinginacompound.Thusinsomecases,

Ramanscatteringisamoresensitivetechniquefordetectingpressureinducedphase

transitionsthanADXRDandXANESmeasurements.

The first highpressure Raman scattering studies of scheelitetype alkaline

earthtungstates(CaWO 4andSrWO 4)andmolybdates(CaMoO 4)wereperformedby

Nicol et al. up to 4 GPa [42, 43]. These studies were followed by the Raman

experiments of Jayaraman et al. in CaWO 4, SrWO 4, BaWO 4, PbWO 4 and PbMoO 4

[51,52]upto9GPa.Nicol et al. reportedapressureinducedsplittingofsomeofthe

19 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Eg modes of the scheelite structure, which were interpreted as indications of the

occurrenceofapressuredrivenstructuraltransformation[42].Inaddition,Jayaraman

et al. foundthat BaWO 4,PbWO 4, andPbMoO 4underwentaphasetransitionnear6.5

GPa,4.5GPa,and9GPa,respectively.Theysuggestedthatthehighpressurephases

ofthethreecompoundscouldhaveanoctahedralWcoordination,asintheHgWO 4–

type structure,butwerenotthesamephaseinthethreecompounds.Ramanstudies performedinthe1990sonCaMoO 4upto25GPa[85]andSrMoO 4upto37GPa[66]

foundevidenceofphasetransitionsat8GPaand15GPainCaMoO 4 andat13GPain

SrMoO 4 andsuggestedagainthemonoclinicnatureofthehighpressurephaseswith

an increase of the MoO coordination from 4 to 6. More recent Raman studies in

CaWO 4andSrWO 4upto20GPafoundaphasetransitionbeyond10GPa[26,65],

andconcludedthatthefourfoldWcoordinationinthescheelitephasewasretainedin

thehighpressurephase,whichisconsistentwithatransitiontowardsthemonoclinic

Mfergusonitestructure(S.G.:I2/ a,No.15,Z=4)[86](hereaftercalledfergusonite)

reported by ADXRD and XANES experiments [17]. Finally, Raman studies under pressureinscheeliteBaMoO 4wererecentlyconductedupto8GPa [27]andupto15

GPa [20], and in PbWO 4 up to 15 GPa [30]. In BaMoO 4 a phase transition to the

fergusonite structure was found at 5.8 GPa followed by a second phase transition

around8GPatoanunknownphase.InPbWO 4,itwasfoundaphasetransitionat5.6

GPatoanunknownstructurethatdidnotrevertcompletelytotheoriginalscheelite

structure.

All the above cited studies of highpressure Raman scattering in scheelites

tungstates and molybdates performed during more than two decades formed a vast

corpusofknowledgebutfailedatexplainingthesystematicofpressureinducedphase

transitions in scheelites. This situation has recently changed and the nature and

20 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

characteristics of the pressureinduced phase transitions in scheelite tungstates and

molybdates have been finally clarified and explained. Manjón et al. have recently

reportedhighpressureRamanscatteringstudiesinBaWO 4andPbWO 4upto16GPa

and17GPa,respectively[28,29].Inthesetwoworks,theRamanscatteringofsingle

crystalswasexcitedwiththe488nmlineofanAr +laserandthescatteredsignalfrom

samples loaded inside a DAC was collected and analyzed with a T64000 triple

spectrometer equipped with a confocal microscope and a liquid N 2cooled CCD

detector.Intheseworks,theRamanmeasurementswereinterpretedwiththehelpof

ab initio totalenergy calculations performed within the framework of the density

functionaltheory(DFT)usingtheVienna ab initio simulationpackage(VASP)and

ab initio lattice dynamics calculations carried out using the direct force constant

approach(orsupercellmethod)[28,29].

Scheelitestructured ABX 4 compounds display 13 Ramanactive modes

correspondingtothefollowingdecompositionatthe Γpoint:

Γ=3A g +5B g+5E g

The13Ramanactivemodesinthescheelitestructurecanbeexplainedasinternalor

externalmodesoftheBX 4units,accordingtothefollowingrepresentation:

Γ= ν1(A g)+ ν2(A g)+ ν2(B g)+ ν 3(B g)+ ν3(E g)+ ν4(B g)+ ν4(E g)

+R(A g)+R(E g)+2T(B g)+2T(E g)

whereRandTmodesdenotetherotationalandtranslationalexternalmodesobserved

inABX 4scheelites,andtheinternalmodesoftheBX 4moleculesare: ν1(symmetric

stretching), ν2 (symmetric bending), ν3 (asymmetric stretching) and ν4 (asymmetric bending).

Figure 6 shows the Raman spectra of scheelite PbWO 4 at almost ambient pressure. The scheelite structure in BaWO 4 and PbWO 4 becomes unstable above 6

21 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

GPa,butscheeliteRamanactivemodeswerefollowedunderpressureupto8.2GPa

(9GPa)inBaWO 4 (PbWO 4).Manjón et al. comparedtheRamanspectraofBaWO 4

[28]andPbWO 4[29]withthosepreviouslyreportedforscheeliteCaWO 4[45,51],

SrWO 4 [51, 65] BaWO 4 [51, 52], and PbWO 4 [51, 52] and explained satisfactorily

someinconsistenciesofthepreviousresultsofRamanstudiesunderpressure. Table

III summarizes the experimental frequencies, pressure coefficients, Grüneisen parameters and symmetry assignments of the Ramanactive modes in the scheelite phase of the four tungstates. It can be observed that the frequencies and pressure

coefficientsofallscheelitetypeRamanactivemodesarerathersimilarinthethree

alkalineearthtungstatesandsomewhatdifferentinPbWO 4.Aphonongapbetween

400 cm 1 and 750 cm 1 is present in the scheelite structure for the four tungstates between the stretching internal modes and the rest of the modes. Manjón et al.

demonstrated that the frequencies of the internal stretching modes of the WO 4

tetrahedra in the scheelite phase of the four tungstates are in agreement with the

valenceoftheWcationaccordingtoHardcastleandWachs’sformula [87].

As regards the phase transition pressures in AWO 4 scheelites, Raman

scatteringmeasurementsreportedbyManjón et al. inBaWO 4(PbWO 4)foundthata

firsthighpressurephasetransitionwasobservedat6.9GPa(6.2GPa)andasecond phasetransitionwasobservedat7.5GPa(7.9GPa)[28,29].Thesephasetransition pressures were apparently in disagreement with the phasetransition pressures

measuredbyADXRDandXANES.Wewillbediscusstheseapparentdiscrepancies

indetailinsection5.

22 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

4.4. Other experimental studies: neutron diffraction, shock-wave experiments, and Brillouin spectroscopy

Statichighpressurecanbegeneratednotonlywiththeuseofdiamondanvil cells,butalsowiththesocalledlargevolumepresses(LVP)[88,89],liketheParis–

Edinburghpressurecell[90].Inthisdevice,thesampleisplacedbetweentwohard anvils made from either carbide or sintered industrial diamond and a hydraulic ram is used to apply the pressure. This system has the advantage of allowing the study of large size samples butit is limited in themaximum pressure range achieved, which is an order of magnitude smaller than the routine pressure rangeofaDACexperiment.UsingtheParis–Edinburghpressurecell,Grzechnik et al. performed highpressure timeofflight neutron powder diffraction studies of

PbWO 4andBaWO 4atISIS(RutherfordAppletonLaboratory,UK)[21].Fromthese studies,structuralinformationonthescheelitestructurewasextractedupto4.9GPa in PbWO 4 and 5.4 GPa in BaWO 4. Their main result is the confirmation that both compounds have similar pressure dependences of interatomic distances and bond angles.AsfromtheADXRDmeasurements[17,19],theneutronstudiesshowedthat the compressibilities of PbWO 4 and BaWO 4 are primarily due to shortening of the

2 Pb–O or Ba–O bonds rather than to the changes of the W–O bonds in the WO 4 tetrahedralunits.Ontheotherhand,itwasalsofoundthattheintratetrahedralbond anglesO–W–Oarenotsignificantlysensitivetopressure,whiletheinterpolyhedral

W–O–Aanglestendtoconvergeuponcompression.

InadditiontothestatichighpressuregeneratedwiththeuseofaDACora

LVP, dynamic highpressure can be also applied to a sample exposing it to shock waves [91, 92]. A shockwave is a strong pressure wave, propagating through an elasticmedium,whichisproducedbyaphenomenonthatcreatesviolentchangesof

23 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008 pressureinthesample,liketheimpactofahighvelocityprojectile.Thewavefrontof

the shockwave in the sample where compression takes place is a region of sharp

changes in stress, density, and temperature. In shockwave experiments phase

transitions are detected by the identification of discontinuities in the longitudinal

sound speed. Zaretsky and Mogilevsky [31] investigated the dynamic response of

natural, [001]oriented, and synthetic, [201]oriented, CaWO 4 in planar impact

experiments with shock up to 20 GPa. These authors found that in both cases the plasticdeformationisgovernedbythedislocationglidein{112}planeswithresolved

shearstressofabout0.6–0.7GPa.However,theinelasticresponseandthedynamic

strengthintensionofthenaturalandsyntheticmaterialsaredifferent.Zaretsky et al .

alsoobservedthatthewaveformobtainedfromthe[001]orientedsamplecontainsthe

signature of the secondorder scheelite–fergusonite transformation discovered with

otherexperimentaltechniques[14,17].However,theydidnotobserveitinthe[201]

oriented sample. The absence of the transformation signature in the waveforms

obtained,afterstrongimpactinthe[201]orientedcrystals,isprobablyduetofaster

transformationkineticsunderloadinginthisdirection.

Brillouinscattering[93]andultrasonicmeasurements[94]aretechniquesthat providequitevaluableinformationtoconstraintheindependentelasticconstants(C 11 ,

C33 ,C 44 ,C 66 ,C 12 ,andC 13 )ofatetragonalcrystallikescheelite,andthereforetheycan beusedtodetermineitsbulkandshearmodulus.Theoccurrenceofphasetransitions

under compression can be also corroborated by Brillouin experiments [95] through

the observation of soft acoustic modes. Such experiments have been performed in

CaWO 4andinotherABX 4scheelitestructuredcompoundslikeYLiF 4,BiVO 4,and

CaMoO 4[9597].ThemeasuredelasticconstantsforCaWO4aregivenin Table IV .

From these constants a bulk modulus of 77 GPa is obtained for scheelite. This

24 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

magnitudeisinverygoodagreementwiththevaluereportedintheADXRDstudies;

see Table II .TheestimatedvaluesfortheisotropicYoung’smodulusandtheshear

modulusare143GPaand230GPa,respectively.

4.5. Ab initio calculations

Inthelastdecade ab initio calculationshavebecomeaquiteusefultoolforthe

study of matter at extreme conditions. They allow researchers to complement and

checkexperimentalobservationsandtopredictpropertiesofmaterials[98].Several

theoreticalstudieshavebeenperformedinABX 4scheelitetypecompoundswithinthe

lastyears[17,19,23,24,25,99,100,101].Thesestudieshavebeenagreathelpto better interpret the results of the experimental studies described above, and in particulartodeterminethecrystalstructureofthehighpressurephases.Regardingthe

scheelitestructure, ab initio calculations also support the idea that in the

orthotungstatesthecompressionofthecrystalsismainlyduetothedecreaseoftheA

2 Odistances,behavingtheWO 4 tetrahedraasrigidunits.Ingeneral,theagreement between calculations and experiments is quite good. Only in the case of the

calculations performed by Li et al. a quite unrealistic bulk modulus of 185 GPa is

reportedforthescheelitephaseofPbWO 4[23].

The most extensive and systematic theoretical study on the structural behaviourofAWO 4scheelitesunderpressurehasbeenperformedbyA.Muñoz et al.

[17,19,23,25].A.MuñozandhisgroupstudiedthestructuralstabilityofCaWO 4,

SrWO 4,BaWO 4,andPbWO 4bymeansoftotalenergycalculationsperformedwithin

the framework of the density functional theory (DFT) with the Vienna ab initio

simulationpackage(VASP)[102].Inthesecalculationstheexchangeandcorrelation

energywasevaluatedwithinthegeneralizedgradientapproximation(GGA)[103].As

an example, Figure 7 shows the energyvolume curves obtained for each of the

25 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

structuresconsideredin BaWO 4.Therelativestability andcoexistencepressuresof the phases can be obtained from this curve. Figure 7 shows the scheelite phase of thesecompoundsasbeingstableatzeroandlowpressure.Thevaluesofthevolume, bulk modulus and pressurederivative obtained for the four studied compounds are summarized in Table V . These values are in good agreement with the reported

experimental results (see Table II ), with differences within the typical reported

systematicerrorsinDFTGGAcalculations.Asimilaragreementhasbeenfoundfor

theunitcellparametersandatomicpositionsfortheoxygenatoms.Inadditiontothat,

adecreaseoftheaxialanisotropyofscheeliteorthotungstatesundercompressionis predictedbythe ab initio calculationforthelowpressurephase,ingoodagreement

withthexraydiffractionandabsorptionexperiments[17,19].

ForPbWO 4the ab initio calculationsofMuñoz et al. [19]foundthe

structure(S.G.: P2 1/a ,No14,Z=4)[104]tobeverycloseinenergyandequilibrium

volumetothescheelitestructure,withraspiteslightlyhigherinenergybyabout20

meV per formula unit. This fact is in perfect agreement with raspitePbWO 4 (or

PbWO 4II)beingfoundinNatureasametastablepolymorphofPbWO 4undernormal

conditions [104]. This result disagrees with a previous theoretical calculation that

obtainedtheraspitestructurelowerinenergythanthescheelitestructure[23].Inthis

sense,wehavetonotethattheraspitestructurehasnotbeenreportedexperimentally

inCaWO 4,SrWO 4,andBaWO 4 ingoodagreementwithitssignificantlyhighertotal

energy withrespecttothescheelitestructureinthesethreecompounds [17,19].A

similar disagreement exists for the PbWO 4III phase which in Ref. [23] is shown

muchlowerinenergythanthescheelitephase.CalculationsperformedbyMuñoz et

al. have shown that this phase is considerably higher in energy than the scheelite phaseinthefourorthotungstatesandisacompetingpostscheelitephase,aswillbe

26 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

discussed in the next section. As can be seen in Figure 4 , from the ab initio

calculationsitcanbealsoconcludedthatthecompressibilityoftheWO 4tetrahedrais

muchsmallerthanthatoftheAO 8bisdisphenoids.

Regardingthepressurestabilityrangeofthescheelitestructure,thetheoretical

calculationsagreeverywellwiththeexperimentsinthecasesofCaWO 4andSrWO 4,

extendingituptoabout10GPa. InthecasesofBaWO 4andPbWO 4thepressure

drivenphasetransitionispredictedtooccuraround5GPaingoodagreementwith

Ramanmeasurements[28,29],butinsomewhatlessgoodagreementwithADXRD

and XANES results. This apparent contradiction of Raman results and ab-initio

calculations with ADXRD and XANES measurements is discussed in detail in the

nextsection.

5. Pressure-induced phase transitions in AWO 4 orthotungstates

5.1. Scheelite-fergusonite transition

As we described above, the ADXRD spectra of CaWO 4 exhibit several

changes around 11.3 GPa (see Figure 2 ). These changes are completely reversible

upon pressure release. The observed splitting of peaks and the appearance of new

reflections suggest the occurrence of a phase transition. The measured ADXRD patterns of the highpressure phase can be indexed on the basis of the fergusonite

structure (S.G.: I2/a , No. 15, Z = 4) [86], as shown by Grzechnik et al. [14] and

confirmedbyErrandonea et al .[17].ThenewBraggpeaksobservedatlowangles

correspond to the (020) reflection of the fergusonite structure. Figure 8 shows the

spectrum of CaWO 4 at 11.3 GPa and the refined profile obtained assuming the

fergusonitestructure.InordertoperformtheRietveldrefinementthestartingCa,W,

andOpositionswerederivedfromtheatomiccoordinatesinthescheelitestructure

using the I4 1/a → I2/a groupsubgroup relationship [14, 17]. The agreement of the

27 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

refinedprofileswiththeexperimentaldiffractionpatternsisquitegoodascanbeseen

in Figure 8 andRefs.[14]and[17]. Table VI summarizesthelatticeparametersand

atomic positions of fergusonite CaWO 4. There it can be seen that the agreement

existentbetweenthecrystallinestructuresreportedbydifferentauthorsisquitegood.

InthediffractionstudiesofSrWO 4[17,18],BaWO 4[15,19],PbWO 4[19,21],and

EuWO 4[32],thecrystalstructureofthehighpressurephaseshasbeenalsoassigned

to the fergusonitetype structure. According with these studies the scheeliteto

fergusonitetransitionpressuresforthesefourcompoundsare10GPa,7GPa,9GPa,

and 8.5 GPa, respectively. In the cases of BaWO 4 and PbWO 4, evidences of an

additionalphasetransitionwerefoundat10.9GPaand15.6GPa,respectively.

ThefergusonitestructureofPbWO 4isrepresentedin Figure 9 attwodifferent pressures.Thereitcanbeseenthatthefergusonitestructureisadistortedversionof

scheelite. Indeed, at pressures close to the transition pressure is very difficult to

distinguishthefergusonitestructurefromthescheelitestructure(see Figures 1 and

9(a) ).Regardingthemechanisminvolvedinthetransition,itisnowacceptedthatthe

scheelitetofergusonitetransitioniscausedbysmalldisplacementsoftheAandW

atomsfromtheirhighsymmetrypositionsandlargechangesintheOpositionsand

the consequently polyhedra distortion. In particular, all the A and W atoms of

alternatelayersofthescheelitestructureneedtoshiftinoppositedirectionsalongthe

caxis.Thisaxiscorrespondtothe baxisofthefergusonitestructureaccordingwith

thecrystallographicsettinggenerallyusedtodescribethestructures.Theshiftofthe

AandWatomsisaccompaniedbyasheardistortionperpendiculartothe caxisof

alternate O planes. Because of these atomic displacements, immediately after the

transitionthevolumeofWO 4tetrahedraisenlargedbylessthan10%andthevolume

oftheAO 8bisdisphenoidsisreducedbyasimilaramount.Itisinterestingtonotethat

28 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

immediately after the transition the fergusonite structure contains isolated WO 4

tetrahedra interlinked by A ions which have primarily an eightfold O coordination,

likehappensinthescheelitestructure.

Nowwewouldliketocommentontheevolutionofthelatticeparametersof

thefergusonitephaseasafunctionofpressure.In Figure 3 ,itcanbeseenthatafter thescheelitefergusonitephasetransition,thedifferencebetweenthe b/a and b/c axial ratiosofthefergusonitephaseinCaWO 4andSrWO 4increasesuponcompression.A

similarbehaviourisobservedforthemonoclinic βangle.Thesetwofactsimplyan

increaseofthemonoclinicdistortionwithpressure.In Figure 3 ,itcanbealsoseen

that a volume discontinuity is not apparent at the transition pressure, which is

consistent with the fact that fergusonite is a distorted and compressed version of

scheelite which only implies a lowering of the pointgroup symmetry from 4/m to

2/m . In general, thirdorder BirchMurnaghan fits to both the scheelite and the

fergusonite pressurevolume data give EOS parameters that differ by less than one

standarddeviationfromthoseobtainedforthescheelitedataonly.Hence,theEOS parametersreportedabovein Table II canbeassumedasvalidparameterstodescribe thecompressibilityofboththescheeliteandfergusonitephases.

Itisalsointerestingtodiscussthechangesfoundinthebonddistancesatthe phase transition. Figure 4 shows that in PbWO 4 the four degenerate WO bond

distancesinsidetheWO 4tetrahedrasplitintotwodifferentones,becomingtheWO 4

tetrahedradistortedwithtwoshortdistances(1.8Å)andtwolongdistances(1.87Å).

Inadditiontothat,thePbO 8dodecahedradistortinsuchawaythatafterthetransition

therearefourdifferentPbOdistancesintherangefrom2.4Åto2.7Å.Inspiteof

thesefacts,itisinterestingtoseethatinthefergusonitephase,again,theWObonds

aremuchlesscompressiblethantheAObonds.Asaconsequenceofthisfact,there

29 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

are virtually no changes between the bulk compressibility of the studied AWO 4

compounds between the scheelite (lowpressure) and fergusonite (highpressure) phases.Therefore,thevolumeversuspressuredataofbothphasescanberepresented

withthesameEOS.Basically,inthehighpressurephasethelinearcompressibilityof

thedifferentaxischangesduetothemonoclinicdistortionofthecrystal,butthebulk

compressibilitydoesnotchangesinceitisstillgovernedonlybythecompressionof

theAO 8dodecahedra.Anotherinterestingfactwewouldliketopointouthereisthat

at the phase transition two of the oxygen atoms second neighbouring W approach

considerabletotheWatoms.Inaddition,thisbonddistancerapidlydecreaseswith pressure after the phase transition; see Figure 4 . Therefore, the WO coordination

graduallychangesfrom4to4+2withinthepressurerangeofstabilityoffergusonite

(asillustratedin Figure 9 )actingthisphaseasabridgephasebetweenthescheelite phaseandasecondhighpressurephase(postfergusonitephase),whichhasaWO coordinationequaltosix.

Xrayabsorptionmeasurementsgiveasimilarpictureofthestructuralchanges undergonebyAWO 4scheelitesthanxraydiffraction.ThefadingoftheBresonance

andtheappearanceofthreenewresonances,J,K,andLat10.9GPaareindicativeof

theoccurrenceofanstructuralchangeinPbWO 4.TheabsenceoftheBresonancein

the highpressure phase seems to contradict ADXRD measurements, since this

resonanceischaracteristicofaWOcoordinationnumberequaltofour,likeinthe

scheelite and fergusonite structure. However, this apparent discrepancy is not real

sinceweshouldrememberthatinthefergusonitestructuretheinternalparametersof

thefergusonitestructurechangebetween7.9GPaand9.5GPainsuchawaythatthe

Wcoordinationgraduallychangesfromfouroxygenatomsto4+2(see Figures 4 and

9).Thus,inthefourfoldcoordinatedversionofthefergusonitestructure(closetothe

30 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

transition pressure) the B resonance is present, whereas in the quasisixfold

coordinatedversiontheBresonanceisabsent.Therefore,theXANESmeasurements

indicatethatat9GPaaphasetransitiontakesplaceinPbWO 4towardsafergusonite

structure,beinguponfurthercompressiontheWenvironmentdistortedinsuchaway

thattheWatomsaresurroundedbysixOatomsina4+2configurationat10.9GPa.

At 16.7 GPa there are new, subtle changes in the XANES spectra that suggest the

occurrence of a second phase transition, in agreement with the conclusions of the

ADXRDstudies[19].InthecasesofCaWO 4andSrWO 4,thechangesobservedinthe

XANESspectraat11GPaand12.4GPaarealsoconsistentwiththeoccurrenceofa

scheelitetofergusonitephasetransition.However,inthefergusonitephaseofthese

compoundsthegradualchangeofWcoordinationisnotobservedupto20GPa[17].

InBaWO 4,thesituationismoresimilartoPbWO 4,twochangesareobservedinthe

XANESspectraat7.8GPaand9GPa.Itseemsthatinthiscompoundthereisalsoa

gradualchangeofWcoordinationtakingplace.Nevertheless,thespectracollectedat

9.8 GPa already was attributed to the second highpressure phase and not to

fergusonite.Thefactthattherangeofstabilityofthefergusonitephaseisonly2GPa

added to the fact that some of the resonances of the spectrum become weaker for

heavy elements like Ba are the reasons that make difficult the detection of the

fergusonite phase in the XANES measurements of BaWO4. However, the reported

evidence that structural changes take place at 7.8 GPa and 9.8 GPa is in good

agreementwiththetwophasetransitionsfoundinADXRDexperiments[15,19].

In order to discuss the conclusions extracted from ab initio calculations we will refer to Figure 7 . It shows the calculated energyvolume curves of BaWO 4,

which are similar to that of SrWO 4,PbWO 4 and CaWO 4; see Refs. [17],[19], and

[25]. In order to establish the sequence of stable phases, several structures were

31 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

theoretically analysed because they were previously observed in these or related

compounds. The name of the different structures considered in the calculations are

given in the figure. To complement these static calculations and to help in the

identification of the Raman modes observed in the highpressure phase, lattice

dynamicscalculationswerealsoperformedforthesamecompoundsbyMuñoz et al.

usingthedirectsmalldisplacementsmethod[28,29].

For CaWO 4, SrWO 4, BaWO 4, and PbWO 4 the calculations indicate that on

increasing pressure, a fergusonitetype distortion of the scheelite structure becomes

increasingly more noticeable from the structural point of view, and its energy becomes lower than that of the ambient pressure phase. Thus calculations found a

secondorder,slowandcontinuous,phasetransitionfromscheelitetofergusonite,in

goodagreementwiththeADXRDandXANESexperiments,beingalsothetransition pressuresinagreementwiththosefoundintheexperiments.However,thetheoryalso

suggeststhatinSrWO 4,BaWO 4,andPbWO 4thereisathirdcompetitivestructure,the

monoclinicBaWO 4IItype[49].Thisstructurehasindeedalowerenthalpythanthe

fergusonitestructure,andthusfromthetheoreticalpointofviewthetransitionshould befromthetetragonalscheelitestructuretothismorecompactmonoclinicstructure.

ItshouldbestressedherethatthepreviousexperimentalobservationsoftheBaWO 4

IItypephasesinPbWO 4andBaWO 4requiredtheapplicationofbothhighpressure

and high temperature to the respective scheelite phases, whereas the structural

calculationsofMuñoz et al. havebeenperformedat0K.ThescheelitetoBaWO 4II

type transitions are strongly first order with large density changes and involve

extensive rearrangement of the crystal structure, in contrast to the secondorder

scheelitetofergusonitetransitions.Thus,thebarrierlesstransitiontothefergusonite

structuremayhappenatpressuresatwhichthefirstordertransitiontotheBaWO 4II

32 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

type structure is kinetically hindered. The presence of kinetic barriers may also

explaintheneedforhightemperatureinthepreviousexperimentalobservationsofthe

BaWO 4IItype phase in PbWO 4 and BaWO 4. In support of this picture, xray

experiments in BaWO 4 and PbWO 4 [19] found indications of the BaWO 4IItype phases as postfergusonite stable phases at higher pressures than the calculated

coexistencepressures(seeSection5.2).

The above discrepancies between ADXRD and XANES measurements and

totalenergy ab initio calculationsinBaWO 4andPbWO 4 regardingthenatureofthe

highpressurephasesandtheirphasetransitionpressureswassolvedinrecentRaman

measurements assisted with latticedynamics calculations for these two compounds

[28, 29]. In these two works, Manjón et al. showed that there is a scheeliteto

fergusonite phase transition at 7.5 GPa and 7.9 GPa in BaWO 4 and PbWO 4,

respectively[28,29];i.e.,atslightlysmallerpressuresthanthosefoundinADXRD

and XANES measurements and in very good agreement with the theoretical

estimations. However, Raman measurements revealed a previous scheeliteto

BaWO 4IItransitionnear5GPaingoodagreementwiththeoreticalestimationsand

found that fergusonite and BaWO 4II coexisted in a range of several GPa in both

compounds.ThispicturecontrastwithRamanscatteringmeasurementsinCaWO 4 and

SrWO 4upto25GPathatonlyobservedascheelitetofergusonitephasetransitionat

10 GPa and 12 GPa [45, 65], respectively, in good agreement with ADXRD and

XANESmeasurements.

AsregardstheRamanmodesofthehighpressurefergusonitephase,fifteen,

twelve,twelve,andsixteennewRamanpeakshavebeenobservedinCaWO 4,SrWO 4,

BaWO 4,andPbWO 4,respectively.ThesenewRamanmodesarecompatiblewiththe

33 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008 presence of the monoclinic fergusonite structure, which should display 18 Raman

activemodeswiththefollowingmechanicalrepresentation:

Γ=8A g+10B g

Five additional Ramanactive peaks appear in the fergusonite structure as

compared to the scheelite structure due to the reduction of the tetragonal C 4h

symmetryofthescheelitestructuretothemonoclinicC 2h symmetryofthefergusonite

structure.ThisreductioninsymmetrytoatransformationofeveryA gandevery

BgscheelitemodeintoA gmodesofthemonoclinicsymmetry,andofeverydoubly

degenerateE gscheelitemodeintotwoB gmodesofthemonoclinicsymmetry. Figure

6showstheRamanspectraofPbWO 4at9.0GPawherethefergusoniteRamanpeaks

have been marked with arrows in good agreement with the theoretical frequencies

obtained from ab initio lattice dynamics calculations (marks below the spectra).

Figure 10 showsthepressuredependenceoftheexperimentalRamanmodesinthe

fergusonitephaseofPbWO 4.

Manjón et al. comparedtheRamanmodesofthefergusonitephaseinBaWO 4

and PbWO 4 with those observed in the high pressure phase of CaWO 4 [45] and

SrWO 4 [65] and with those observed in fergusonitelike HgWO 4 [105]. Table VII

summarizes the experimental frequencies, pressure coefficients, and symmetry

assignmentsoftheRamanactivemodesinthefergusonitephaseforthefourscheelite

tungstatesandfergusonitelikeHgWO 4.ItcanbeobservedthattheRamanmodesof

thefergusonitephaseinBaWO 4resembleverymuchthoseobservedinCaWO 4and

SrWO 4 while PbWO 4 bear more resemblance with the Raman modes measured in

fergusonitelike HgWO 4. In this sense, theoretical ab initio lattice dynamics

calculationshavebeenofgreathelptofindthefergusoniteRamanactivemodesand

assign their correct symmetries. The reason for the similar Raman spectra in the

34 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

fergusoniteCaWO 4,SrWO 4,andBaWO 4isthatthecoordinationfortheAcationis8

and for the W cation is 4 in the three compounds. Furthermore, the fergusonite

Ramanactive modes in the alkalineearth tungstates have a similar frequency

distributionthaninthescheelitephaseexhibitingaphonongapbetween500cm 1and

800 cm 1 (see Table VII ). It was shown that the Ramanactive modes in the

fergusonitephasecanbecorrelatedwiththeinternalandexternalmodesoftheWO 4

units[28,29],asinthescheelitestructure,andthattheinternalstretchingmodesof

the WO 4 tetrahedra in the fergusonite phase can be calculated by knowing the

frequenciesoftheRamanmodeswithhighestfrequenciesandusingHardcastleand

Wachs’s formula [87]. On view of the success obtained in the calculation of the

internalstretchingfrequenciesofthefergusonitephaseinBaWO 4,Manjón et al. gave

an estimation for the frequency of the only internal stretching mode of fergusonite

CaWO 4andSrWO 4 thatwasnotfoundinpreviousworks [45,51,65].Thismodeis

1 1 proposedtohaveafrequencyof878cm (890cm )inCaWO 4(SrWO 4)at15GPa.

InfergusonitePbWO 4andinthestructurallyrelatedHgWO 4,thecoordination

fortheAcationis8andfortheWcationis4+2beingthetendencytooctahedral

coordination for the W cation more pronounced in PbWO 4 than in HgWO 4. The

increaseofcoordinationoftheWcationinthefergusonitephasewithrespecttothe

scheelitephaseisusuallyaccompaniedbyanincreaseoftheWObonddistance.This

fact explains that fergusonite PbWO 4 and fergusonitelike HgWO 4 exhibits some

internal stretching modes, especially at frequencies above the phonon gap of the

scheelitestructure,atconsiderablylowerfrequenciesthaninthescheelitephaseand

thaninthefergusonitephaseofalkalineearthtungstates.Theincreaseofcoordination

of the W cation in fergusonite PbWO 4 is related to a strong decrease of the bond

distance of two WO second neighbours and a small increase of two WO first

35 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

neighbours as suggested by ab initio total energy calculations (see Figure 4 ). The

latter structural changes caused a marked decrease of the frequency of the highest

frequencystretchingmodeandtheformerstructuralchangecausedamarkedincrease

of the frequencies of the two fergusonite modes derived from the ν4(E g) scheelite

mode. Besides, these two fergusonite modes exhibit a very high positive pressure

coefficientduetothestrongtendencyofthefergusonitephaseinPbWO 4towardsthe

octahedralcoordinationforW.Inpractice,theycouldbeconsideredasthetwonew

internalstretchingmodesoftheWO 6octahedrainthefergusonitephaseofPbWO 4, as

foundbyapplyingHardcastleandWachs’sformula [29].Therefore,thefergusonite phaseinPbWO 4canbeviewedasabridgephasebetweenthetetrahedralcoordination

oftheWcationinthescheelitephaseandtheoctahedralcoordinationoftheWcation

inapostfergusonitephase.Furthermore,onecanconsiderthatthehigherstabilityof

thefergusonitephaseinPbWO 4withrespecttoBaWO 4isduetothemajorabilityof

thefergusonitephaseinPbWO 4toaccommodatethepressureinduceddeformation, probablyduetothesmallerionicradiusofPbwithrespecttoBa.

5.2. Post-fergusonite structures

Xray diffraction and absorption measurements performed in CaWO 4 and

SrWO 4above20GPadidnotfindanyevidenceofanypostfergusonitephase[14,17,

18, 26, 65]. However, similar studies performed in BaWO4 and PbWO 4 found

evidence of the existence of a more compact monoclinic postfergusonite structure

[15, 17, 19, 28, 29]. The quality of the xray diffraction data existent for the post

fergusonite phase does not permit an accurate Rietveld refinement of its structure.

However,afteraLeBailanalysis[106]oftheexperimentaldataitwasfoundthatthe

most likely space group of the postfergusonite phase is the monoclinic P2 1/n .

Therefore, the postfergusonitephase corresponds to the BaWO 4IItype structure

36 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

reportedasthemoststablepostscheelitephaseinthe ab initio calculations. Figure

11 showstherefinedstructuremodelsandtheresidualoftherefinementprocedurefor

a diffraction pattern collected in BaWO 4 at 10.9 GPa. The calculated lattice parameters and atomic positions for this phase of BaWO 4 at 9.3 GPa are given in

Table VIII .InBaWO 4thepostfergusonitestructureisnamedasBaWO 4IIandin

PbWO 4 as PbWO 4III. Figure 12 gives a perspective drawing of the monoclinic

BaWO 4II structure. It is important to note that the transition from the fergusonite phase to the BaWO 4IItype phase occurs in both compounds together with a large

volumecollapseofapproximately8%.Thisvolumecollapsereflectsthefactthatthe

structureofBaWO 4II(PbWO 4III)consistsofdenselypackednetworksofdistorted

WO 6octahedra.XANESspectracollectedbeyond9.5GPainBaWO 4and16.7GPa

inPbWO 4werealsocompatiblewiththemonoclinic P2 1/n structures.Accordingto both ADXRD and XANES studies, other structures like LaTaO 4type (S.G.: P2 1/c ,

No. 14, Z = 4) [107] and the BaMnF 4type (S.G.: A2 1/am , No. 36, Z = 4) [108]

structureswereinclosecompetencewiththeBaWO 4IItypeone.Thecombinationof

theexperimentalstudieswith ab initio calculationswascrucialfortheassignmentof

thestructureofthepostfergusonitephase.Hereitisimportanttomentionthatpeak

intensities can be slightly distorted in xray powder diffraction xray DAC

experiments[109,110]andthusananalysisbasedonresidualsaloneisinsomecases

notenoughtodiscriminatebetweencompetingcrystalstructures.Insuchacase,the

helpof ab initio calculationsismorethanrecommendable.Thepredictabilityshown

for the theoretical calculations for these compounds give credibility for their predictionsathigherpressurethanthosereachedintheexperiments.

RamanmeasurementsinCaWO 4andSrWO 4foundnoevidenceofasecond phasetransitioningoodagreementwiththeADXRDandXANESexperiments[26,

37 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

65]. However, Raman measurements in BaWO 4 (PbWO 4) found fortyone (thirty

seven)newpeaks,correspondingneithertothescheelitenortothefergusonitephase

[28,29].ThenewRamanmodesappearedabove6.9(6.2)GPaandwerefollowedup

tothemaximumpressureattainedintheexperiments.TheseRamanresultswerein

goodagreementwiththemonoclinic P2 1/n structurefoundinADXRDandXANES

measurementsandpredictedby ab initio totalenergycalculations.ThenewRaman peakscoexistedwiththoseofthescheelitephaseupto9.0GPainbothcompounds,

and coexisted with those of the fergusonite phase up to 9.0 (14.6) GPa in BaWO 4

(PbWO 4). Manjón et al. demonstrated with the help of ab initio lattice dynamics

calculations that the new peaks appearing above 6.9 GPa (6.2 GPa) in BaWO 4

(PbWO 4)donotcorrespondtothePbWO 4IIphase(raspitetype,S.G.: P2 1/a,No.14,

Z=4)[104],buttotheBaWO 4II(PbWO 4III)phasewithmonoclinic P2 1/n space

groupsymmetry[28,29].Thisstructureshoulddisplay72Ramanactivemodeswith

thefollowingmechanicalrepresentation:

Γ=36A g+36B g

Figure 6 showstheRamanspectraofthePbWO 4IIIphaseat13.7GPa,and

Figure 10 shows the pressure dependence of the Raman modes in the PbWO 4III phase.Inthemonoclinic P2 1/n structure,theWcationhasanoctahedralcoordination

andthiscorrelateswellwiththeappearanceofRamanpeaksinthephonongapofthe

scheelite and fergusonite structures. Manjón et al. showed that it was possible to

identify the internal stretching modes of the WO 6 octahedra in the BaWO 4II and

PbWO 4III phases [28, 29] by knowing the frequencies of the Raman modes with

highestfrequenciesandusingHardcastleandWachs’sformula despitetheobjections

raised by Daturi et al. [45]. In references [28] and [29] the authors noted that the

RamanspectraofCaMoO 4 [85], SrMoO 4 [54],BaMoO 4 [20,27] and PbMoO 4 [52]at

38 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

different pressures were similar to those observed in CaWO 4, SrWO 4 BaWO 4 and

PbWO 4intheirdifferentphases.Therefore,theysuggestedthatscheelitetungstates

(AWO 4)andmolybdates(AMoO 4)withthesameAcation(A=Ca,Sr,Ba,andPb)

shouldundergothesamepressureinducedphasetransitions.

AsregardsthecoexistenceofthedifferentphasesinBaWO 4andPbWO 4,itis

interestingtonoteherethatcontrarytoADXRDandXANESmeasurements,Raman

measurementsshowedthattheBaWO 4II andPbWO 4IIIphasesappearedbeforethe

fergusonitephaseingoodagreementwith ab initio calculations[28,29].Therefore,

strictly speaking they should not be classified as postfergusonite, but as post

scheelite. In BaWO 4, Raman experiments detected the BaWO 4II phase at 6.9 GPa

and the fergusonite phase at 7.5 GPa, coexisting the three phases (scheelite,

fergusonite,andBaWO 4II)between7.5and9GPa.InPbWO 4,Ramanexperiments

detected the PbWO 4III phase at 6.2 GPa and the fergusonite phase at 7.9 GPa,

coexistingthethreephases(scheelite,fergusonite,andPbWO 4III)between7.9and9

GPa,whilethefergusoniteandPbWO 4IIIphasescoexistupto14GPa.IntheRaman

spectraofbothcompounds,itwasobservedthattheRamanpeaksofthe P2 1/n phase

appearratherweakatthephasetransitionandthattheRamanpeaksofthefergusonite phaseappearratherstrongatthephasetransition.Ontopofthat,thefergusonitepeaks

decreaseratherquicklyinintensitywithincreasingpressure.Alltheseresultscanbe

interpretedbyconsideringthatdespitethefergusonitephaseappearedafterthe P2 1/n phase the former is the dominant phase when it appears and that afterwards the

fergusonite phase becomes unstable rather quickly against the more compact P2 1/n phase.Thereasonfortheobservationofthescheelitetofergusonitephasetransition

inRamanexperimentsaftertheobservationofthescheelitetoP2 1/n phasetransition

isindicativeofthekineticallyhinderednatureofthelatterphasetransitionandthe

39 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

secondordernatureoftheformerone.Furthermore,thedominanceofthescheelite phasenearthescheelitetoP2 1/n phasetransition,thedominanceofthefergusonite phaseafterthescheelitetofergusonitephasetransition,andtheclosenessofthetwo phasetransitionpressures[lessthan1GPa(2GPa)differencesinBaWO 4(PbWO 4)]

allows to explain why the fergusonite phase has been detected in ADXRD and

XANESmeasurementsatlowerpressuresthanthe P2 1/n phaseinbothBaWO 4and

PbWO 4.

Ab initio totalenergy calculations agree with experimental measurements in

concluding that both the fergusonite and P2 1/n phases are competing postscheelite phaseswiththefergusonitephasebeingmorestableathighpressuresforCaWO 4and

SrWO 4, and the P2 1/n phase being more stable at high pressures in BaWO 4 and

PbWO 4. The observation of the scheelitetofergusonite phase transition after the

scheelitetoP2 1/n phase transition in Raman measurements supports the idea that

thereisakinetichindrance(energybarrier)thatpreventsthereconstructive I4 1/a to

P2 1/n phasetransitionfortakingplace,whilethedisplacivesecondorder I4 1/a toI2/a phase transition is not kinetically hindered. The observation of the theoretically predictedsequenceofphasetransitionsinRamanspectroscopyunlikeinADXRDand

XANESispossibleduetotheabilityoftheformertechniqueofdistinguishingsmall

tracesofvariouslocalphasescoexistinginacompound.Itisimportantalsotonote

thatRamanmeasurementswereperformedusingsinglecrystals,whiletheADXRD

andXANESmeasurementswereperformedonpowdersamples.

Onfurtherpressureincrease,beyondthelimitreachedbytheexperiments,the

theoreticalcalculationsfoundthatforBaWO 4themonoclinic P2 1/n phasesbecome

unstableagainsttheorthorhombicBaMnF 4typestructure(S.G.: A2 1/am ,No.36,Z=

4) [108] around 27 GPa. On further increase of pressure the orthorhombic Cmca

40 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

structure(S.G.: Cmca ,No.64,Z=8)[17,111]becomesfavouredabovearound56

GPa. In the case of PbWO 4, the Cmca structure becomes favoured over the P2 1/n phase around 35 GPa. In CaWO 4 and SrWO 4, the Cmca structure is predicted to becomestableat29GPaand32GPa,respectively.Aninterestingfurtherresultofthe theoretical calculations is the fact that at expanded volumes (and corresponding

“negative” pressures) the zircon structure (S.G.: I4 1/amd , No. 141, Z = 4) [112] becomes stable against the scheelite structure in all the materials. This fact can be

clearly seen in Figure 7 . Mineral zircon (ZrSiO 4) transforms under pressure to a

structural phase isomorphous with scheelite, named reidite [113], which is in

agreementwiththetheoreticalfindingsfortheorthotungstates(thoughinthiscaseof

coursethecoexistencepressureis“negative”).

5.3. Pressure-induced amorphization

In an EDXRD study performed in CaWO 4 [68], it was found that the

diffraction lines gradually weaken and begin to broaden beyond 27 GPa. Under

further compression at 40 GPa only some pronounce broad diffuse scattering,

commonly observed in amorphous solids [114], was present in the xray patterns.

These changes observed in the diffraction pattern were irreversible. A similar phenomenonwasobservedinADXRDexperimentsonBaWO 4beyond47GPa[19].

These facts have been interpreted as a pressureinduced amorphization. The

occurrenceofthiskind ofamorphizationissometimesrelatedto afrustratedsolid

solidphasetransition.Asimilaramorphizationhasbeenalsofoundinotherscheelite

structured ABX 4 compounds, like NaLa(MoO 4)2 [115], YCrO 4 [116], and YGdF 4

[117].PrecursoreffectsoftheamorphizationhavebeenobservedinPbWO 4too[19,

30]. Another possibility for the appearance of the broad features in the ADXRD patternsistheoccurrenceofapressureinducedchemicaldecompositionasrecently

41 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

proposedforBaWO 4[21].Thishypothesisishoweverincontradictionwiththerestof

experimentaldataavailableintheliterature[15,19,28,51]andwiththefactthata

thermalannealingofamorphousCaWO 4at45GPaand477Kduringtwohoursledto

the nucleation of a new crystalline structure of CaWO 4[69]. Thus, most likely the

disappearanceoftheBraggpeaksinthediffractionpatternsofBaWO 4andCaWO 4

near47GPaand40GPa,respectively,istheresultofthefrustratedtransformationof

their highpressure crystalline phases into a noncrystalline solid. The irreversible

natureoftheamorphizationimpliesthatbeyondagivenpressurethepolyhedranot

onlydeformandinterconnectprobablydifferently,butalsothatthestructuralchanges

aresignificantlylargertohinderthereversalofdeformationsuponreleaseofpressure.

Pressureinduced amorphization has been reported in many substances, and

nowadaysitisknownthatitdiffersfromclassicalamorphization[118].Highpressure

amorphizationcanbeunderstoodinABO 4compoundsintermsofthepackingofthe

anionicBO 4unitsaroundtheAcations[119].WhentheionicradiioftheBO 4groups

is small relative to that of the A cations, increasing repulsive and steric stresses

inducedbypressurecanbeaccommodatedbydeformationoftheAcationoutershell

as opposed to significant changes in its average position, thereby favouring the

transformation to a highpressure crystalline phase. In contrast to this, a large ratio betweentheionicradii(BO 4/A)willaccommodateincreasedstressesthroughlarger

andmorevarieddisplacementsfromtheiraveragepositionsresultinginasubsequent

lossoftranslationalperiodicityathighpressure.Thisresultsinthetransformationtoa

frustratednoncrystallinesolid.Thelowerpressurefortheonsetofamorphizationin

CaWO 4ascomparedtoBaWO 4isconsistentwiththelargerWO 4/AratiofortheCa

compound(WO 4/Ca=1.89andWO 4/Ba=1.47).Adirectconclusioncanbedrawn

forSrWO 4andPbWO 4forwhichtheratiosWO 4/Sr=1.76andWO 4/Pb=1.66imply

42 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

that they should become amorphous at pressures around 43 GPa and 45 GPa,

respectively.

5.4. High-pressure high-temperature phases

NewphasesofBaWO 4andPbWO 4havebeensynthesizedbydifferentgroups

[47, 48] using pistoncylinder devices [120]. These new phases were quenched at

ambientconditionsafterthehighpressureandhightemperature(HPHT)treatment, beingtheirstructureassignedtotheBaWO 4IIstructure[47]andtotheisostructural

PbWO 4IIIstructure[48].ThestructureoftheseHPHTphasesisverysimilartothat

ofthepostfergusonitestructuresfoundundercompressionatroomtemperature.To

concludewhetherthetwophasesarethesamephase(likehappenwiththebccHT phaseofCaandthebccHPphaseofCa[121])orjusttwoindependentphaseswitha

similarcrystallinestructureananalysisoftheHPHTphasediagramofthescheelites

isrequired. Figure 13 showsthephasediagramofBaWO 4.Tobuildit,ithasbeen

assumedthatatRTthescheelitetofergusonitetransitiontakesplacearound7GPa

[19]andthefergusonitetoBaWO 4IItransitionoccursaround9.5GPa.Further,itis

known that the pressure for the synthesis of the HPHT BaWO 4II phase increases

withtemperaturefollowingtherelation:P(GPa)=2.67+0.00265T(inºC)[47].This

relation can be considered as the phase boundary between the HPHT BaWO 4II phaseandtheobservedlowtemperaturephase.Itisdrawin Figure 13 asasolidline

forthepressurerangecoveredinRef.[47]andextrapolatedtohigherpressureasa

dotted line. It is also known that scheelites melt at low pressure directly from the

scheelite phase [122] being the melting point 1775 K [123]. Therefore, a phase boundary could be drawn between the scheelite phase and the HPHT BaWO 4II phase. Since the latter phase is much denser than the former, according with the

Clausius–Clapeyronequation(dT/dP=T ∆V/ ∆Η ,where ∆Vand ∆Η are,respectively,

43 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

the difference in molar volume and enthalpy between the two phases of interest)

[124],thephaseboundaryshouldhaveapositiveslope(dT/dP),asshownin Figure

13 .TheClausius–Clapeyronequationcanbealsousedtocalculatethemeltingcurve

1 ofBaWO 4 [125].Bytakingthemeltingenthalpyas913.8Jmol [123]andvolume

changeatmeltingas0.025cm 3 mol 1,atypicalvalueforminerals[126],amelting

slope of around 50 K/GPa is obtained, which is a quite reasonable value. The

calculatedmeltingcurveofBaWO 4isshownin Figure 13 asadashed line.Atits

interception with the scheeliteBaWO 4II an abrupt change of the melting slope is

expected due to the different densities of the solid phases [127]. This fact is also

shown in Figure 13 . Finally, the phase boundary between fergusonite and the RT

BaWO 4phasehasbeenalsodrawnasadottedline.Thisboundaryshouldalsohavea positive slope due to the volume contraction that takes place at the transition. The phasediagramobtainedforBaWO 4resemblesverymuchthatcalculatedforYLiF 4

[128],whichsuggeststhattheassumptionsmadetobuilditarequitereasonable.

LetusdiscussnowthepossiblerelationbetweentheHTHPBaWO 4IIphase

andtheRTHPBaWO 4IIphase.Thephaseboundariesbetweenbothphasesandthe

fergusonitephasearebothpositive.Theyareexpectedtointersecteachotheratvery

hightemperatures.Accordingwith Figure 13 ,attheintersectionpoint,alargechange

inthedT/dPvalueofthefergusoniteBaWO 4IIphaseboundarycurveisexpectedto

take place. However, this fact is in contradiction with the general principles of

thermodynamics, which predict that there are no abrupt changes in the phase boundaries of any twophase transformation. This conclusion strongly rules out the possibilitythatthetwoisostructuralBaWO 4IItypephasescouldbethesamephase.

One possible explanation for the different slopes of the phase boundaries between

fergusoniteandtheHTHPBaWO4IIphaseandbetweenfergusoniteandtheRTHP

44 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

BaWO 4IIphaseistheexistenceofanotherphaseatplay.Theexistenceofthisnew

HPHTphasebeyond7GPaathightemperature,andbetweenthefergusoniteandthe

twoBaWO 4IIphases,willimplytheexistenceoftwoadditionaltriplepointsinthe

HPHT phase boundary. It will also mean that in spite of having a similar crystal

structure the two BaWO 4II phases are not exactly the same phase. The possible

location of the proposed HPHT phase is schematically shown in Figure 13 . It is

importanttonoteherethatrecentHPHTxraydiffractionexperimentsperformedin

BaWO 4,showedthatwhenheatingitat10GPatheBaWO 4IIphasetransformstoa

newphasearound1000K,beingthestructureofthenewphasenotyetcharacterized

[129].Thisfactconfirmsthehypothesisabovediscussedaboutthepossibleexistence

of extra phases in the phase diagram of scheelite orthotungtates. The existence of previouslyunknownphaseswasalsoobservedinCaWO4,butaround40GPa[69].In

thiscase,amonoclinicstructurehasbeenproposedforit( a=10.38Å, b=6.11Å, c

=7.41Å, β=104.28°,S.G.: C2/m ,No.12,Z=8).Thisstructureisverysimilarto

thatof αMnMoO 4[79]andwasrecentlyfoundasaHTphaseofAlWO 4[130].Onit,

theWenvironmentcanbeassumedasahighlydistortedoctahedron,beingtherefore

theWOcoordinationsimilartothatoftheBaWO 4IIphase.

All these conclusions suggest that the HTHP phase diagram of scheelite

structuredcompoundsismorecomplicatedthatbelieveduptoveryrecently.Further

studiesareneededtobetterunderstandit.Itsaccurateknowledgemayhaveimportant

geophysical and geochemical implications since the scheelitestructured

orthotungstates are common accessory minerals in various kinds of rocks in the

Earth’suppermantlesincethepressuresandtemperatureslimitsofthissectionare

foundatadepthof<100kmintheEarth‘suppermantle[131].

5.5. Wolframite-to-βββ-fergusonite phase transition

45 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

It is known that AWO 4 orthotungstates with A = Cd, Co, Fe, Ni, and Zn

crystallizeinthewolframitestructure[45,71].Thereareveryfewstudiesaboutthe

highpressure behaviour of AWO 4 orthotungstates with wolframite structure. Only

twohighpressureRamanstudieshavebeenpublishedinCdWO 4upto40GPa[54]

andZnWO 4upto24GPa[132].Inthelastworknophasetransitionwasreported;

however, in CdWO 4 two phase transitions were found at 12 GPa and 20 GPa.

Jayaraman et al. suggestedthatthefirstphasetransitioninCdWO 4wasofferroelastic

characterandthesecondonewastoaphasewithpureoctahedralcoordinationforW.

Recently,anewworkreportingtheRamanspectraofZnWO 4upto45GPa

hasbeenpublished [70].InthisworkalsosomechangesintheRamanspectrahave beenfoundaround12GPaand30.6GPaincloseresemblancetothoseoccurringin

CdWO 4at12GPaand20GPa.Thechangesoccurringat12GPain ZnWO 4were

considered to be due to the formation of different wolframitetype domains in the

sample,asaconsequenceoftheintroductionofdefectsinZnWO 4singlecrystals,a phenomenonalsoknownastwinning.However,thechangesoccurringat30.6GPa

wereattributed,withthehelpof ab initio latticedynamicscalculations,totheonsetof

aphasetransitiontoadistorted βfergusonitetypestructure,similartothestructureof

YNbO 4(S.G.: C2/c ,No.15,Z=4)[133].IntheHPstructureofZnWO4 theZnatoms

replaceYandtheWatomsreplaceNb.TheHPstructureofZnWO 4iscloselyrelated

tothehighpressuremonoclinicMfergusonitestructurefoundinscheelitestructured

orthotungstates. Indeed, both structures consist of zigzag chains of WO polyhedra

witheightcoordinatedAcations.Thecharacterizationofthereportedhighpressure phase of ZnWO 4 lacks to be confirmed by ADXRD measurements but it is in

agreement with the Fukunaga and Yamaoka’s and Bastide’s diagrams discussed in

section7.

46 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

6. Η igh pressure phase transitions in other ABX 4 materials: molybdates,

vanadates, chromates, silicates, germanates, niobates, tantalates, perrhenates,

periodates, phosphates, and fluorides.

ManyAMoO 4orthomolybdatescrystallizeinthesamestructuresthanAWO 4

orthotungstatessincetheMocationhasasimilarionicradiusthantheWcation.In

this sense, the above considerations regarding the phase transitions occurring in

AWO 4orthotungstatesarealsovalidforAMoO 4orthomolybdates.This meansthat

weexpectascheelitetofergusonitephasetransitioninCaMoO 4andSrMoO 4anda

scheelitetoP2 1/n phase transition in PbMoO 4 and BaMoO 4. In fact, SrMoO 4 was

recentlystudiedundercompressionupto25GPabyangledispersivexraydiffraction

and a phase transition was observed from the scheelite phase to a monoclinic M

fergusonitephase[134]asalsoobservedinSrWO 4[17]. Asalreadycommented,the

Ramanspectraofthesemolybdatesathighpressuresareverysimilartothoseofthe

correspondingtungstatesingoodagreementwiththehypothesisdescribedabove.

Similarly, we expect that wolframitetype orthomolybdates like ZnMoO 4,

NiMoO 4,MgMoO 4,MnMoO 4andFeMoO 4behaveinasimilarwaytoCdWO 4and

ZnWO 4 exhibiting a pressureinduced phase transition to a distorted βfergusonite phase.AspecialcaseisthatofCdMoO 4whichcrystallizesinthescheelitestructure

whileCdWO 4crystallizesinthewolframitestructure.Ramanmeasurementsupto40

GPa[52]andEDXRDmeasurementsupto52GPa[67]inCdMoO 4suggestthatthere

is a phase transition from scheelitetowolframite at 12 GPa and another phase

transitionfromwolframitetoBaWO 4IIat25GPa.

Germanates,likeZrGeO 4,HfGeO 4,andThGeO 4,arealsocompoundsthatcan besynthesizedinthescheelitestructureattemperatureshigherthat1200Kfromthe

appropriateamountsof ZrO 2/HfO 2/ThO 2andGeO 2.Synthetic ZrGeO 4andHfGeO 4

47 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

havebeenrecentlystudiedbymeansofADXRDmeasurementsupto20GPa[135].

These studies show that these compounds do not undergo any phase transition or

decompositioninthispressurerangeandthattheyareoneofthelesscompressible

ABO 4compounds(B 0=230–240GPa).Theirincompressibilitycanbeunderstood

onthebasisoftheempiricalmodelproposedinRef.[17]topredictthebulkmoduliof

scheelitestructuredABX 4compoundsaswewillshowinsection7.5.Aswewillsee

later, this fact is related to the high cation charge density of the ZrO 8 and HfO 8 bisdisphenoids.

As regards to the vanadates, chromates, and silicates, many of these

compounds crystallize in the zircon structure. Prototype structures of vanadates,

chromates, and silicates are YVO 4, YCrO 4, and ZrSiO 4. There are several studies

under pressure of these compounds. It has been found that, like other zircon

structured compounds, ZrSiO 4 undergoes a phase transition towards the scheelite

structure around 22 GPa [136]. Recently, Raman spectra in HfSiO 4 show that it

undergoesaphasetransitionfromthezirconstructuretothescheelitestructurearound

20GPa[137].AlsoADXRD,photoluminescence,andRamanstudiesunderpressure

inYVO 4showthatthiscompoundundergoesthezircontoscheelitephasetransition

at7.5GPa[138140],andRamanstudiesinYCrO 4showtheonsetofazirconto

scheelitephasetransitionat3GPa,beingthetransitioncompletedat15GPa[116].

The zircontoscheelite phase transition in CaCrO 4 has been also measured by

EDXRD at 5.7 GPa [141]. Recently, ab initio calculations of Marqués et al. have

shownthatthezircontoscheelitephasetransitioninZrSiO 4isofreconstructivetype

[142], as already suggested by Kusaba et al. [143], despite the groupsubgroup

relationship between both structures points towards a transition of displacivetype.

The reconstructive mechanism for the zircontoscheelite phase transition explains

48 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

why scheelite phases are metastable at ambient pressure and do not return to the

zirconphaseonreleaseofpressure[144].

There are other molybdates, tungstates, vanadates, and chromates that

crystallizeinthemonoclinic αMnMoO 4structure(S.G.: C2/m ,No.12,Z=8)orin

structuresbelongingtotheorthorhombic Cmcm structure(S.G.No.63,Z=4)[40],

like AlWO 4, ZnMoO 4, CrVO 4, and CdCrO 4. There are very few studies of these

compoundsunderpressure,butitisknownthatCdCrO 4transformsunderpressureto

thescheelitestructure[40], andthatmanymolybdateswiththe αMnMoO 4structure

crystallizeinthewolframitestructurewhensynthesizedathighpressures[145].

Perrhenatesandperiodatesarecompoundswhosestructuresarecloselyrelated

toscheelite.AgReO 4,KReO 4,RbReO 4,KIO 4,andRbIO 4 crystallizeinthescheelite phase while TlReO 4, CsReO 4, and CsIO 4 crystallize in the orthorhombic Pnma

structure(S.G.: Pnma ,No.62,Z=4),alsoknownaspseudoscheelite.Similarlytothe

scheelitestructure,thepseudoscheelitestructurealsoconsistsofisolatedBO 4(ReO 4

orIO 4)tetrahedralinkedtogetherbyhighlycoordinatedTlorCspolyhedra(e.g.TlO 8

and TlO 9 polyhedra). Several xray diffraction and Raman studies under pressure

have been made in perrhenates showing several phase transitions up to 30 GPa.

RamanstudiesunderpressureinKReO 4,RbReO 4,TlReO 4, andCsReO 4suggestedthe

sequence of pressureinduced phase transitions scheelite → pseudoscheelite →

wolframite → denser monoclinic or triclinic structure [56, 146]. Xray diffraction

studiesinTlReO 4underpressurereportedasequenceofphasetransitionsupto25

GPa.TlReO 4 goesfromthepseudoscheelitetoanotherorthorhombicphaseat1GPa.

Thistransitionisfollowedbyasecondtransitiontoawolframiterelatedmonoclinic phaseat2GPa,andthenbyathirdtransitiontoaBaWO 4IItypephasearound10

GPa[57].Ontheotherhand,RamanandxraydiffractioninAgReO 4underpressure

49 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

upto20GPashowedaphasetransitionnear13GPatoanunknownstructurewhich

seemstobeneithertheBaWO 4IInorthepseudoscheelitestructure[147].Regarding periodates,Ramanstudiesunderpressureupto12GPainKIO 4,RbIO 4,andCsIO 4

foundseveralphasetransitionstounknownstructures[58,59,148].

Asregardstophosphatesandarsenates,theycrystallizeineithertheberlinite

orquartzstructure,likeAlPO 4,orinthe Cmcm structure,likeInPO 4.Berliniteswere

intensivelystudiedinthe1980’sbecauseoftheirrelationwithquartz(SiO 2)inorder

tounderstandthepolymorphismandtransformationsoccurringintheEarth’smantle.

It was considered that berlinites undergo a pressureinduced amorphisation at

relatively low pressures like happens in SiO 2. However, Raman scattering

measurementsinAlPO 4suggestedthattheycouldbeapoorlycrystallizedsolid[149].

Recent ADXRD measurements have shown that there are two solidsolid high pressure phase transitions in AlPO 4 that can be well observed after laser heating a

AlPO 4sampleloadedinaDAC[150].ThefirstphasetransitioninAlPO 4istothe

Cmcm structure whereAlissixfoldcoordinatedandPisfourfoldcoordinated[151].

ThispressureinducedphasetransitionisalsoobservedinGaPO 4[152].Thesecond phasetransitioninAlPO 4isfromthe Cmcm structuretoamonoclinicstructurewith

spacegroup P2/m (S.G.No.10,Z=4)wherebothAlandParesixfoldcoordinated

[153]. This last work has found a longwaiting material with P in octahedral

coordinationandpavesthewaytoobtainnewmaterialswithPwiththiscoordination.

Niobatesandtantalatescrystallizeinanumberofmonoclinicstructuresrelated

toscheelite.Thefergusonitemineral(YNb 1xTa xO4),YNbO 4,LaNbO 4,NdNbO 4,and

NdTaO 4crystallizeinthemonoclinicspacegroup I2/a (S.G.No.15,Z=4). YTaO 4

alsocrystallizesinthemonoclinicwolframitestructure[45],andLaTaO 4crystallize

inamonoclinicstructurewith P2 1/c symmetry(S.G.No.14,Z=4)[107].Thereare

50 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

very few structural studies under pressure in these compounds reporting phase

transitions.Mariathasan et al. notedthatincreasingpressureinthesecompoundswas

analogous to reducing temperature [154]. They also observed that on increasing

temperaturefergusoniterelatedcompoundsundergoaphasetransitiontothescheelite phasewhichisinagreementwiththescheelitetofergusonitepressureinducedphase

transition observed in scheelite tungstates. It has been also shown that NdTaO 4

undergoes a phase transition from the fergusonite to the LaTaO 4type structure on

increasing pressure [107]. This finding quantitatively agrees with the fact that the

LaTaO 4type structure becomes energetically favoured against the fergusonite

structurebeyond20GPainAWO 4tungstates[19].

Finally,wewanttomentionABX 4fluorides.TherearemanyABF 4fluorides

with different structures. YLiF 4, GdLiF 4, and CaZnF 4 crystallize in the scheelite

structure.BaMnF 4crystallizesinthe A2 1/am orthorhombicstructure(S.G.No.36,Z=

4). NaTiF 4 and BaZnF 4 crystallize in the Pbcn space group (S.G. No. 60, Z = 4).

KAlF 4andRbAlF 4crystallizeintheorthorhombic P4/mbm structure(S.G.No.127,Z

=2)[155].KBF 4crystallizesinthe Pnma structure(S.G.: Pnma ,No.62,Z=4)[156].

Finally,KLaF 4andRbBiF 4crystallizeinastructurecloselyrelatedtothatofKBF 4

wherethecationsoccupyrandomlythecationsites[157].Thereareveryfewstudies

under pressure in fluorides except in YLiF 4, CaZnF 4, and GdLiF 4. Phasetransition

studies in fluorides under pressure have been performed by Raman scattering in

YLiF 4andCaZnF 4[158160],byADXRDinYLiF 4andGdLiF 4[80,117],andby

3+ 3+ luminescence measurements in YLiF 4 doped with Nd and Eu [140, 160, 161].

PhasetransitionsinscheelitetypeYLiF 4andCaZnF 4havebeenobservedaround10

GPa [158 160]. ADXRD measurements suggest that YLiF 4 undergoes a phase

transition from the scheelite to the Mfergusonite phase [80]. However, molecular

51 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

dynamicscalculationsand ab initio totalenergycalculationshavesuggestedthatthe phasetransitionsisfromscheelitetoaM’fergusonitephase(S.G.: P2 1/c ,No.14,Z=

2)withsimilarstructuralparametersthanthoseofthefergusonitephase[162].Also

RamanstudiesinKAlF 4andRbAlF 4underpressurehavebeenperformedshowing

that a pressureinduced phase transition takes place at 0.2 GPa in KAlF 4 to an

unknownphase[163]. Morestudiesareneededinordertoachieveforthefluoridesan

understanding of the highpressure structural properties similar to that achieved for

thetungstatesandotheroxides.

7 Towards a systematic understanding

7.1. Crystal chemistry of scheelites and zircons

A number of crystal structures, some of them corresponding to ABX 4

compounds,consistof BX 4tetrahedraandAX 8eightcoordinatedpolyhedra,which

can be seen as two interpenetrating tetrahedra, known as bidisphenoids or

dodecahedra.Amongthesestructuressomeimportantmineralstructuresasscheelite

orzirconareincluded.Itisknownthatinmanycases,thesestructuresarerelatedvia

simplecrystallographicoperations[164].Inparticular,abidisphenoidsharinganedge

with a tetrahedron is easily deformed to a pair of edgesharing octahedra, which

allowstheestablishmentofarelationbetweenABX 4structuresandMX 2octahedral

structuresasrutile(S.G.: P4 2/mnm ,No.136,Z=2)[165].Thisfactalsogivesthe possibility to draw a parallelism between the highpressure structural behaviour of

ABX 4andMX 2(MMX 4)compounds.Therefore,crystalchemistrycanbeusednot

only to improve the understanding of the already observed pressureinduced phase

transitionsinABX 4compounds,butalsotomakepredictionsforfuturestudies.

Inordertopresenttheresultsreviewedintheprevioussectionsinaconsistent

fashion,wewillmakehereananalogybetweenthehighpressurestructuralbehaviour

52 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

of scheelitestructured and zirconstructures ABO 4 compounds and rutilestructured

MO 2 compounds. It is known that upon compression zirconstructured silicates

transformintothescheelitestructure(e.g.zircontoreiditetransitioninZrSiO 4)[113].

Anotherinterestingfactisthat,accordingto ab initio calculations,thezirconstructure becomes stable against the scheelite structure in AWO 4 materials at expanded

volumes(i.e.“negative”pressures)[19];e.g.PbWO4andCaWO 4.Thus,includingthe

“negative”pressuresinthepicturefortheorthotungstates,thefollowingsystematic

ariseforthestructuralsequenceundergonebythematerialsofinteresttothisreview

uponpressureincrease: I4 1/amd (zircon)→ I4 1/a (scheelite)→ I2/a (fergusonite)→

P2 1/n (BaWO 4IIItype) → orthorhombic phases (BaMnF 4type, Cmca ) →

amorphous. The zircon structure transforms by means of a translationgleiche

transformation into the scheelite structure. This transformation consist of twining

zircon on (200), (020), and (002). The first operation yields an anhydritetype

structure[166],thesecondoperationproducestheAgClO 4typestructure[167],and

the third one generates the scheelitetype structure. Regarding the scheeliteto

fergusonitetransition,italsoconsistsinatranslationgleichetransformation,sincethe

scheelite structure can be transformed into the fergusonite structure by means of

anothertranslationgleichetransformationthatinvolvesaloweringofthepointgroup

symmetryfrom 4/m to 2/m .Finally,theBaWO 4IItypestructureisnaturallyobtained by aklassengleichetransformationfromfergusonite.Thesestructuralrelationsmay

haveimportantimplicationsforanumberofABX 4structures,especiallythosewitha

large difference between the sizes of the A and B atoms, which include some

importantmineralsinadditiontozirconandscheelite.

Letuscomparenowthezirconstructurewiththerutilestructure.Thelatter

structureconsistsofinfiniterectilinearrodsofedgesharingMO 6octahedraparallelto

53 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008 the caxis,linkedbycornersharingtotheoctahedrainidenticalcornerrods.IfMis alternativelysubstituted bybiggerandsmallercationsAand Bandthe cationsare shiftedineachrodthenthezirconstructureisobtained.Thechainsofedgesharing

MO 6 octahedra in rutile become chains of alternating AO 8 bidisphenoids and BO 4 tetrahedra in the zircon. Under compression rutile transforms to the αPbO 2type structure [168] and both scheelite and fergusonite can be thought as distorted superstructuresof αPbO 2.Inparticular,scheeliteisrelatedtothe αPbO 2structurein awaythatisanalogoustotherelationshipbetweenzirconandrutile.Additionally,the monoclinicpostfergusonitestructurethathasbeenobservedinBaWO 4andPbWO 4 isrelatedtothebaddeleyite,apostαPbO 2structureofrutiletypeTiO 2[169].Thus the crystal chemistry systematic of MO 2 compounds provides additional support to the structural sequence that can be extracted for ABO 4 compounds from previous studies. It is worth to mention here that based upon similar crystallochemical argumentsitcanbeconcludedthatthescheelitetowolframitephasetransitionisnot expectedinABX 4compounds[14].

ItisinterestingtonoteherethatinrutiletypedioxideslikePbO 2,ZrO 2,and

SiO 2itwasfoundthatkineticshasalargeeffectonpressureinducedphasetransitions

[168, 170]. The highpressure behaviour of these compounds depends upon the starting material and pressure–temperature history. In addition, a coexistence of differentphasesundercompressionhasbeenobservedinthem,existinglargepressure rangesoftwophaseintergrowth.Asimilarphenomenonwasobservedinscheelite structured BaWO 4 and PbWO 4 [19, 28, 29], confirming that the analogy between

ABX 4 and MX 2 is an efficient tool for analyzing the highpressure behaviour of zirconstructured and scheelitestructured ABX 4 compounds. The analogies in the crystal chemistry of the MX 2 compounds and their AMX 4 superstructures under

54 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008 pressure warrant further investigations to elucidate pressureinduced postscheelite

(post–fergusonite)structuresinmanyunstudiedcompounds.Itcouldbealsoapplied tocompoundslikemonaziteCePO 4(S.G.: P2 1/n ,No.15,Z=4)[171],whichisalsoa

superstructureofrutile.(monazitestructuredThSiO 4)and(zircon

structured ThSiO 4) are two metastable forms of ThSiO 4 [172]. According with the

highpressure behaviour of SiO 2, both huttonite and thorite can be expected to

transformundercompressiontothescheelitestructure.

5.2. Size criterion: A correlation between the packing ratio and transition

pressures in scheelite ABX 4 compounds

Oneimportantempiricalresultregardingthepressurestabilityofthescheelite

structureisthesizecriterion. IthasbeenshowninthepastthatinABX 4scheelite

compounds it was possible to correlate the packing ratio of the anionic BX 4 units

aroundtheAcationswiththephasetransitionpressuresofthesecompounds[173].

Baseduponthedataon16differentscheeliteABX 4compounds,itwasestablishedby

Errandonea et al. [173]thatthetransitionpressure( PT)forthesecompoundscanbe

BX  estimated following the relationship: P =±+(1 2) (10.5 ± 2)4 − 1  , where the T A 

BX 4/ArepresentstheradiiratioofBX 4unitsandAcations,beingthesumoftheX/A

andtheB/Aeffectiveionicratios.TheBX 4/Avaluescanbecalculatedusingthedata

oftheionicradiiofA,B,andXatomsavailableintheliterature[174–177].This

relationshipindicatesthatforBX 4/A=1thescheelitestructureishardlystableevenat

ambientpressure.Tounderstandthephysicsunderlyingthisrelationship,wehaveto

remember that both the effective ionic radii decrease in cations and anions with

increasing pressure, the radius decrease being larger for the larger anionic radii.

Therefore, the B/A ratio is almost constant with increasing pressure while the X/A

55 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

ratio decreases considerably. Consequently, it is expected that the BX 4/A ratio

decreases with increasing pressure and that those compounds showing a smaller

BX 4/A ratio should exhibit lower transition pressures. This has already been

empiricallyfoundinscheelitecompounds.Theabovehypothesisfortheinstabilityof

the scheelite compounds with BX 4/A radii ratios being near or below 1 is also

supported by the transition pressures found in the alkalineearth perrhenates and periodatesfamilies[56,58,59,147,148].IthasbeenshownthatKReO 4,RbReO 4,

KIO 4andRbIO 4crystallizeinthescheelitestructure.However,TlReO 4,CsReO 4,and

CsIO 4,showingsmallerBX 4/Aratiosnear1,crystallizeinapseudoscheelitestructure

atambientpressure.

The size criterion can be used to predict the pressure range of stability of

different ABX 4 scheelite compounds. It has been shown to be very effective for

BaMoO 4, GdLiF 4, LuLiF 4, TlReO 4, and NaAlH 4. For these five compounds the

estimatedtransitionpressuresare5.8GPa,11.6GPa,10.8GPa,9.8GPa,and16.5

GPa, respectively, while experimentally very recently the transition pressures have beenfoundtobe5.8GPa[20],11GPa[117],10.7GPa[178],10GPa[179],and14

GPa[180],respectively.Thesamecriterionhasbeenprobedtobealsoefficientto

estimate the transition pressures of double tungstates like NaSm(WO 4)2,

NaTb(WO 4)2,andNaHo(WO 4)2,whichbecomeunstablenear10GPa[181].Forthese

compoundsassumingtheAcationradiiastheaverageoftheionicradiiofNaandthe

trivalent rare earth (e.g. Sm) the estimated transition pressures are 10.2 GPa, 10.5

GPa,and10.7GPa,respectively.Inadditiontothat,ithasbeenshownrecentlythat

the size criterion can also be applied to other ABX4 compounds with structures

differentthanscheeliteifthesecompoundsarealsomadeorisolatedBX 4tetrahedra

and AX 8 dodecahedra, like the zircon structure [182]. Including the new data

56 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

available in the literature, the relation given in Ref. [173] can be recalculated.

Twentyfour scheelite compounds known to undergone pressureinduced phase

transitionsassummarizedin Table IX .Ascanbeseenin Figure 14 ,thesedatacanbe

fit with a linear function which gives the following relation:

BX  P =±+±(1.9 1.5) (9.5 1.2)4 − 1  . The only data point that is not within the T A 

standarddeviationsofthefitisthatcorrespondingtoRbReO 4,whichsuggestthatits

transitionpressurecouldhavebeenprobablyunderestimated.Ontheotherhand,the

accuracyofthesizecriterionforcalculatingthetransitionpressuresintheother23

scheelites recommend its use for predicting the occurrence of pressuredriven

instabilities in additional scheelite compounds like, e.g., CdCrO 4, NaReO 4, and

KRuO 4. For these compounds the new relationship predicts the occurrence of pressuredrivenphasetransitionsat7.9GPa,10.4GPa,and6.9GPa,respectively,i.e.

at accessible pressures for DAC experiments. In the case of scheelitestructured

HfGeO 4,thesizecriterionpredictsatransitionpressurebeyond15GPa.Thissuggests

thataphasetransitionshouldbeexpectedtotakeplaceinthiscompoundverycloseto

maximumpressureattainedinpreviousexperiments[135].

ItisworthtocommentherethatsomedoublemolybdateslikeNaBi(MoO 4)2

and NaLa(MoO 4)2 apparently do not follow the size criterion. In these two

compoundstheexperimentallydeterminedtransitionpressureisbeyond25GPa[183,

184],whilethepredictedtransitionpressureusingthesizecriterionisonlyaround11

GPa. However, the same empirical criterion seems to work properly with double

tungstates[181].Therefore,morestudiesareneededinordertodeterminewhetherthe

sizecriterionappliesonlytosimplescheelitestructuredABX 4compoundsoralsoto

morecomplexcompoundslikethedoublemolybdatesanddoubletungstates.

57 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

7.3. Common trends of pressure-induced phase transitions in ABX 4 compounds:

The Fukunaga and Yamaoka’s diagram and the Bastide´s diagram.

One of the characteristics of pressureinduced phase transitions in ABX 4

compounds is the tendency to increase the coordination number for both A and B

cations. As already commented, in the late 1970s, Fukunaga and Yamaoka tried to

give a systematic explanation of the pressureinduced phase transitions in ABO 4

compounds [50]. In their study, they classified most of the ABO 4 compounds in a

twodimensional phase diagram with (t, k) coordinates. Coordinate t = (r A+r B)/2r X

representedtheaveragecationtoanionradiiratio,andcoordinatek=r A/r Brepresented

thecationAtocationBradiiratio.IntheFukunagaandYamaoka’s(FY)diagram,

theorderingofthecompoundsisbasedonthefollowingrules:1)similaritiesbetween

ABO 4 compounds and AO 2 compounds; 2) A cation with higher coordination (or

lowervalence)thanBcation;and3)possibilityofstructuralchangeswithoutincrease

of cation coordination. In this way, the compounds with the same structure locate

along a diagonal path along the (1,1) direction of the FY diagram. The pressure

induced phase transitions can be understood if we consider that anions are usually

larger and more compressible than cations and that compounds under compression

undergophasetransitionstomorecompactedstructures,providedthatstericstresses betweencationsaresmall[71],thatisthecasewhenanionsarelargerthancations.

Withtheseconsiderationsinmind,FukunagaandYamaokasuggestedthatpressure

inducedphasetransitionsfollowtheeast(E)ruleintheFYdiagram;i.e.,tincreases

whilekremainsrelativelyconstantwithincreasingpressure.

TheFYdiagramallowsustounderstandthefollowingpressureinducedphase

transitions:highcristobalite→quartz,quartz→rutile,rutile→ αPbO 2 , αPbO 2 →

fluorite,quartz→ Cmcm ,ZnSO 4 →zircon,zircon→scheelite,monazite→scheelite,

58 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

andthe Cmcm →wolframiteorscheelitephasetransitions. It alsopredictsthatthe

wolframitestructuredcompoundscanundergoaphasetransitiontoafergusonitetype

structure but not to the scheelite structure. However, there were several facts not

explainedbytheFYdiagram.Inthissense,somecompoundsdonotcrystallizeinthe

correspondingstructureaccordingtotheirlocationintheFYdiagram.However,the

most striking feature is that BAsO 4 and BPO 4 crystallizing in the highcristobalite

structure undergo a pressureinduced phase transition to quartz [34]. This phase

transitioninbothcompoundsseemsnottofollowtheEruleforpressureincreasein

theFYdiagram.Manjón et al. havereasonedthattheinconsistencyarisesfromthe

wrong location of the boron compounds with high cristobalite structure in the FY

diagram[185].ThewronglocationofthesetwocompoundsintheFYdiagramcomes

fromconsideringthatthevalenceoftheAcationmustbelowerthanthevalenceof

theBcation.However,theboronanomalyintheFYdiagramdisappearsifthesecond

ruleoftheFYdiagramischangedbythefollowing:2)Acationisalwaysthecation

withlargerionicradius(r A >r B).Inthiscase,allthecompoundsintheFYdiagram basically remain at the same locations but the arsenate and phosphate compounds

BAsO 4andBPO 4mustberenamedtobecome“borates”AsBO 4andPBO 4because

theradiusofBisverysmallandleadsborontohavethesmallercoordinationdespite

havingsmallervalencethanAsorP.Thisresultisrelatedtothereversalofthecation

andanionroleinBAsandBPrecentlyreportedanddiscussedintheliterature[186,

187].Therefore,assumingthatthecompoundsAsBO 4andPBO 4 arenotarsenatesand phosphatesbut“borates”,bothcompoundshavek>1andthephasetransitionfrom highcristobalite to quartz is compatible with the E rule in FY diagram. Another anomalyisthattheZnSO 4 → Cmcm phasetransitiondoesnotfollowtheEruleinthe

FY diagram but seems to follow the southeast (SE) rule. This anomaly can be

59 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

understoodifweconsiderthatonthebasisofthenewsecondrule(r A >r B),theionic

radius of the cation A is slightly more compressible than that of cation B and

consequentlyk=r A/r Btendstodecreaseslightlywithincreasingpressure,especially

forlargek(k>>1).Withthisconsiderationinmind,wecanestablishthatpressure

inducedphasetransitionsintheFYdiagramshouldfollowapathbetweentheErule

andtheSErule.

Insummary,wethinkthatallABX 4compoundscanbeproperlylocatedinthe

FYdiagramprovidedthatr A >r B;i.e.,withk ≥1andtheFYdiagramcanhelpin

understandingtheambientpressurestructuresandhighpressurephasetransitionsina

numberofABX 4compounds.Wewanttostressthattherearetwostrikingfeaturesin

the FY diagram. First, the FY diagram predicts that some ABX 4 compounds

crystallizing in the scheelite structure should undergo a phase transition to the

wolframitestructureunderpressure.Thishasnotbeenobservedinthe mostrecent

experiments with scheelite orthotungstates and orthomolybdates with the only

exception of CdMoO 4, a compound near the border between the scheelite and

wolframite structure as we will discuss later in the light of the Bastide’s diagram.

NotethatCdWO 4crystallizesinthewolframitephaseandthationicradiiofWand

Moareverysimilar.Second,theFYdiagrampredictsatransitionfromthewolframite

structureeithertothefergusoniteortotherutilestructure anditshighpressureforms.

Aphasetransitionfromthewolframitetoadistorted βfergusonitestructurehasbeen

foundinZnWO 4[70]andlikelyalsoforCdWO 4[134].Thepressureinducedphase

transition from wolframite to rutile is unlikely as we will discuss later using the

Bastide’sdiagram,butaphasetransitionfromwolframitetoahighpressurephaseof

rutile,like αPbO 2seemstobelikelyforthewolframiteswithsmallerAcation,like

60 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

NiWO 4.TheonlypitfalloftheFYdiagramisthatitdoesnotgivecluesforthepost

fergusoniteandmostpostscheelitehighpressurephases[50].

Anotherattempttofoundasystematicinthecrystalstructuresandpressure

inducedphasetransitionsinABX 4compoundswasdonebyBastideinthelate1980s

[63].BastidelocatedtheABX 4compoundsinadiagramwithtwoaxesthatrepresent

the cationtoanion radii ratios (r A/r X, r B/r X), and where the ABX 4 compound are

formulatedwithr A >r B andusingtherevisedionicradiiofShannon[174–177,188].

TheBastide’sdiagramisdividedindifferent[c A−cB]regionswithc A andc Bbeingthe

coordinationofcationsAandB,respectively. Figure 15 showsanupdatedversionof

theBastide´sdiagramwiththelocationofthestructures whicharerelevantforthe presentdiscussion.Again,takingintoconsiderationthatanionsareusuallylargerand

more compressible than cations and that compounds under compression undergo phasetransitionstomorecompactedstructures,providedthatstericstressesbetween

cations are small [71], Bastide suggested that pressureinduced phase transitions

follow the northeast (NE) rule in the Bastide’s diagram; i.e., both rA/r X and r B/r X

increasewithincreasingpressure.

TheNEruleoftheBastide’sdiagramallowsustounderstandthefollowing phase transitions: high cristobalite → quartz, quartz → rutile, rutile → αPbO 2, α

PbO 2 →fluorite,quartz→ Cmcm ,ZnSO 4 →zircon,zircon→scheelite,monazite→

scheelite, Cmcm → wolframite or scheelite, xenotime → scheelite, scheelite →

fergusonite,wolframite→fergusonite,fergusonite→ P2 1/c or P2 1/n , P2 1/c or P2 1/n

→ Cmca ,and Pnma → P2 1/c or P2 1/n phasetransitions.Italsoallowstopredictthat:

1) wolframite cannot go to scheelite structure with increasing pressure because the

scheelitestructureisnotinNEdirectionwithrespecttowolframiteintheBastide’s

61 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008 diagram.;2)wolframitestructureisnotacandidateforapostscheelitephase;and3) apressureinducedphasetransitionfromwolframitetorutileisunlikely.

Manjón et al. havediscussedthattheBastide’sdiagramhassomeanomalous features[185].Forinstance,scheeliteYLiF 4andotherscheelitefluorideshave[84] cationcoordinationbuttheirr A/r Xandr B/r Xlyeabovethenormalstabilityregionof scheelite structures (with r A/r X between 0.6 and 1.1 and r B/r X around 0.3) and even abovethelimitsofstabilityofthefergusonitestructure(withr A/r X between0.550.6 and 1.0 and r B/r X around 0.4). However, the pressureinduced phase transitions in

YLiF 4 are different than those found in alkalineearth tungstates and in good agreement with its position in the Bastide’s diagram and the NE rule [185]. It is curious that despite scheelite YLiF 4 has an anomalous position in the Bastide’s diagram,ithasacationAtoanionBX 4radiusratioBX 4/A[(r B+r X)/r A=2.11]inside thelimitofstabilityofzirconandscheelitestructures(withBX 4/Aratiosbetween1.2 and2.2). AsimilarcaseisthatofCdCrO 4whichcrystallizesinthe Cmcm structure

[189]whileitspositionintheBastide’sdiagramismorepronetocrystallizeinthe zirconstructure.Again,CdCrO 4undergoesaphasetransitiontothescheelitephaseon increasingpressureingoodagreementwiththeNErule[40].Anotheranomalyofthe

Bastide’sdiagramisthatthecompressedstructureofcompoundswith[124]cation coordination like those with the barite (BaSO 4) structure tend to undergo a phase transitionincreasingr B/r Xbutwithconstant(orevendecreasingr A/r X);i.e.,following aN(orevenaNW)pathintheBastide’sdiagram.Thisfactcanbeunderstoodifwe considerthattheionicradiusofthecationAisslightlymorecompressiblethanthatof cationBandthatlargeAcationscanbeascompressibleastheXanion.Thismeans that for ABX 4 compounds with large A cations r A/r X can be almost pressure independent (or even decrease) what leads to the N (or NW) path in the Bastide’s

62 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

diagram. With this consideration in mind, we can establish that pressureinduced phasetransitionsintheBastide’sdiagramusuallyshouldfollowapathbetweenthe

NEruleandtheNrule.Inthisrespect,wethinkthattheexperimentalobservationof

the scheelitetowolframite transition [67, 68] can only be justified under non

hydrostatic conditions that enhance steric stresses leading to the NW rule in the

Bastide’s diagram. An exception could be HfGeO 4 and ZrGeO 4 for whom the

wolframitestructureisintheNEdirectionintheBastide’sdiagram.

In the following we will show, that unlike the FY diagram, the Bastide’s

diagramisveryusefulforpredictingthehighpressurephasesofABX 4compounds

especially postwolframite, postscheelite, and postfergusonite phases that are not

covered by the FY diagram. The coordinates of CaWO 4 in Bastide’s diagram (0.8,

0.3)allowustopredict,accordingtotheNEruleforincreasingpressure,ascheelite

→ fergusonite transition, as has been experimentally observed and theoretically predicted[17,18].TheNErulewithincreasingpressuredrivesCaWO 4totheregion

of stability of the fergusonite structure. In SrWO 4, PbWO 4 and BaWO 4, whose

Bastide’scoordinatesare(0.9,0.3),(0.92,0.3),and(1.01,0.3),respectively,theNE

rule points towards the limit of the region of stability of the fergusonite structure.

Recent ab initio calculations provide evidence that the fergusonite and P2 1/n

structuresareinstrongcompetitioninSrWO 4whilethefergusonitestructureismuch

morestableinCaWO 4[25].ThecompetitionbetweenthefergusoniteandtheP2 1/n

structuresexperimentallyobservedinPbWO 4andBaWO 4isstrongerthaninSrWO 4

and is directly related to the r A/r X ratio in the series CaWO 4, SrWO 4, PbWO 4, and

BaWO 4.Forsmallerr A/r XratiosthefergusonitephasedominatesovertheP21/nphase

whilethelatterphasedominatesovertheformerinthecompoundswithlargerr A/r X

ratiosingoodagreementwiththeNEruleintheBastide’sdiagram.

63 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Further transitions have been theoretically predicted in the four AWO 4

compounds(A=Ca,Sr,BaandPb),ultimatelytotheC mca orthorhombicstructure

(S.G.No.64,Z=8)which,withacationcoordination[96]orhigher,arelocated

close to the orthorhombic SrUO 4 (S.G.: P bcm , No. 57, Z = 4) [190] and BaMnF 4

(S.G.: A2 1/am , No. 36, Z = 4) [108] structures in the Bastide´s diagram. These

structuresareagaininagreementwiththeNEruleforpressureincreasewithrespect

tothescheelitephaseintheBastide’sdiagram.OnthebasisofthesimilarradiiofEu

andSr,weexpectsimilarphasetransitionsforSrWO 4andEuWO 4.Indeed,inboth

compoundstheappearanceofthefergusonitephasewasobservedatsimilarpressures

[17,32].AlsoduetothesimilarradiiofWandMoandtothesimilarlocationinthe

Bastide’s diagram, the same phase transitions of the Ca, Sr, Pb and Ba scheelite

tungstates could be expected for the Ca, Sr, Pb, and Ba scheelite molybdates.

Therefore,theBastide’sdiagramallowsustopredictthepressureinducedstructural

transformations from tetragonal symmetry to monoclinic symmetry and to

orthorhombic symmetry following the structural sequence: (zircon or monazite or

xenotime) → scheelite → (fergusoniteorP2 1/n) → (BaMnF 4 orC mca ).Thezircon

→ scheelite → fergusonite sequence has been also recently predicted theoretically forYCrO 4[182]andCaCrO 4 [141] andhasbeenrecentlyobservedexperimentallyin

YCrO 4[116]andZrSiO 4[191].

Ontheotherhand,scheeliteYLiF 4(0.78,0.45)isacompoundinthelimitof

4to6coordinationforLi,thathasbeenpredictedtoundergoaphasetransitionfrom

thescheelitetotheM’fergusonitephase(S.G.: P2 1/a ,No.14,Z=4)andafterwards

toaC mca phaseingoodagreementwiththeNEruleintheBastide’sdiagram[63].In

fact, above the fergusonite region there is a region of phase stability for some

monocliniccompoundswithstructuresbelongingtothemonoclinicspacegroupNo.

64 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

14andsomeorthorhombiccompounds(see Figure 15 ).Inparticular,NaCrF 4(0.91,

0.48) and SrUO 4 (0.97, 0.69) are compounds crystallizing in the monoclinic M’

fergusonite structure and orthorhombic Pbcm structure at ambient conditions,

respectively, both in NE direction with respect to YLiF 4. Similar pressureinduced phasetransitionstothoseofscheeliteYLiF 4 areexpectedinotherscheelitelithium

fluorides,likeGdLiF 4andNdLiF 4.

Recently,ahighpressurephaseofAlPO 4withmonoclinicstructurebelonging

tothespacegroup P2/m (S.G.No.10)hasbeenobservedafteraphasetransitionto

the Cmcm phase [153]. This transition is in agreement with the Bastide’s diagram

since the compounds with the Cmcm structure can undergo a phase transition to a

monoclinic structure belonging to space group numbers 10, 12, or 13 or to the

scheelitestructurefollowingtheNEruledependingontheirlocationintheBastide’s

diagram. In this sense, the P2/m structure (observed in ZrTiSe 4 and ZrTiTe 4 at

ambientpressure)isastructurelocatedneartheAO 2borderintheBastide’sdiagram betweenquartzandrutileinNEdirectionwithrespecttoAlPO 4.

The unknown highpressure phases of other ABX 4 compounds can be

estimated from the Bastide’s diagram. For instance, the highpressure phases of

fergusonitelikeHgWO 4arelikelytohavesubsequentlyamonoclinic P2 1/c or P2 1/n

structure(S.G.No.14)andanorthorhombic Cmca or Pbcm structure.Onthesame basis, we think that berlinites AlAsO 4 and GaAsO 4 could also undergo a phase

transition to the P2/m phase; whereas FePO 4, GaPO 4, and InPO 4 may have a

completelydifferentpressurebehaviourthanAlPO 4duetotheirdifferentlocationin

the diagram. In FePO 4 and GaPO 4 a phase transition to the Cmcm structure and

afterwardstoamonoclinic C2/m structure(S.G.No.12)or P2/c (S.G.No.13)could

65 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

beobserved,whileforInPO 4aphasetransitiontothezirconstructureandafterwards

tothescheelitestructureisexpected.

Pressureinduced phase transitions from the Cmcm structure are expected to

therutile,wolframite,zircon,ortothescheelitephasedependingonthelocationof

thecompoundsintheBastide’sdiagram.CrVO 4crystallizinginthe Cmcm structureat

hightemperaturestransformstotherutiletypestructureandafterwardsisexpectedto

go to the wolframite phase. On the other hand, InPO4 and CaSO 4 would likely

transformtothezircon andscheeliteor eventothemonazitestructureinthelatter

compound.Asregardsthepseudoscheelitestructure,itshighpressurephasesdepend

onthelocationofthecompoundintheBastide’sdiagram.ForPbCrO 4atransitionto

the scheelite phase is expected. For TlReO 4 and CsReO 4 a phase transition to the

scheelite phase is unlikely but they can undergo a phase transition either to the

tetragonal P4/mbm structure or to the monoclinic P2 1/c and P2 1/n structures. In

summary,thephenomenologicalFYandBastide’sdiagramshaveprovedtobeuseful

toolsforunderstandingthepressureinducedphasetransitionsfoundexperimentally

and predicted by theoretical calculations. Therefore, these two diagrams, despite beingfarfrombeingcomplete,areveryconvenientinordertopredicthighpressure phasesofABX 4compounds.

To close this section, we want to note that Depero et al. have reported that

mostABO 4compoundscrystallizeinstructureswithspacegroupsNos.13,14,15,60,

62, 88, 141 and 216 [192]. These space groups correspond to the wolframite, M’

fergusonite, fergusonite, Pbcn , pseudoscheelite, scheelite, zircon and cubic F43 m

structures,respectively . Ononehand,thecoordinationoftheAcationisaround6in

thewolframite,around8inthefergusonites,zircon,andscheelitestructures,around

10 in the orthorhombic Pbcn , and around 12 in the pseudoscheelite and the F43 m

66 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

structure.Ontheotherhand,thecoordinationoftheBcationisaround4inthezircon,

scheelite,pseudoscheelite,and F43 m structures,around4+2inthewolframiteand

fergusonitestructures,around6intheM’fergusonitestructure,andaround10inthe

orthorhombic Pbcn structure. Therefore, from the viewpoint of the cation A and B

coordination,itisreasonablethatwithincreasingpressuretheABX 4structuresfollow

the sequences: A) wolframite → zircon, scheelite, fergusonite, M’fergusonite →

Pbcn → pseudoscheelite, cubic or B) zircon, scheelite, pseudoscheelite, cubic →

wolframite, fergusonite → M’fergusonite → Pbcn . Since some of these phase

transitionsareincompatiblebecauseanincreaseofonecationcoordinationcould

tothedecreaseofthecoordinationoftheothercationonecanjoinbothsequences

together to infer the structural sequence of ABX 4 compounds. Thus, the most probablepressureinducedphasetransitionsarewolframite →fergusonite →M’

fergusonite → Pbcn and zircon → scheelite → fergusonite → M’fergusonite →

Pbcn . These sequences are in good agreement with the results summarized in this

review, being useful to predict phase transitions in as yet unstudied ABX 4

compounds. Figure 16 summarizesthemostlikelypressureinducedphasetransitions

to occur in ABX 4 compounds depending on their r A/r X ionic ratios. More high pressurestudiesareneededtocompletethediagramsshownin Figures 15 and 16 in

ordertobetterunderstandthestructuralrelationsamongABX 4compoundsandalso

amongABX 4compoundsandtheirrelatedAX 2counterparts.

7.4. Spontaneous strain and the ferroelastic nature of the scheelite-to-fergusonite

phase transition

Thepressuredriventransitionfromthetetragonalscheelitetothemonoclinic

fergusonite phase has been reported to occur not only under compression in

orthotungstatesandorthomolybdates[14,15,17,19]butitcanbealsotemperature

67 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

inducedinothercompoundsthatbelongtotheABO 4familylikeLaNbO 4[154].In

this case, the scheelitetofergusonite transition has been characterized as a

ferroelastic secondorder transition [193]. At the phase transition, and upon further

compression of the fergusonite phase, one pair of parallel unitcell edges of the

tetragonalphase contractandanotherpairelongates,whiletheanglebetweenthem

graduallyincreases.Therearetwopossiblewaystoachievethissituationandthese

optionscanbeillustratedbytwochoicesofdirectioninthetetragonalcell.Thesetwo

choices are crystallographically identical, and related through the fourfold rotation

symmetry of the tetragonal system. We will call these two monoclinic orientation

states S 1 and S 2. They are identical in structure, but different in orientation. These

orientation states are crystallographically and energetically equivalent, being

impossibletodistinguishonefromtheotheriftheyappearseparately.Thesimilitude betweenthepressureinducedandtemperatureinducedscheelitetofergusonitephase

transition strongly suggest that the pressuredriven transition is also a secondorder

transformationwithaferroelasticnature.Onepossibilitytoprobethishypothesisisto

analyzethespontaneousstrainsofthemonoclinicphaseapplyingtheLandautheory

[194].

In a ferroelastic transformation the S 1 and S 2 states can be seen as a small

distortioncausedbyslightdisplacementsoftheatomsoftheparenttetragonalphase.

Thespontaneousstraincharacterizesthedistortionofeachorientationstaterelativeto

theprototypestructure (i.e.thescheelitetypestructure). FollowingSchlenker et al.

[195]theelementsofthestraintensorforacrystalcanbecalculatedbaseduponthe

latticeparameters.Inthecaseofthetransitionwearedealingwith,thestrainelements

ofoneoftheorientationstatesare:

β ε =cMsin M − 11 1 (1), aT

68 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

ε =aM − 22 1 (2), aT

ε =bM − 33 1 (3), cT

β ε= ε = 1cM cos M 12 21 (4), 2 aT where the subscripts T and M refers to the tetragonal and monoclinic phases. The remaining tensor elements are reduced to zero by the cell parameters. The strain tensorforasingleorientationstate(S 1)isthen:

ε ε 11 12 0  = ε ε  eij ( s 1 ) 12 22 0  (5) ε  0 0 33 

T T ande ij (S 2)isrelatedtoe ij (S 1)bye ij (S 2)= R eij (S 1) R ,where Rand R arethe90° rotation matrix around the baxis of the monoclinic unit cell and its transpose.

According to Aizu [196] in the present case the spontaneous strain tensor can be expressedas:

−u v 0  s =−1  +  =   esij()()1 es ij 1 eses ij ()() 1 ij 2   vu 0  (6) 2   0 0 0 

u− v 0  s = − −  and esij (2 ) v u 0  (7),   0 0 0 

1 where u =()ε − ε isthelongitudinalspontaneousstrainand v = ε istheshear 2 22 11 12 spontaneousstrain.Thescalarspontaneousstrain εsisdefinedas[193,196,197]:

3 3 ε2= ε s 222 = + s∑∑ ( ij ) 2(u v ) (8). i=1 j = 1

69 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Following eq. (8) the spontaneous strains tensor as well as the scalar spontaneous

strainforanyscheelitestructuredAWO 4andAMoO 4compound canbecalculated

usingthepressuredependencesofthelatticeparametersreportedintheliterature[17,

19,32,134].TheobtainedresultsforCaWO 4areplottedin Figure 17 asafunctionof

()− = η P PT/ P T ' ,where PTisthetransitionpressure.

The deviation of the fergusonite structure from the I4 1/a symmetry can be

expressedbythemagnitudeoftheorderparameter η.AccordingtotheLandautheory

[194],forasecondordertransition ηissmallclosetothecriticalvalueoftherelevant thermodynamicvariable.Inthepresentcaseto PT.Thus,theGibbsfreeenergy( G)of

the fergusonite phase relative to the scheelite phase can be expressed as a Taylor

η, = −η2 + η 4 expansion in terms of yielding the following relation: GkPP1(T ) k 2

[197].Fromthisequation,therelationbetweenpressureandtheorderparametercan befoundbyminimizing G.Thisconditionisonlysatisfiediftheorderparameterhas

η∝() − = η the form: P PT/ P T ' , which can be defined as the phenomenological

order parameter in Landau’s theory [194]. In a ferroelastic transition εs can be

considered as being proportional to the primary order parameter η [198] and

consequently also to η ’. Therefore, if the studied transition is a secondorder

ferroelastictransition, εsshouldbealinearfunction η’asindeedhappenin Figure 17 .

Thesamekindofdependencefor εshasbeenobservedinSrWO 4,BaWO 4,PbWO 4,

EuWO 4,andSrMoO 4[134,197].Thisfactstronglysuggeststhatthepressureinduced

scheelite to fergusonite transition is a ferroelastic secondorder phase transition. A

similar ferroelastic transformation has been also found at low temperature in the

scheelitestructured CaMoO 4 [199]. On top of that, the detection of a soft acoustic

mode in Brillouin scattering measurements in scheelitestructured BiVO 4 [200] is

70 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

anotherconclusiveevidenceoftheaccuracyoftheferroelasticinterpretationofthe

scheelitetofergusonitetransition.

7.5. Equation of state of ABX 4 compounds and the relationship between bulk

compressibility and polyhedral compressibility

InSection4.4,wehavecommentedthatthevolumecompressionundergone by scheelitestructured AWO 4 compounds is mainly due to shortening of the A–O

2 bondsratherthantochangesoftheW–ObondsintheWO 4 tetrahedralunits.Indeed,

asafirstapproximation,itcanbeassumedthatundercompressionthesetetrahedra behaveasrigiduncompressibleunits.Thesamebehaviourhasbeenobservedinother

ABO 4 compounds. This fact has led to highpressure scientists to think that there

could be a relation between the bulk and polyhedral compressibility of ABO 4

compounds.First,Hazen et al. foundthatthebulkmodulusofcertainternaryoxides

and silicates can be directly correlated to the compressibility of the Acation

coordination polyhedra [201]. In particular, they proposed that the bulk

compressibility(1/B 0)inthesecompoundsisproportionaltotheaveragevolumeof

thecationpolyhedrondividedbythecationformalcharge;i.e.,B 0isproportionalto

the cation charge density per unit volume inside the cation polyhedron. They also

2+ 6+ found that A B O4 scheelitestructures tungstates and molybdates compress in an

anisotropic way with the WO 4 and MoO 4 tetrahedral behaving as rigid units [60].

Furthermore, they ordered the compressibility of scheelite compounds according to

theAcationformalchargeand,onthisbasis,suggestedthatthecompressibilityof

ABO 4 scheelites could be given mainly by the compressibility of the softer AO 8 polyhedron.ForthecompoundsanalysedbyHazen et al. [60],onefindsthatB 0(in

3 GPa)isequalto 750 Z i/d ,where Ziisthecationicformalchargeand disthemean

valueoftheA–Obonddistance(inÅ).Morerecently,Errandonea et al. [17]updated

71 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Hazen´s idea. Among other things, these authors analysed the experimentally

determined bulk modulus of approximately 25% of the ABO 4 compounds with

scheelite and scheeliterelated structures that can be found in the Inorganic Crystal

StructureDatabase.TheyfittedtheB 0 dataasafunctionoftheAcationicchargeper

3 unit volume of the AO 8 polyhedra ( Zi/d ) and found that these two magnitudes are

correlated.Thiscorrelationfollowsalinearrelationship,namelyB0(inGPa)= 610

3 Zi/d .ThedifferenceintheprefactorbetweentheequationofHazen et al. andthatof

Errandonea et al. arisesbecauseofthefactthatthelastauthorshaveincludedinthe fit only those compounds which have scheelite or scheelitelike structures, unlike

Hazen et al. ,whohadincluded38oxidesandsilicateshavingvarious(nonscheelite) structures.AsitwasshownbyPanchal et al. [135],thefitgivenbyErrandonea et al.

[17]isthemostappropriateforthecompoundsdiscussedinthisreview.Indeedthe empirical relation reported in Ref. [17] has been shown to be very effective for predicting the bulk modulus of scheelitestructured BaMoO 4, YCrO 4, ZrGeO 4,

HfGeO 4,andNaAlH 4, amongothercompounds.Forthesefivematerialsthepredicted bulk modulus is 59 GPa, 135 GPa, 229 GPa, 232 GPa, and 25 GPa, respectively,

whilethemeasuredvaluesare57GPa[20],142GPa[182],238GPa[135],242GPa

[135],and27GPa[180],respectively. Figure 18 and Table X summarizesthebulk

modulus of different scheelitestructured ABO 4 compounds and structurally related

3 compoundsasafunctionof Zi/d ,includingrecentlypublishedresults.NaAlH 4and

YLiF 4arealsoincludedintheplotandthetable,showingthatthecompressibilityof

thesecompoundscanbealsodescribedbythephenomenologicalequationobtained

3 fortheoxides.Thereitcanbeclearlyseenthatbothmagnitudes(B 0and Zi/d )are

linearlycorrelated.ThelinearfitobtainedbyErrandonea et al. [17],B0(inGPa)=

3 610 Z i/d , is also shown to illustrate that the empirical model proposed by these

72 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

authorssofarcanbeusedtopredictthebulkmodulusofmanyABX 4compounds.In particular,sinceinwolframitestructuredtungstatestheWO 6octahedraareasrigidas

the WO 4 tetrahedra in scheelitestructured tungstates, the model of Ref. [17]

apparently also works for wolframitestructured oxides, like CdWO 4 and ZnWO 4,

whicharealsoincludedin Figure 18 and Table X .

In addition to the relation between bulk and polyhedral compressibility

establishedbyErrandonea et al. [17],otherempiricalrelationshavebeenproposedto

estimatethebulkmodulusofABO 4compounds.Ming et al. [145]havesuggestedthat

their bulk modulus can be related to their ambient pressure molar volumes (V 0).

Assuming this correlation and the formulation of Cohen for diamondlike

semiconductors[214],Scott et al. [191]haveproposedasemitheoreticalrelationship

for the bulk modulus of scheelitestructured compounds. On the other hand,

Westrenen et al. [136] have suggested that the bulk modulus of ABO 4 compounds

variesasafunctionofthemolarvolumeandtheproductoftheformalchargesonthe

A and B cations. However, it has been shown that these two empirical approaches

cannot predict the bulk modulus of scheelitestructured compounds with the same

accuracythanthemodelpresentedinRef.[17].InparticularScott’sandWastrenen’s

modelsshowsignificantdeviationsforthevanadates,chromates,andhydrides.

To close this section, we would like to stress that from the analysis of the

3 literature the simple rule B 0 (in GPa) = 610 Z i/d appears to be the most effective

empirical criterion for predicting the bulk modulus of any scheelite or scheelite

relatedABO 4compound. ThelinearrelationshipbetweenB 0andtheAcationcharge

densityoftheAO 8polyhedraisconsistentwiththefactthatAO 8polyhedraexhibiting

alargeAcationchargedensityresultinalargerelectroniccloudinsidethepolyhedra

than those AO8 polyhedra with a low Acation charge density. In the AO 8

73 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

bisdisphenoidswithahigh Zitheelectronsaroundthecationarehighlylocalizedand

thebonddistancescannotbehighlydeformeduponcompression.Onthecontrary,in

AO 8bisdisphenoidswithalow Zithedensityofelectronsaroundthecationishighly

delocalized and the bond distances can be considerably deformed under pressure.

Then, since the compressibility of ABO 4 compounds is mainly given by the

compression of the AO 8 polyhedra, the abovedescribed facts explain why B0 is proportionalto Zi.Inadditiontothat,theyalsoexplainwhyAO 8polyhedrawithA

valence+1,+2,and+3arehighlydeformeduponcompressionascomparedtoBO 4 polyhedra with B valence +7, +6, and +5 in ABO 4 scheelites and scheeliterelated

structures,beingthecompoundswithAandBcationvalenceequalto+4themost

uncompressibleABO 4materials.

TheeffectivenessshownbytherelationproposedinRef.[17]forpredicting

thebulkmodulusofseveralcompoundsrecommendsitsuseforpredictingthebulk

modulus of additional scheelitestructured and scheeliterelated compounds. Some

interesting predictions of this empirical rule are: B 0 = 42 GPa and 27 GPa for

scheelitestructured NaReO 4 and KIO 4, B 0 = 87 GPa and 245 GPa for zircon

structuredEuCrO 4andTiGeO 4,B 0=120GPaand160GPaforwolframitestructured

MnWO 4andNiWO 4,andB 0=300GPaforcotunnitestructuredZrTaO 3N,suggesting

thatthislastoxynitrideisapotentialsuperhardmaterial.

74 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

8. Studies of the electronic properties

8.1. Optical absorption measurements

High pressure is not only an efficient tool to investigate the specificity of

chemical bonds of materials but also to study the electronic structure of

semiconductorswhichcanbestronglyaffectedthroughthetuningoftheirchemical bonds[215].Becauseofthisfact,severalstudiesofthepressureeffectsintheoptical propertiesofsemiconductorshavebeenperformedinthelasttwodecades[216,217].

In the case of the scheelitestructured ABO 4 compounds, the first studies of the pressureeffectsontheopticalpropertieshavebeenperformedonlyinthelastyears

[218]. These materials are widegap semiconductors with bandgap energies (E g)

largerthan3.7eV[219].Inparticular,recentexperimentshaveshownthebandgap

energy of these scintillating materials to decrease following the sequence BaWO 4

(5.26eV)>SrWO 4(5.08eV)>CaWO 4(4.94eV)>HgWO 4(4.55eV)>CdWO 4

(4.15eV)>MgWO 4(3.92eV)>ZnWO 4(3.90eV)>PbWO 4(3.77eV).Thisfact

makes opticalabsorption measurements in scheelitestructured ABO 4 compounds

very challenging experiments when performed using a DAC. According with

electronicbandstructurecalculationsinthesematerialsthevalencebandmaximaand

conductionband minima are located at the Γ point, so that they are directgap

materials[219,220].Thesecalculationsalsoindicatethat2 pOstatesdominatethe

character of the valence bands and that the bottom of the conduction bands is

dominatedbyMoandW4 dor5 dstates.Theseconclusionsarealsosupportedbyx

ray photoemission spectroscopy measurements [219]. Regarding the optical

absorptioncoefficientofABO 4compounds,itisknownthattheabsorptioncoefficient

atthebandedgeisanexponentialfunctionofthephotonenergy,whichiscalledthe

Urbach´stail[221].

75 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Optical absorption spectra have been measured in single crystals of PbWO 4

uponcompressionupto15GPa[218].Theobtainedresultsareshownin Figure 19 .

Thespectrameasuredatlowpressuresresemblethosereportedinliteratureatambient

conditions[221].Undercompressiontheabsorptionspectraredshift,indicatingthat

thebandgapofPbWO 4decreaseswithpressure.Thepressuredependenceobtained

forE gfromtheexperimentaldataisgivenin Figure 20 .Thereitcanbeseenthatup

to 6.1 GPa the reduction of E g is linear, closing at a rate of −71(2) meV/GPa. A

similarbehaviourhasbeenobservedforthescheelitestructuredPbMoO 4[52].The

resultscanbeexplainedintermsofthecrystalchemistryandelectronicstructureof

PbWO 4andPbMoO 4[218].Theobserveddecreaseofthebandgapuponcompression

isadirectconsequenceoftheincreaseofthestrengthofthecrystalfieldactingonthe

4d and 5 d states of Mo and W [52, 218]. Recent bandstructure calculations

corroborate this hypothesis. Additional changes on the bandstructure of ABO 4

compounds are caused by pressureinduced structural changes. For example, at 6.3

GPa in PbWO 4 a collapse of the bandgap energy from 3.5 eV to 2.75 eV was

observed[218].Thiscollapseisadirectconsequenceofthestructuraltransformation

inducedbypressureinPbWO 4[19,29].Thistransformationinduceschangesonthe

tungstenoxygen tetrahedron, which are expected to affect the band structure of

PbWO 4. From 6.3 GPa to 11.1 GPa the absorption edge of PbWO 4 also moves to

lower energies upon compression (as does in the scheelite structure), but with a pressure coefficient of −98(3) meV/GPa. At 12.2 GPa, additional changes in the

absorption edge of PbWO 4 are observed (see Figure 19) . It has been argued that

theseadditionalchangescanberelatedtotheconclusionofthephasetransitiontothe

PbWO 4III phase. Beyond 12.2 GPa the absorption edge also redshifts but with a pressure coefficient of −26(2) meV/GPa. In the scheelitestructured BaMoO 4, two

76 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

transitionsalsotakeplaceuponcompression[20].Thesecondtransitiontakesplace

fromthefergusonitephasetoaphaserelatedtoPbWO 4III.Thepressureevolutionof

theabsorptionedgeinthisphaseofBaMoO 4hasbeenmeasured[222]beingfound

that it redshifts at −21 meV/GPa, a value very close to the one observed for the

PbWO 4IIIphase.Veryrecently,highpressureopticalmeasurementshavebeenalso performed in BaWO 4. In this compound for the highpressure BaWO 4II phase

(isomorphic to PbWO 4III) the same behaviour than in BaMoO 4 and PbWO 4 was

found[223].Ontheotherhand,forthelowpressurescheelitephaseasmallincrease

of the bandgap energy with pressure has been observed. The difference in the behaviourofE ginthepressurerangeofstabilityofthescheelitephaseforBaWO 4

andPbWO 4hasbeenattributedtoadifferenthybridizationoftheBaandPbstates

with 2 p O states and 5 d W states [223]. In spite of the difference of the pressure

effectsontheopticalpropertiesofthescheelitephaseofPbWO 4andBaWO 4,atthe

endofthepressurerangeofstabilityofthisphaseinbothcompoundsacollapseofE g

ofabout0.71eVhasbeenreported[218,223].Thisfactgivesadditionalsupportto

theideathatthebandgapcollapseisrelatedtotheoccurrenceofaphasetransitionat

asimilarpressure.

8.2. Luminescence studies

Inadditiontotheopticalabsorptionmeasurements,otheropticalstudieshave been also performed in scheelitestructured compounds under compression. High pressure luminescence studies have been performed by Martin et al. in rareearth

doped SrWO 4 [224, 225]. These studies are very interesting since the variation of

interatomicdistancesbypressuretuningallowsabetterunderstandingoftheionion

couplingmechanisms(e.g.theNd 3+ Nd 3+ magneticinteraction).Ondoping,rareearth

2+ ions substitute for the A cations in ABO 4 compounds, so they are located in the

77 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008 polyhedra most sensitive to pressure of these compounds. Because of this fact, the

luminescence properties of rareearth doped ABO 4 are considerable affected by pressure.

4 4 Theemissionspectraforthe F3/2 → I9/2 transitionhavebeenobtainedunder

3+ pressure until 13 GPa in Nd :SrWO 4 crystals [225]. Under compression the

4 4 wavelengthnumberofthemultiplets F3/2 → I9/2 transitionincreaseswithintherange

of stability of the scheelite structure due to the decrease of the NdNd distances.

Additional changes observed in the emission spectra confirm the occurrence of

scheelitetofergusonitephasetransitioninSrWO 4whichisobservedaround10GPa,

ingoodagreementwiththeconclusionobtainedfromxraydiffractionexperiments

[17]. On top of that, from the analysis of the luminescence decays as function of

4 pressure from the F3/2 level, it was found that the decay curves follow a non

exponential dependence, being concluded that the energy transfer processes are

enhancedundercompression.Theseprocessesareprobablythemostimportantfactor

whichexplainsthereductionoftheeffectivelifetimewhenthepressureisincreased.

3+ Very similar conclusions were extracted from studies carried out on Eu :SrWO 4

crystals[224].

4 4 4 4 Studies on the pressure dependence of the F3/2 → I9/2 and the F3/2 → I11/2

3+ transitionsofNd havebeenalsoperformedinscheelitestructuredYLiF 4[160].The

4 4 highpressurebehaviourofthe F3/2 → I9/2 satellitesindicatesasignificantincreaseof

the Nd 3+ Nd 3+ ferromagnetic exchange interaction as the distance between pairs

4 4 decreases.Theobservationofsatellitesofthe F3/2 → I11/2 transitionsuggeststhatthe

4 splitting of the F3/2 multiplet as a consequence of the exchange interaction. The

3+ luminescence spectra of Nd :YLiF 4 indicate that slight changes in the scheelite

structure occur around 5.5 GPa. Discontinuous spectral changes near 10 GPa, also

78 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

3+ observedforEu :YLiF 4,wereattributedtoastructuralphasetransition[161].Similar

highpressureeffectshavebeenobservedinthezirconstructuredYVO 4.Theeffectof

4 4 4 4 3+ pressureonthe F3/2 → I9/2 andthe F3/2 → I11/2 emissionsofNd inzircontypeYVO 4

were also investigated [140]. These studies show that chemical composition and

hydrostaticpressuresaffectdifferentlythecrystalfieldparametersinthecaseofthe

zircon structure. This behaviour observed in scheelite and zirconstructured

compounds is in contrast to the one of the spinels and garnets. In particular, the

3+ increase of the crystal field interaction with pressure is similar in Nd :YVO 4 and

3+ Nd :YLiF 4. The larger pressure coefficients for photoluminescence transitions in

YVO 4 as compared to those of YLiF 4 can be attributed to a larger decrease of the

Slaterandspinorbitparameters,whichmayberelatedtoastrongerincreaseofthe

covalency with increasing pressure on the oxide compounds. Regarding YVO 4, the

reported studies also indicate a significant increase of the Nd 3+ Nd 3+ ferromagnetic

exchangeinteractionasthedistancebetweenthepairsdecreases.

9. Technological and geophysical implications

The studies under high pressure in ABX 4 compounds may have important

technologicalandgeophysicalimplications.From the technological point of view

thereisacurrentinterestinproducingnanocrystalsofdifferentABX 4compoundsin

order to increase their luminescent properties. Recently, CaWO 4 nanocrystals with

controlled size have been prepared by a hydrothermal method [226]. Moreover,

CdWO 4nanocrystalshavebeensynthesizedinatetragonalscheelitestructuredespite bulkCdWO 4crystallizesinthemonoclinicwolframitestructure[227].Additionally,

highpressure studies in combination with heavy ion bombardment at relativistic

velocities in ZrSiO 4 have shown the formation of nanocrystals and of the scheelite phaseatpressuressmallerthanthatofthezircontoscheelitephasetransitioninthe

79 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008 bulk[228].Ontopofthat,theunderstandingoftheeffectsofirradiationduringlong time in ABO 4 scintillating crystals can be now better understood thanks to the

improvement of knowledge of the effects on their electronic and optical properties

causedbypressureinducedstructuralchanges[229].Anotherimportanttechnological

applicationisthepossibledevelopmentofultrahardABO 4compoundsbymeansof

highpressure and hightemperature treatments and the development of synthesis

methods that could be easily transferable to the industry [230]. In particular, the potentialuseofthesecompoundsasthoughenerforoxideceramiccompositesseems tobeaverypromisingapplication[231].Alsothedevelopmentofhighdielectricthin filmsofcompoundslikeTiSiO 4[232]canbeimprovedwiththeinformationobtained from highpressure studies on ABO 4 compounds. Finally, a new class of materials

with phosphor in octahedral coordination has been recently devised [153] and new

materialswithboroninoctahedralcoordinationarepursued[233].

Additionally, the information obtained from highpressure studies has

contributed to improve the knowledge of the dielectric properties of scheelite

structuredmaterials.Thesematerialshavebeenshowntobehighqualitymicrowave

dielectric ceramics, being such material required for to the rapid development of

mobile telecommunication systems, such as mobile phones [234]. There are many

otherresearchtopicsrelatedtoscheelitestructuredmaterialsthathavebeenindirectly benefited by highpressure studies, they include: the development of photoluminescence enhanced disordered thin films [235], the study of the layering

effectofwateronthestructureofscheelites[236],andthestudyofNaBH 4,NaAlH 4

and similar metal hydrides [180] as promising hydrogen storage systems among

others. In particular, the structural and electronic information obtained on AWO 4

compounds can be very helpful for the developing of highlysensitive energy

80 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

resolving cryogenic detectors. The development of these cryogenic detectors is

fundamentalinparticlephysicsforthedetectionofrareeventsandlowbackground

experiments[1].

From the geological point of view, many ABO 4 compounds, like zircon

(ZrSiO 4), thorite (ThSiO 4), and (HfSiO 4), are part of the crust and lower

mantle of the Earth, therefore it is important to understand the behaviour of these

compounds under high pressure and also at high temperatures. A recent study of

amorphizedzirconduetonaturalradiationunderhighpressurehasshownthatthere

are phase transitions between different amorphous structures that are different than

those found in crystals [237]. Conclusions drawn from highpressure studies of

scheelitestructured compounds could also have important geophysical and

geochemicalimplicationssincethescheelitestructuredorthotungstatesarecommon

accessorymineralsinvariouskindsofrocksintheEarth’suppermantle.Pressures

around10GPaandtemperatureshigherthan700K(i.e.withinthePTrangecovered bypresenthighpressurestudies)arefoundatadepthof100kmintheuppermantle.

Ontopofthat,theresultsherereviewedcouldbeimportantforextractinginformation

from meteorite debris found in the Earth, which have been submitted to high PT

conditionswhentheyimpactwiththeEarth[238].Intheparticularcaseofzircon,the

highpressuretransformedphasewithscheelitestructurehasbeenfoundinmeteorite

impact debris and has been named reidite [239]. The presence of reidite and its

transformation pressure from zircon can be used as a geobarometer. Finally, the

information obtained from highpressure studies in zircons and scheelites is very

important to decipher element mobility in ultrahighpressure eclogitefacies

metamorphicrocksduringsubductionandexhumationofcontinentalcrust[240].

81 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

10. Future prospects

The Fukunaga and Yamaoka’s (FY) and Bastide’s diagrams as well as the

crystallochemical arguments above presented can be used not only to predict high pressure phases, but also to understand the behaviour of ABX 4 compounds with

increasingordecreasingtemperature.Therefore,itisinterestingtotrytopredicthigh pressurephasesatdifferenttemperatures.Ascommentedpreviously,Mariathasan et

al. consideredthattheeffectoftemperatureinABX 4compoundswascontrarytothat

of pressure provided that the AX polyhedra are more compressible than the BX polyhedra[154].ThisphenomenahasbeenobservednotonlyinLaNbO 4butalsoin

SrMoO 4 [134]. The NE or N rules for pressure increase in the Bastide’s diagram

shows that both cation polyhedra could compress in a different way depending on

theircationtoanionionicradiiratios.Therefore,onecannotassumeingeneralthat

temperatureisoppositetopressureforallABX 4compounds.Thestudyofthephases

ofABX 4compoundsatdifferenttemperaturesshowsthattheincreaseoftemperature

followsasouthwest(SW)orevenawest(W)pathalongtheBastide’sdiagram.For

instance, CrVO 4 is a compound usually attributed to the orthorhombic structure

Cmcm , however at ambient conditions crystallizes in the monoclinic C2/m phase

[241].Athightemperature,CrVO 4undergoesaphasetransitionabove675Ktothe

Cmcm phase [242], which can be quenched at ambient conditions and it is in SW

directionwithrespecttothe C2/m phase.Ontheotherhand,LaTaO 4crystallizesin

the monoclinic P2 1/n structure at ambient conditions [243] and undergoes a phase

transition above 450 K to an orthorhombic A2 1/am phase [244], which is in W

direction with respect to the P2 1/n phase. Similarly, CsReO 4 crystallizes in the

orthorhombic Pnma structure at ambient conditions [245] and undergoes a phase

transitionabove400Ktothezircon I4/amd phase[246]whichisinWSWdirection

82 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

with respect to the Pnma phase of CsReO 4 in the Bastide’s diagram. Therefore,

unexploredphasesatdifferentpressuresandtemperaturescanbeestimatedwiththe

helpofthesystematicherepresented,givinganewperspectiveforthehighpressure

hightemperaturesynthesisofABX 4materials.

Furthermore,theFYandBastide’sdiagramsmayalsoallowustounderstand

themetastabilityofsomephasesincertainABX 4compoundsatambientconditions.

For instance, the mineral crocoite (PbCrO 4) is observed both in the orthorhombic

Pnma phase [247] and in the monazite monoclinic P2 1/n phase [248]. This can be

understoodbecausePbCrO 4islocatednearthestabilityborderofbothstructuresin

theBastide’sdiagram.AsimilarcaseisthatofThGeO 4whichisfoundinbothzircon

and scheelite [249] phases since its location in the Bastide’s diagram is near the border of stability of both structures. Other examples are those of FeVO 4 that

crystallizeseitherinthetriclinic P1 phaseorinanorthorhombic Cmcm phase,andof

AlTaO 4 with several metastable phases, one of them being the orthorhombic Pbcn

structureandanotherthecubicrutiletypestructure.Bothphasesarereasonableonthe

light of the location ofAlTaO 4 in the Bastide’s diagram. In this sense, we have to

mentionthattheABX 4compoundswithhigherpolymorfismormetastablephasesare

thoselocatedneartheborderlinecorrespondingtoAX 2compoundsandthisopensthe possibility for the search of metastable phases in this region and in the borderline

regionamongseveralstructures.

Finally, we want to stress that the FY and Bastide’s diagrams allows us to

understandwhysomenanocrystalscanbesynthesizedinstructuresthatarenotstable

inbulkmaterials.Forinstance,nanocrystalsofCdWO 4havebeenrecentlygrownin

the tetragonal scheelite phase despite bulk CdWO 4 crystallizes in the monoclinic

wolframite P2/c phase[227].Thisresultcanbeunderstoodbyconsideringthatthe

83 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

decrease of the nanocrystal size is sometimes equivalent to apply a “negative” pressure on the crystal which expands the lattice in all directions and leads to a

decreaseofther A/r X andr B/r Xionicradiiratios.Inthissense,wecanunderstandthat

the nanocrystals of CdWO 4 crystallize in the scheelite phase since there is a small

region of stability of the scheelite structure in SW direction with respect to

monoclinicCdWO 4intheBastide’sdiagram.Thisexampleof“negative”pressurein

nanocrystalsopensthepossibilitytosearchfornewcompoundswithsmallercation

coordinations than those present in bulk materials. For instance, in principle it is possibletosynthesizeniobates,antimonates,tellurates,tantalates,andevenuraniates

withcationBcoordinationof4whilethebulkmaterialsusuallytheyhaveacationB

coordinationof6orevenahighercoordination.

11. Concluding Remarks

Inthiscontribution,wereviewedrecentstudiesofthehighpressureeffectson

thestructuralandelectronicpropertiesofscintillatingABX 4materials.Inparticular,

the occurrence of pressureinduced phase transitions in scheelitestructured

compounds and related materials have been discussed in detail. The different

experimentalandtheoreticaltechniquesusedforobtainingreliableHP–HTdatahave been described. Drawbacks and advantages of the different techniques have been

discussed including recent developments. Other techniques, like inelastic neutron

scattering, have not been included in the review, but recent studies in LuPO 4 and

YbPO 4haveshownthattheycouldbeveryhelpfultoimprovetheknowledgeofthe physical properties of ABX 4 scintillating compounds [250]. Furthermore, a

comparative analysis of the crystal chemistry of ABX 4 compounds under high pressurewasdoneinordertopresentthewholebodyofstructuralstudiesavailablein

the literature in a consistent fashion, and to suggest opportunities for future work.

84 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

From the review results, it has been concluded that in the studied compounds the

following systematic arises for their structural sequence: zircon → scheelite →

fergusonite →densermonoclinicphases →orthorhombicphases.Thisconclusionhas been confirmed by a recent work by Mittal et al. in LuVO 4 [251]. This authors

reported by the first time the occurrence of the zircon → scheelite → fergusonite

transition sequence in a zirconstructured compound. The implications of the

reviewed results for technological applications of ABX 4 compounds and in

geophysicswerealsodiscussedandprobabletrendsforthefutureresearchonABX 4

compoundspresented.Anissueofparticularinterestforthefuturecouldbethestudy

ofpressureeffectsonrareearthcompoundslikescheelite(zircon)likeHoCrO 4 [252].

Inthesecompoundsmagnetictransitionscanbeinducedbypressureandinteresting physicalphenomenacanbetriggeredbythepressuredriven felectrondelocalisation

inducedintherareearthmetals[253].

Acknowledgments

This study was made possible through financial support from the Spanish

governmentMCYTunderGrantsNumbersMAT200765990C0301andMAT2006

02279 and the project MALTAConsolider Ingenio 2010 CSD200700045. D.E.

acknowledgesthefinancialsupportfromtheMCYTofSpainthroughthe“Ramóny

Cajal”program.HeisalsoindebtedtotheFundacióndelasArtesylasCienciasde

Valencia for granting him the IDEA prize. The authors are grateful to all the

collaborators with whom they have the pleasure to interact along the years. In particular, they acknowledge the collaboration in their research on the reviewed

subject of: J. PellicerPorres, A. Segura, D. MartínezGarcía, Ch. FerrerRoca, J.

RuizFuertes, R. LacombaPerales, J. LópezSolano, P. RodríguezHernández, A.

Muñoz,S.Radescu,A.Mujica,N.Garro,O.Tschauner,R.Kumar,M.Somayazulu,

85 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

D.Häusermann,I.R.Martin,U.R.RodrıguezMendoza,F.Lahoz,M.E.Torres,V.

Lavın,P.Lecoq,C.Y.Tu,P.Bohacek,J.M.Recio,andA.Vegas.

86 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

References

[1]G.Angloher,M.Bruckmayer,C.Bucci,M.Bühler,S.Cooper,C.Cozzini,P.Di

Stefano,F.V.Feilitzsch,T.Frank,D.Hauff,T.Jagemann,J.Jochum,V.Jorgens,R.

Keeling, H. Kraus, M. Loidl, J. Marchese, O. Meier, U. Nagel, F. Pröbst, Y.

Ramachers, A. Rulofs, J. Schnagl, W. Seidel, I. Sergeyev, M. Sisti, M. Stark, S.

Uchaikin,L.Stodolsky,H.Wulandari,andL.Zerle,Astropart.Phys. 18 ,43(2002).

[2]Scheeliteisanimportantoreoftungstenwhichisastrategicallyimportantmetal.

Scheelite is named after the discoverer of CaWO 4, K. W. Scheele. See: B. W.

Anderson and E. A. Jobbins, Gem Testing (Butterworth & Co Ltd, Great Britain,

1990).

[3]T.A.Edison,Nature(London) 53 ,470(1896).

[4] A. A. Annenkov, M. V. Korzhik, and P. Lecoq, Nucl. Instrum. Methods Phys.

Res.A 490 ,30 (2002).

[5]M.Kobayashi,M.Ishi,Y.Usuki,andH.Yahagi,Nucl.Instrum.MethodsPhys.

Res.A 333 ,429 (1993).

[6] N. Faure, C. Borel, M. Couchaud, G. Basset, R. Templier and C. Wyon, Appl.

Phys.B 63 ,593(1996).

[7]M.Nikl,P.Bohacek,N.Mihokova,M.Kobayashi,M.Ishii,Y.Usuki,V.Babin,

A.Stolovich,S.Zazubovich,andM.Bacci,J.Lumin. 87-89 ,1136 (2000).

[8]M.Nikl,P.Bohacek,N.Mihokova,N.Solovieva,A.Vedda,M.Martini,G.P.

Pazzi,P.Fabeni,M.Kobayashi,andM.Ishii,J.Appl.Phys. 91 ,5041 (2002).

[9]A.Brenier,G.Jia,andCh.Tu,J.Phys.:Condens.Matter 16 ,9103(2004).

[10]S.Chernov,R.Deych,L.Grigorjeva,andD.Millers,Mater.Sci.Forum 239 ,299

(1997).

[11]E.FPaskiandM.W.Blades,Anal.Chem.60 ,1224(1988).

87 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[12]S.Takai,K.Sugiura,andT.Esaka,Mater.Res.Bull. 34 ,193(1999).

[13]N.Sharma,K.M.Shaju,G.V.SubbaRao,B.V.R.Chowdari,Z.L.Dong,and

T.J.White,Chem.Inform., 15 ,101(2004).

[14] A. Grzechnik, W. A. Crichton, M. Hanfland, and S. Van Smaalen, J. Phys.:

Condens.Matter 15 ,7261 (2003 ).

[15]V.Panchal,N.Garg,A.K.Chauhan,B.Sangeeta,andS.M.Sharma,SolidState

Commun. 130 ,203(2004).

[16]W.A.CrichtonandA.Grzechnik,Z.Kristallogr. 219 ,1(2004).

[17]D.Errandonea,J.PellicerPorres,F.J.Manjon,A.Segura,Ch.FerrerRoca,R.S.

Kumar, O. Tschauner, P. RodriguezHernandez, J. LopezSolano, A. Mujica, A.

Muñoz,andG.Aquilanti,Phys.Rev.B 72 ,174106(2005).

[18]A.Grzechnik,W.A.Crichton,andM.Hanfland,phys.stat.sol.(b) 242 ,2795

(2005).

[19]D.Errandonea,J.PellicerPorres,F.J.Manjon,A.Segura,Ch.FerrerRoca,R.S.

Kumar, O. Tschauner, P. RodriguezHernandez, J. LopezSolano, A. Mujica, A.

Muñoz,andG.Aquilanti,Phys.Rev.B 73 ,224103(2006).

[20] V. Panchal, N. Garg and S. M. Sharma, J. Phys.: Condens. Matter 18 , 3917

(2006).

[21]A.Grzechnik,W.A.Crichton,W.G.Marshall,andK.Friese,J.Phys.:Condens.

Matter 18 ,3017(2006).

[22]A.Kuzmin,R.Kalendonev,J.Purans,J.P.Itie,F.Baudelet,A.Congenuti,and

P.Munsch,Phys.Scr. 115 ,556(2005).

[23]S.Li,R.Ahuja,Y.Wang,andB.Johansson,HighPress.Res. 23 ,343(2003).

88 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[24]P.RodríguezHernández,J.LópezSolano,S.Radescu,A.Mujica,A.Muñoz,D.

Errandonea,J.PellicerPorres,A.Segura,Ch.FerrerRoca,F.J.Manjón,R.S.Kumar,

O.Tschauner,andG.Aquilanti,J.Phys.Chem.Solids 67 ,2164(2006).

[25]J.LópezSolano,P.RodríguezHernandez,S.Radescu,A.Mujica,A.Muñoz,D.

Errandonea,F.J.Manjón,J.PellicerPorres,N.Garro,A.Segura,Ch.FerrerRoca,R.

S.Kumar,O.Tschauner,andG.Aquilanti,phys.stat.sol.(b) 244 ,325(2007).

[26]D.Christofilos,K.Papagelis,S.Ves,G.A.Kourouklis,andC.Raptis,J.Phys.:

Condens.Matter 14 ,12641(2002).

[27]D.Christofilos,J.Arvanitidis,E.Kampasakali,K.Papagelis,S.Ves,andG.A.

Kourouklis,phys.stat.sol.(b) 241 ,3155(2004).

[28] F. J. Manjón, D. Errandonea, N. Garro, J. PellicerPorres, P. Rodríguez

Hernández,S.Radescu,J.LópezSolano,A.Mujica,andA.MuñozA.,Phys.Rev.B

74 ,144111(2006).

[29] F. J. Manjón, D. Errandonea, N. Garro, J. PellicerPorres, P. Rodríguez

Hernández,S.Radescu,J.LópezSolano,A.Mujica,andA.Muñoz,Phys.Rev.B 74 ,

144112(2006).

[30]D.Christofilos,E.Efthimiopoulos,J.Arvanitidis,K.Papagelis,S.Ves,andG.

A.Kourouklis,HighPressureResearch 26 ,421(2006).

[31]E.ZaretskyandP.Mogilevsky,HighPressureResearch 26 ,555(2006).

[32]D.Errandonea,phys.stat.sol.(b) 242 ,R125(2005).

[33]F.Chevire,F.Tessier,andR.Marchand,Mat.Res.Bulletin 39 ,1091(2004).

[34]F.DachilleandL.S.D.Glasser,ActaCrystal. 12 ,820(1959).

[35]A.P.Young,Z.Kristallogr. 118 ,223(1963).

[36]K.F.Seifert,Fortschr.Mineral 45 ,214(1968).

[37]H.C.SnymanandC.W.Pistorius,Z.Kristallogr. 120 ,317(1964).

89 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[38]V.S.StubicanandR.Roy,Z.Kristallogr.Min. 119 ,90(1963).

[39]A.P.YoungandC.M.Schwartz,Science 141 ,348(1963).

[40] O. Muller, F. Dachille, W. B. White, and R. Roy, Inorganic Chemetry 9, 410

(1970).

[41]S.Tamura,Sol.StateCommun. 12 ,597(1973).

[42]M.NicolandJ.F.Durana,J.Chem.Phys. 54 ,1436(1971).

[43]B.N.GangulyandM.Nicol,phys.stat.sol.(b) 79 ,617(1977).

[44]A.ZalkinandD.H.Templeton,J.Chem.Phys.40 ,501(1964).

[45]M.Daturi,M.M.Borel,A.Leclaire,L.Savary,G.Costentin,J.C.Lavalley,and

B.Raveau,J.Chem.Phys. 93 ,2043(1996).

[46]T.Fujita,S.Yamaoka,andO.Fukunaga,Mater.Res.Bull. 9,141(1974).

[47]L.L.Y.Chang,J.Am.Ceram.Soc. 54 ,357(1971).

[48]I.Kawada,K.Kato,andT.Fujita,ActaCryst. 30 ,2069(1974).

[49] P. W. Richter, G. J. Kruger, and C. W. F. T. Pistorius, Acta Cryst. 32 , 928

(1976).

[50]O.FukunagaandS.Yamaoka,Phys.Chem.Minerals 5,167(1979).

[51]A.Jayaraman,B.Batlogg,andL.G.VanUitert,Phys.Rev.B 28 ,4774(1983).

[52]A.Jayaraman,B.Batlogg,andL.G.VanUitert,Phys.Rev.B 31 ,5423(1985).

[53]W.JeitschkoandA.W.Sleight,ActaCryst. 29 ,869(1973).

[54]A.Jayaraman,S.W.Wang,andS.K.Sharma,Phys.Rev.B 52 ,9886(1995).

[55]A.Jayaraman,S.Y.Wang,andS.K.Sharma,CurrentScience 69 ,44(1995).

[56]A.Jayaraman,G.A.Kourouklis,L.G.VanUitert,W.H.Grodkiewicz,andR.G.

Maines,PhysicaA 156 ,325(1989).

[57]L.C.Ming,A.Jayaraman,S.R.Shieh,andY.H.Kim,Phys.Rev.B 51 ,12100

(1995).

90 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[58]T.A.AlDhahir,H.L.Bhat,P.S.Narayanan,A.Jayaraman,J.RamanSpectrosc.

22 ,567(1991).

[59]N.ChandrabhasandA.K.Sood,Phys.Rev.B 51 ,8795(1995).

[60]R.M.Hazen,L.W.Finger,andJ.W.E.Mariathasan,J.Phys.Chem.Solids 46 ,

253(1985).

[61] M. I. Eremets, High Pressure Experimental Methods , (Oxford Science

Publication,1996).

[62] J. MacaveiandH.Schulz,Z.Kristallogr. 207 ,193(1993).

[63]J.P.Bastide,J.SolidStateChem. 71 ,115(1987).

[64] R. J. Hemley, H. K. Mao, and V. V. Struzhkin, J. Synch. Radiation 12 , 135

(2005).

[65] D. Christofilos, S. Ves, and G. A. Kourouklis, phys. stat. sol. (b) 198 , 539

(1996).

[66]A.Jayaraman,S.Y.Wang,S.R.Shieh,S.K.Sharma,andL.C.Ming,J.Raman

Spect. 26 ,451(1995).

[67] S. R. Shieh, L. C. Ming, and A. Jayaraman, J. Phys. Chem. Solids 57 , 205

(1996).

[68]D.Errandonea,M.Somayazulu,andD.Häusermann,phys.stat.sol.(b) 235 ,162

(2003).

[69]D.Errandonea,M.Somayazulu,andD.Häusermann,phys.stat.sol.(b) 231 ,R1

(2002).

[70]D.Errandonea,F.J.Manjon, et al. ,submittedtoPhys.Rev.B(2008).

[71]A.W.Sleight,ActaCryst.B 28 ,2899(1972).

[72]S.Zerfoss,L.R.Johnson,andO.Imber,Phys.Rev. 75 ,320(1949).

91 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[73]W.W.Ge,H.J.Zhang,J.Y.Wang,J.H.Liu,X.G.Xu,X.B.Hu,L.Juan,and

M.H.Jiang,J.Cryst.Growth 270 ,582(2004).

[74]L.G.SillenandA.L.Nylander,Arkiv.Chem.Geol. 17A ,4(1943).

[75]M.I.Kay,B.C.Frazer,andI.Almodovar,J.Chem.Phys. 40 ,504(1964).

[76]G.W.SmithandJ.AIbers,ActaCryst. 19 ,269(1965).

[77]S.KleinandH.Weitzel,J.Appl.Crystal. 8,59(1975).

[78]K.Brandt,Arkiv.Kemi. 17A ,1(1943).

[79]S.C.AbrahamsandJ.M.Reddy,J.Chem.Phys. 43 ,2533(1965).

[80]A.Grzechnik,K.Syassen,I.Loa,M.Hanfland,J.Y.Gesland,Phys.Rev.B 65

(2002)104102.

[81]E.Gürmen,E.Daniels,andJ.J.King,J.Chem.Phys. 55 ,1093(1971).

[82]F.Birch,J.Geophys.Res. 83 ,1257(1978).

[83] V. T. Deshpande and S. V. Suryaharayana, J. Phys. Chem. Solids 30 , 2484

(1989).

[84]F.deGroot,ChemicalReviews 101 ,1779(2001).

[85]D.Christofilos,S.Ves,andG.A.Kourouklis,J.Phys.Chem.Solids 56 ,1125

(1995).

[86]A.I.Komkov,Mem.AllUnionMin.Soc. 86 ,432(1957).

[87]F.D.HardcastleandI.E.Wachs,J.RamanSpectr. 26 ,397(1995).

[88]T.Uchida,Y.Wang,M.L.Rivers,S.R.Sutton,D.J.Weidner,M.T.Vaughan,

J.Chen,B.Li,R.A.Secco,M.D.Rutter,andH.Liu,J.Phys.:Condens.Matter 14 ,

11517(2002).

[89] D. Errandonea, Y. Meng, D. Häusermann, and T. Uchida, J. Phys.: Condens.

Matter 15 ,1277(2003).

92 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[90] J. M. Besson, R. Nelmes, G. Hamel, J. S. Loveday, G. Weill, and S. Hull,

PhysicaB 180 ,907(1992).

[91]G.A.Lyzenga,T.J.Ahrens,A.C.Mitchel,J.Geophys.Res. 88 ,2431(1983).

[92]G.E.DuvallandR.A.Graham,Rev.Mod.Phys. 49 ,523(1977)

[93]A.Polian,J.RamanSpectroscopy 34 ,633(2000).

[94]G.Amulele,M.H.Manghnani,B.Li,D.J.H.Errandonea,M.Somayazulu,and

Y.Meng,J.Appl.Phys. 95 ,1806(2004).

[95]H.TokumotoandH.Unoki,Phys.Rev.B 27 ,3748(1983).

[96]P.BlanchfieldandG.A.Saunders,J.Phys.C:SolidStatePhys. 12 ,4673(1979).

[97]G.Benyuan,M.Copic,andH.Z.Cummins,Phys.Rev.B 24 ,4098(1981).

[98]A.R.OganovandC.W.Glass,J.Chem.Phys. 124 ,244704(2006).

[99]A.Sen,S.L.Chaplot,andR.Mittal,J.Phys.:Condens.Matter 14 ,975(2002).

[100]A.Sen,S.L.Chaplot,andR.Mittal,Phys.Rev.B 68 ,134105(2003).

[101]B.Minisini,L.ElHadj,M.LontsiFomena,N.VanGarderen,andF.Tsobnang,

J.Phys.:Condens.Matter 18 ,2429(2006).

[102]G.KresseandJ.Furthmüller,Comput.Mater.Sci. 6,15(1996).

[103]J.P.Perdew,J.A.Chevary,S.H.Vosko,K.A.Jackson,M.R.Pederson,D.J.

Singh,andC.Fiolhais,Phys.Rev.B 46 ,6671(1992).

[104]T.Fujita,I.Kawada,andK.Kato,ActaCrystallogr. 33 ,162(1977).

[105]G.Blasse,J.Inorg.Nucl.Chem 37 ,97(1975).

[106]A.LeBail,H.Duray,andJ.L.Fourquet,Mater.Res.Bull. 23 ,447(1985).

[107]Y.A.Titov,A.M.Sych,A.N.Sokolov,A.A.Kapshuk,V.YaMarkiv,andN.

M.Belyavina,J.AlloysCompd. 311 ,252(2000).

[108] E. T. Keve, S. C. Abrahams, and J. L. Bernstein, J. Chem. Phys. 51 , 4928

(1969).

93 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[109]D.Errandonea,Y.Meng,M.Somayazulu,andD.Häusermann,PhysicaB 355 ,

116(2005)andreferencestherein.

[110]O.Tschauner,D.Errandonea,andG.Serghiou,PhysicaB 371 ,88(2006)and

referencestherein.

[111]Theorthorhombic Cmca structurepredictedtobecomestableuponcompression in CaWO 4 and isostructural compounds was named in Ref. [17] as silvanite. This

name,usedintheliteraturetonamethehighpressure Cmca structure,couldleadto

confusion since sylvanite is the name of the mineral silver gold telluride,

(Au,Ag) 2Te 4. Therefore, in order to avoid confusions, we will refer to the high pressurephaseofCaWO 4directlyas Cmca structure.

[112]R.W.G.Wyckoff,Z.Kristallogr. 66 ,73(1927).

[113]E.KnittleandQ.Williams,Am.Mineral. 78 ,245(1993).

[114]Y.Fujii,M.Kawada,andA.Onodera,J.Phys.C. 18 ,789(1985).

[115]A.Jayaraman,S.Y.Wang,andS.K.Sharma,SolidStateCommun. 93 ,885

(1995).

[116]Y.W.Long,L.X.Yang,Y.Yu,F.Y.Li,R.C.Yu,S.Ding,Y.L.Liu,andC.

Q.Jin,Phys.Rev.B 74 ,054110(2006).

[117]A.Grzechnik,W.A.Crichton,P.Bouvier,V.Dmitriev,H.P.Weber,andJ.Y.

Gesland,J.Phys.:Condens.Matter 16 ,7779(2004).

[118] M. P. Pasternak, R. D. Taylor, M. B. Kruger, R. Jeanloz, J. P. Itie, and A.

Polian,Phys.Rev.Lett. 72 ,2733(1994).

[119]G.Serghiou,H.J.Reichmann,andR.Boehler,Phys.Rev.B 55 ,14765(1997).

[120]G.C.KennedyandP.N.Lamori, Progress in Very High Pressure Research , editedbyP.F.Bundy,W.R.Hibbard,andH.M.Strong(J.Wiley,NewYork,1961).

[121]D.Errandonea,J.Phys.Chem.Solids 67 ,2017(2006).

94 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[122]K.Nitsch,M.Nikl,M.Rodova,andS.Santucci,phys.stat.sol.(a) 179 ,261

(2000).

[123]W.W.Ge,H.J.Zhang,J.Y.Wang,J.H.Liu,X.G.Hu,X.B.Ho,M.H.Jing,

D.G.Ran,S.Q.Sun,H.R.Xia,R.I.Boughton,J.ApplPhys. 98 ,013542(2005).

[124] D. V. Schroeder, An Introduction to Thermal Physics (AddisonWesley,

Reading,MA,1999).

[125]D.Errandonea,M.Somayazulu,D.Häusermann,D.Mao,J.Phys.:Condens.

Matter 15 ,7635(2003).

[126]S.N.LuoandT.J.Ahrens,Phys.Earth.Planet.Interiors 143 ,365(2004).

[127]D.Errandonea,PhysicaB 357 ,356(2005).

[128]A.Sen,S.L.Chaplot,R.Mittal,PhysicaB 363 ,213(2005).

[129]R.LacombaPeralesandD.MartinezGarcia,privatecommunication.

[130] S. N. Achary, S. Varma, and A.K. Tyagi, J. Phys. Chem. Solids 66 , 1200

(2005).

[131]J.F.Kenney,V. A.Kutcherov,N.A.Bendeliani,andV.A.Alekseev,Proc.

Natl.Acad.Sci.U.S.A. 99 ,10976(2002).

[132]A.Perakis,E.Sarantopoulou,andC.Raptis,HighPressureResearch 18 ,181

(2000).

[133]W.J.Sun,F.J.Ma,andS.J.Zhuang,ScientiaGeologicaSinica 1,78(1983).

[134]D.Errandonea,R.S.Kumar,X.Ma,andC.Y.Tu,ToappearinJ.SolidState

Chem.(2008),doi:10.1016/j.jssc.2007.12.010;arxiv:0708.0028.

[135]V.Panchal,N.Garg,S.N.Achary,A.K.Tyagi,andS.M.Sharma,J.Phys.:

Condens.Matter 18 ,8241(2006).

[136]W.vanWestrenen,M.R.Frank,Y.Fei,J.M.Hanchar,R.J.Finch,andCh.Sh.

Zha,J.Am.Ceram.Soc. 88 ,1345(2005).

95 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[137]B.Manoun,R.T.Downs,andS.K.Saxena,AmericanMineralogist 91 ,1888

(2006).

[138]A.Jayaraman,G.A.Kourouklis,G.P.Espinosa,A.S.Cooper,andL.G.V.

Uitert,J.Phys.Chem.Solids 48 ,755(1987).

[139]X.Wang,I.Loa,K.Syassen,M.Hanfland,andB.Ferrand,Phys.Rev.B 70 ,

064109(2004)

[140]F.J.Manjón,S.Jandl,G.Riou,B.Ferrand,andK.Syassen,Phys.Rev.B 69 ,

165121(2004).

[141]Y.W.Long,L.X.Yang,S.J.You,Y.Yu,R.C.Yu,C.Q.Jin,andJ.Liu,J.

Phys.:Condens.Matter 18 ,2421(2006).

[142]M.Marquez,J.ContrerasGarcia,M.Flores,andJ.M.Recio,ToappearinJ.

Phys.Chem.Solids(2007).

[143]K.Kusaba,T.Yagi,M.Kikuchi,andY.Syono,J.Phys.Chem.Solids 47 ,675

(1986).

[144]M.Marques,M.Flores,J.M.Recio,L.Gerward,andJ.S.Olsen,Phys.Rev.B

74 ,014104(2006).

[145]R.O.Keeling,Jr.,ActaCrystal. 10 ,209(1967).

[146]A.Jayaraman,G.A.Kourouklis,and L.G.vanUitert,Phys.Rev. B 36 ,8547

(1987).

[147]J.W.Otto,J.K.Vassiliou,R.F.Porter,andA.L.Ruoff,Phys.Rev.B 44 ,9223

(1991);idem,J.Chem.Phys.Solids 53 ,631(1992).

[148] N. Chandrabhas, D. Victor, S. Muthu, A. K. Sood, H.L. Bhat, and A.

Jayaraman,J.Phys.Chem.Solids 53 ,959(1992).

[149] P. Gillet, J. Badro, V. Barrel, and P. F. McMillan, Phys. Rev. B 51 , 11262

(1995).

96 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[150]D.Errandonea,R.Boehler,andM.Ross,Phys.Rev.B 65 ,012108(2002).

[151]S.M.Sharma,N.Garg,andS.K.Sikka,Phys.Rev.B 62 ,8824(2000);idem,J.

Phys.:Condens.Matter 12 ,6683(2000).

[152]J.Badro,J.P.Itié,andA.Polian,Eur.Phys.J.B 1,265(1998).

[153]J.PellicerPorres, A.M.Saitta,A.Polian,J.P.Itié,andM.Hanfland,Nature

Materials 6,698(2007).

[154]J.W.E.Mariathasan,L.W.Finger,andR.M.Hazen,ActaCryst.B 41 ,179

(1984).

[155]A.Gibaud,A.Bulou,C.Launay,andJ.Nouet,J.Physique 48 ,625(1987).

[156]G.Brunton,ActaCrystal.B 25 ,2161(1969).

[157]S.F.Matar,J.M.Reau,L.Rabardel,J.Grannec,andP.Hagenmuller,Materials

ResearchBulletin 18 ,1485(1983).

[158]E.Sarantopoulou,Y.S.Raptis,E.Zouboulis,andC.Raptis,Phys.RevB 59 ,

4154(1999).

[159]S.Salaun,A.Bulou,J.Y.Gesland,andP.Simon,J.Phys.:Condens.Matter 12 ,

7395(2000).

[160]F.J.Manjon,S.Jandl,K.Syassen,andJ.Y.Gesland,Phys.Rev.B 64 ,235108

(2001).

[161]L. L.Shenxin,C.Yuanbin,Z.Xuyi,W.Lizhong,J.AlloysCompounds 255 ,1

(1997).

[162]J.LopezSolano,P.RodriguezHernandez,A.Muñoz,andF.J.Manjon,Phys.

Rev.B 73 ,094117(2006).

[163]Q.P.Wang,G.Ripault,andA.Bulou,PhaseTransitions 53 ,1(1995).

[164]H.Nyman,B.G.Hyde,andS.Andersson,ActaCrystal.B 40 ,441(1984).

[165]D.T.CromerandK.Herrington,J.Am.Chem.Soc. 77 ,4708(1955).

97 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[166]G.C.H.ChengandJ.Zussman,ActaCryst. 16 ,767(1963).

[167]H.J.Berthold,J.M.Molepo,andR.Wartchow,Z.Kristallog. 144 ,116(1976).

[168]V.P.Prakapenka,G.Shen,L.S.Dubrovinsky,M.L.Rivers,andS.R.Sutton,

J.Phys.Chem.Solids 65 ,1537(2004).

[169]T.Sasaki,J.Phys.:Condens.Matter 14 ,10557(2002).

[170]J.Haines,J.M.Leger,andO.Schulte,J.Phys.:Condens.Matter 8,1631(1996).

[171]W.Parrish,Amer.Mineral. 24 ,651(1939).

[172]M.TaylorandR.C.Ewing,ActaCrytal.B 34 ,1074(1978).

[173]D.Errandonea,F.J.Manjon,M.Somayazulu,andD.Häusserman,J.Sol.Stat.

Chem. 177 ,1087(2004).

[174]R.D.Shannon,ActaCrystal.A 32, 751(1976).

[175]R.D.Shannon,C.T.Prewitt,ActaCrystal.B 25 ,925(1969).

[176]R.D.Shannon,C.T.Prewitt,ActaCrystal.B 26 ,1045(1970).

[177] J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry: Principles of

Structure and Reactivity, 4thEdition(HarperCollins,NewYork,1993).

[178]A.Grzechnik,K.Friese,V.Dmitriev,H.P.Weber,J.Y.Gesland,andW.A.

Crichton,J.Phys.:Condens.Matter 17 ,763(2005).

[179]J.M.Abblet,C.C.Kao,S.R.Shieh,H.K.Mao,M.Croft,andT.A.Tyson,

HighPressureResearch 23 ,471(2003).

[180]R.S.Kumar,E.Kim,O.Tschauner,andA.L.Cornelius,Phys.Rev. 75 ,174110

(2007).

[181] A. Jayaraman, S. K. Sharma, S. Y. Wang, J. Raman Spectroscopy 29 , 305

(1998).

[182]L.Li,WenYu,andCh.Jin,Phys.Rev.B 73 ,174115(2006).

98 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[183]A.Waskowskaa,L.Gerward,J.S.Olsen,M.Maczka,T.Lis,A.Pietraszko,W.

Morgenrot,JournalofSolidStateChemistry 178 ,2222(2005).

[184]A.Jayaraman,S.Y.Wang,andSK.Sharma,SolidStateCommunications 93 ,

885(1995).

[185] F. J. Manjón, D. Errandonea, J. LópezSolano, P. RodríguezHernández, S.

Radescu,A.Mujica,A.Muñoz,N.Garro,J.PellicerPorres,A.Segura,Ch.Ferrer

Roca, R. S. Kumar, O. Tschauner, and G. Aquilanti, phys. stat. sol. (b) 244 , 295

(2007).

[186]G.L.W.HartandA.Zunger,Phys.Rev.B 62 ,13522(2000).

[187]M.J.HerreraCabrera,P.RodriguezHernandez,andA.Muñoz,phys.stat.sol.

(b) 235 ,446(2003).

[188]J.Ziolkowski,J.SolidStateChem. 57 ,269(1985).

[189]O.Muller,W.B.White,andR.Roy,Z.Kristallogr. 130 ,112(1969).

[190]B.O.LoopstraandH.M.Rietveld,ActaCrystal. 25 ,787(1969).

[191]H.P.Scott,Q.Williams,andE.Knittle,Phys.Rev.Lett. 88 ,015506(2002).

[192]L.E.Depero,L.Sangaletti,J.SolidStateChem. 129 ,82(1997).

[193]L.JianandC.M.Wayman,J.Am.Ceram.Soc.80 ,803(1997).

[194] L. D. Landau and E. M. Lifshitz, Statistical Physics Part I , in Course of

Theoretical Physics ,Vol.5,3 rd edition(PergamonPress,1994).

[195]J.L.Schlenker,G.V.Gibbs,andM.B.BoisenActaCrystal.A 34 ,52(1978).

[196]K.Aizu,J.Phys.Soc.Jpn. 28 ,706(1970).

[197]D.Errandonea,EurophysicsLetters 77 ,56001(2007).

[198]J.HainesandJ.M.Léger,Phys.Rev.B48 ,13344(1993).

[199]J.Simon,J.Banys,J.Hoentsch,G.Völkel,R.Böttcher,A.Hofstaetter,andA.

Scharmann,J.Phys.Condens.Matter 8,L359(1996).

99 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[200]G.Benyuan,M.Copic,andH.Z.Cummins,Phys.Rev.B 24 ,4098(1981).

[201]R.M.HazenandC.T.Prewitt,Am.Mineral. 62 ,309(1977).

[202]R.M.HazenandI.W.Finger,Am.Mineral. 64 ,196(1979).

[203]H.OzkanandJ.Jamieson,Phys.Chem.Miner.2,215(1978).

[204] K. Kirschbaum, A. Martin, D. A. Parish, and A. A. Pinkerton, J. Phys.:

Condens.Matter 11 ,4483(1999).

[205]D.F.Mullica,E.L.Sappenfield,M.M.Abraham,B.C.Chakoumakos,andL.

A.Boatner,Inorg.Chim.Acta 248 ,85(1996).

[206]R.M.Hazen,Science 216 ,991(1982).

[207]Y.Hiranoetal.,J.Am.Ceram.Soc. 85 ,1001(2002).

[208]A.Armbruster,J.Phys.Chem.Solids 37 ,321(1976).

[209]A.A.ColvilleandK.Staudhammer,Am.Mineral. 52 ,1877(1967).

[210] J. D. Bass, in Mineral Physics and Crystallography , edited by T. J. Ahrens

(AmericanGeophysicalUnion,Portland,OR,1995),p.45.

[211]R.F.S.Hearmon,in Numerical Data and Functional Relationship in Sciences

and Technology ,editedbyK.H.HellwegeandA.M.Hellwege,LandoltBörnstein,

NewSeries,GroupIII,Vol.11(SpringerVerlag,Berlin,1979),p.61.

[212]N.P.KobelevandB.S.Redkin,phys.statussolidi(a) 201 ,450(2004).

[213]R.J.C.Brown,R.M.LyndenBell,I.R.McDonald,andM.T.Dove,J.Phys.:

Condens.Matter 6,9895(1994).

[214]M.L.Cohen,Phys.Rev.B 32 ,7988(1985).

[215]D.Errandonea,A.Segura,V.Muñoz,andA.Chevy,Phys.Rev.B 60 ,15866

(1999).

[216] A. Segura, J.A. Sans, D. Errandonea, D. MartinezGarcia, and V. Fages,

AppliedPhys.Lett. 88 ,011910(2006)

100 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[217]S.Ves,K.Strossner,C.K.Kim,andM.Cardona,SolidStateCommun. 55 ,327

(1985).

[218]D.Errandonea,D.MartínezGarcía,R.LacombaPerales,J.RuizFuertes,and

A.Segura,AppliedPhys.Lett. 89 ,091913(2006).

[219]M.Itoh,N.Fujita,andY.Inabe,J.Phys.Soc.Japan 75 ,084705(2006).

[220]Y.Zhang,N.A.W.Holzwarth,andR.T.Williams,Phys.Rev.B 57 ,12738

(1998).

[221]M.Itoh,H.Yokota,M.Horimoto,M.Fujita,andY.Usuki,phys.stat.sol.(b)

231 ,595(2002).

[222]D.Christofilos,J.Arvantidis,E.Kampasakali,K.Papagelis,S.Ves,andG.A.

Kourouklis, Proceedings of the Joint 20th AIRAPT-43th EHPRG Conference ,edited byE.DinjusandN.Dahmen(ForschungszentrumKarlsruhe,Karlsruhe,2005),T10

P99.

[223]R.LacombaPerales,privatecommunication.

[224]F.RiveraLopez,I.R.Martin,I.DaSilva,C.GonzalezSilgo,U.R.Rodriguez

Mendoza, V. Lavin, F. Lahoz, S. M. DiazGonzalez, M. L. MartinezSarrion, L.

Mestres,andJ.FernandezUrban,HighPres.Research 26 ,355(2006).

[225] D. Errandonea, C. Y. Tu, G.Jia, I. R. Martın, U. R.RodrıguezMendoza, F.

Lahoz, M. E. Torres, and V. Lavın, Journal of Alloys and Compounds 451 , 212

(2008).

[226]L.P.Li,Y.G.Su,andG.S.Li,Appl.Phys.Letters 90 ,054105(2007).

[227]A.J.Rondinone,M.Pawel,D.Travaglini,S.Mahurin,andS.Dai,J.Colloid

Interf.Science 306 ,281(2007).

[228] U. A. Glasmacher, M. Lang, H. Keppler, F. Langenhorst, R. Neumann, D.

Schardt,C.Trautmann,andG.A.Wagner,Phys.RevLetters 96 ,195701(2006).

101 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[229]I.Farnan,H.Cho,andW.J.Weber,Nature 445 ,190(2007).

[230]D.ErrandoneaandA.Vegas,tobepublished.

[231]S.J.LeeandW.M.Kriver,J.Am.Ceram.Soc. 82 ,767(2001).

[232]G.M.Rignanese,X.Rocquefelte,X.Gonze,andA.Pascuarello,Int.Journal

QuantumChem. 101 ,793(2005).

[233]J.Haines,C.Chateau,J.M.Léger,C.Bogicevic,S.Hull,D.D.Klug,andJ.S.

Tse,Phys.Rev.Lett. 91 ,015503(2003).

[234]G.K.Choi,J.R.Kim,S.H.Yoon,andK.S.Hong,J.Europ.Ceram.Soc. 27 ,

3063(2007).

[235]M.A.Santos,E.Orhan,M.A.deMaurera,L.G.P.Simoes,A.G.Souza,P.S.

Pizani,E.R.Leite,J.A.Varela,J.Andres,A.Beltran,andE.LongoE,Phys.Rev.B

75 ,165105(2007).

[236]N.H.deLeeuwandT.G.Cooper,Phys.Chem.Chem.Phys. 5,433(2003).

[237]K.Trachenko,V.V.Brazhkin,O.B.Tsiok,M.T.Dove,andE.K.H.Salje,

Phys.Rev.Letters 98 ,135502(2007).

[238]A.Wittmann,T.Kenkmann,R.T.Schmitt,andD.Stoffler,Meteorit.&Planet.

Science 41 ,433(2006).

[239]B.P.Glass,S.B.Liu,andP.B.Leavans,Amer.Mineral. 87 ,562(2002).

[240]Z.F.Zhao,Y.F.Zheng,R.X.Chen,Q.X.Xia,andY.B.Wu,Geochimicaet

CosmochimicaActa 71 ,5244(2007).

[241]M.Touboul,S.Denis,andL.Seguin,Eur.J.SolidStateInorg.Chem. 32 ,577

(1995).

[242]B.C.FrazerandP.J.Brown,Phys.Rev.A 125 ,1283(1962).

[243]T.A.Kurova,andV.B.Aleksandrov,DokladyAkademiiNaukSSSR 201 ,1095

(1971).

102 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

[244]R.J.Cava,andR.S.Roth,J.SolidStateChem. 36 ,139(1981).

[245]P.RoegnerandK.J.Range,Z.Natur.B.Anorg.Chem.Org.Chem. 48 ,685

(1993).

[246]K.J.Range,P.Roegner,A.M.Heyns,andL.C.Prinsloo,Z.Natur.B.Anorg.

Chem.Org.Chem. 47 ,1513(1992).

[247]G.Collotti,L.Conti,andM.Zocchi,ActaCryst. 12 ,416(1959).

[248]S.Quareni,andR.dePieri,RendicontiSoc.Miner.Italiana 20 ,235(1964).

[249]A.Ennaciri,A.Kahn,andD.Michel,J.LessCommonMetals 124 ,105(1986).

[250]R.Mittal,S.L.Chaplot,N.Choudhury,andC.K.Loong,J.Phys.:Condens.

Matter 19 ,446202(2007).

[251] R. Mittal, A. B. Garg, V. Vijayakumar, S. N. Achary, A. K. Tyagi, B. K.

Godwal, E. Busetto, A. Lausi, and S. L. Chaplot, J. Phys.: Condens. Matter 20 ,

075223(2008).

[252] E. ClimentPascual,J. Romero de Paz,J.M. GallardoAmores, and R.Saez

Puche,SolidStateSciences 9,574(2007).

[253]D.Errandonea,R.Boehler,andM.Ross,Phys.Rev.Lett 85 ,3444(2000).

103 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Table I: StructuralparametersofthescheeliteCaWO 4[60].

Site x y z

Ca 4b 0 0.25 0.625

W 4a 0 0.25 0.125

O 16f 0.2414 0.0993 0.0394

Table II: Equilibriumvolume,bulkmodulus,andfirstpressurederivateofthebulk modulusallatnormalconditionsfordifferentscheelitestructuredAWO 4compounds.

Thesevalueswerefittedfromexperimentalvolumepressuredata.

Compound V0 B0 B0’

a 3 CaWO 4 312(1)Å 74(7)GPa 5.6(9)

a 3 SrWO 4 347.4(9)Å 63(7)GPa 5.2(9)

b 3 EuWO 4 348.9(8)Å 65(6)GPa 4.6(9)

c 3 PbWO 4 357.8(6)Å 66(5)GPa 5.6(9)

c 3 BaWO 4 402.8(9)Å 52(5)GPa 5(1) aReference[17], bReference[32],and cReference[19]

104 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Table III : Frequency,pressurecoefficient,Grüneisenparameter,andsymmetryoftheRamanmodesobservedinscheelitetypeAWO 4(A=Ca,

Sr, Ba, Pb) at room temperature, as obtained from linear fits to experimental data. Grüneisen parameters, γ = Β 0/ω(0) d ω/ dP , have been calculatedwiththezeropressurebulkmoduli,B 0,reportedinTableII. a b c d CaWO 4 SrWO 4 BaWO 4 PbWO 4 Peak ω(0) dω/dP γ ω(0) dω/dP γ ω(0) dω/dP γ ω(0) dω/dP γ /mode cm 1 cm 1/GPa cm 1 cm 1/GPa cm 1 cm 1/GPa cm 1 cm 1/GPa T(B g) 84 0.4 0.35 75 0.4 0.34 63 0.8 0.67 58 1.1 1.30

T(E g) 116 1.7 1.08 102 1.3 0.80 74 1.0 0.73 65 1.8 1.90 T(B g) 227 4.7 1.53 171 3.4 1.25 133 4.1 1.58 77 3.3 2.80 T(E g) 196 3.7 1.40 135 2.9 1.35 101 3.3 1.70 90 2.3 1.60 R(A g) 212 3.8 1.33 190 4.4 1.46 150 4.2 1.47 178 3.3 1.20 R(E g) 276 7.0 1.88 238 6.8 1.80 191 6.3 1.71 193 4.2 1.40 ν2(A g) 334 2.5 0.55 337 3.3 0.62 331 2.5 0.40 323 1.9 0.40 ν2(B g) 334 2.5 0.55 337 3.3 0.62 332 3.0 0.46 328 2.1 0.40

ν4(B g) 402 4.1 0.75 371 4.1 0.70 344 2.0 0.30 357 2.8 0.50

ν4(E g) 406 4.6 0.84 380 4.6 0.76 352 3.4 0.50 362 2.7 0.50 ν3(E g) 797 3.0 0.28 799 3.0 0.24 795 3.2 0.21 752 2.4 0.20

ν3(B g) 838 1.9 0.17 837 2.1 0.16 831 2.0 0.12 766 0.9 0.08

ν1(A g) 911 1.5 0.12 921 2.2 0.15 926 2.7 0.15 906 0.8 0.06 aRef.51, b Ref.26, cRef.28, dRef.29.

105

ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Table IV: ElasticconstantsofCaWO 4.DatatakenfromRef.[96].

C11 C33 C44 C66 C12 C13

145GPa 127GPa 33.5GPa 39.9GPa 60GPa 41GPa

Table V: Calculated equilibrium volume, bulk modulus, and first pressure derivate of the bulkmodulusallatnormalconditionsfordifferentscheelitestructuredAWO 4compounds.

Compound V0 B0 B0’

a 3 CaWO 4 318.3Å 72GPa 4.3

a 3 SrWO 4 362.2Å 62GPa 4.9

b 3 PbWO 4 376Å 66GPa 4.7

b 3 BaWO 4 402Å 52GPa 5

aReference[17]and bReference[19]

107 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Table VI: StructuralparametersofthefergusonitetypeCaWO 4.(a)Ref.[14],P=11.2GPa, a=5.0706(5)Å, b=10.8528(8)Å, c=5.0812(9)Å,andβ=90.082(13)º,pressuremedium: helium.(b)Ref.[17],P=11.3GPa, a=5.069(2)Å, b=10.851(5)Å, c=5.081(7)Å,andβ=

90.091(9)º,pressuremedium:siliconeoil.

(a) Site x y z

Ca 4e 0.25 0.6098(10) 0

W 4e 0.25 0.1320(5) 0

O1 8f 0.9214(44) 0.9661(17) 0.2327(29)

O2 8f 0.4807(23) 0.2164(16) 0.8529(51)

(b) Site x y z

Ca 4e 0.25 0.6100(8) 0

W 4e 0.25 0.1325(3) 0

O1 8f 0.9309(39) 0.9684(23) 0.2421(24)

O2 8f 0.4850(35) 0.2193(31) 0.8637(37)

108

ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008 Table VII: Frequency, pressure coefficient, Grüneisen parameter,andsymmetryoftheRamanactivemodesobservedin the highpressure fergusonite phase in AWO 4 (A= Ca, Sr, Ba, Pb), as obtained from linear fits to experimental data. Raman frequencies of fergusonitelike

HgWO 4arealsoshownforcomparison. a b c d e CaWO 4 (15GPa) SrWO 4 (15GPa) BaWO 4 (7.5GPa) PbWO 4(9GPa) HgWO 4(1bar) Peak ω dω/dP ω dω/dP ω dω/dP ω dω/dP ω /mode cm 1 cm 1/GPa cm 1 cm 1/GPa cm 1 cm 1/GPa cm 1 cm 1/GPa cm 1 T(B g) 120 2.2 110 3.4 37.5 0.6 44 0.8

T(A g) 59 0.8 53 0.4 T(B g) 67 0.6 85 1.4 T(B g) 180 2.0 93 2.2 136 3.7 T(A g) 225 1.8 180 2.5 118 1.2 144 5.5

T(B g) 250 2.0 220 2.0 161 1.8 158 4.0 R(B g) 270 2.7 192 3.3 200

R(B g)288 1.8 235 R(A g) 367 1.6 260 2.7 261 1.9 285 ν2(A g) 368 3.1 361 2.5 338 320 1.9 300 ν2(A g) 392 2.7 400 2.5 352 1.7 335

ν4(A g) 460 3.0 460 1.0 396 0.9 380

ν4(B g) 477 3.4 480 3.0 446 3.2 515

ν4(B g) 500 5.0 500 6.5 471 5.6 540 ν3(A g) 800 1.2 790 0.0 826 1.8 693 1.0 705 ν3(B g) 839 4.1 725 3.3 815

ν3(B g) 865 3.3 860 3.9 859 0.5 779 3.6 850

ν1(A g) 950 3.1 950 2.9 940 0.5 872 0.9 930 aObtainedfromRef.51, bObtainedfromRef.26, c Ref.28, dRef.29, eRef.105. 110 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Table VIII: Calculatedstructural parameters of BaWO 4II phase at 9.3 GPa. Space group

P2 1/n ,Z=8, a=12.7173Å, b=6.9816Å, c=7.4357Å,andβ=91.22º.Datareproduced

fromRef.[19].

Site x y z

Ba 1 4e 0.1617 0.6555 0.1633

Ba 2 4e 0.1349 0.9574 0.6316

W1 4e 0.0825 0.1633 0.0836

W2 4e 0.0912 0.4609 0.6497

O1 4e 0.1078 0.0279 0.2876

O2 4e 0.1845 0.6029 0.7777

O3 4e 0.0490 0.6510 0.4746

O4 4e 0.2128 0.2676 0.0618

O5 4e 0.0579 0.2693 0.8186

O6 4e 0.1783 0.3319 0.5103

O7 4e 0.0198 0.3756 0.1829

O8 4e 0.0789 0.9201 0.9539

111 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Table IX: PhasetransitionpressuresandBX 4/Aratiosforsomescheelitecompounds.

Compound BX 4/Aratio PT(GPa) Reference

KIO 4 1.39 6.5 [58]

RbIO 4 1.25 5.3 [59]

AgReO 4 1.90 13 ±1 [147]

TlReO 4 1.84 10 [179]

KReO 4 1.45 7.5 [56]

RbReO 4 1.30 1.6 [56]

CaWO 4 1.89 11 ±1 [14,17]

SrWO 4 1.76 10.5 ±2 [17,26,51]

EuWO 4 1.76 8.5 ±1 [32]

PbWO 4 1.66 6.5 ±2.5 [19,29,52]

BaWO 4 1.47 7±0.5 [15,19,28,51]

CdMoO 4 2.03 12 [67]

CaMoO 4 1.88 10 ±1.5 [16,85]

SrMoO 4 1.74 12.2 ±1 [66,134]

PbMoO 4 1.64 6.5 ±3.3 [43,52]

BaMoO 4 1.46 5.8 [20,27]

CaZnF 4 1.97 10 [159]

YLiF 4 2.11 11 ±1.1 [80]

GdLiF 4 2.01 11 [117]

LuLiF 4 1.93 10.7 [178]

NaAlH 4 2.40 14 [180]

NaSm(WO 4)2 1.88 10 [181]

NaTb(WO 4)2 1.90 10 [181]

NaHo(WO 4)2 1.93 10 [181]

112 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Table X: Summaryofthedataplottedin Figure 18 .Thestructure,AObonddistance,cation formalcharge,andbulkmodulusaregiven.

cation ABO Space meanAObond B0 4 formal Reference compound Group distance[Å] charge [GPa]

HfGeO 4 I4 1/a 2.196 4 242(6) [135]

ZrGeO 4 I4 1/a 2.203 4 238(6) [135]

ZrSiO 4 I4 1/a 2.243 4 230(18) [144]

ZrSiO 4 I4 1/amd 2.198 4 215(15) [136,144,202,203]

LaNbO 4 I4 1/a 2.505 3 111(3) [154]

YVO 4 I4 1/a 2.387 3 138(9) [139]

TbVO 4 I4 1/amd 2.369 3 149(5) [204]

BiVO 4 I4 1/a 2.350 3 150(5) [206]

DyVO 4 I4 1/amd 2.354 3 160(5) [205]

YCrO 4 I4 1/amd 2.391 3 135(5) [116]

YVO 4 I4 1/amd 2.348 3 130(3) [139]

ErVO 4 I41/amd 2.341 3 136(9) [207]

LuPO 4 I4 1/amd 2.306 3 166(9) [208]

YLiF 4 I4 1/a 3.044 3 81(6) [80]

BaSO 4 Pnma 2.879 2 58(5) [209,210]

BaWO 4 I4 1/a 2.678 2 57(4) [15,19]

BaMoO 4 I4 1/a 2.679 2 59(6) [20]

PbWO 4 I4 1/a 2.579 2 64(2) [19,21,60]

PbMoO 4 I4 1/a 2.576 2 64(2) [60]

SrWO 4 I4 1/a 2.557 2 63(7) [17]

EuWO 4 I4 1/a 2.557 2 71(6) [32]

SrMoO 4 I4 1/a 2.556 2 73(5) [134,211]

NaY(WO 4)2 I4 1/a 2.478 2 77(8) [212]

CaMoO 4 I4 1/a 2.458 2 82(7) [16,60]

CaWO 4 I4 1/a 2.457 2 75(7) [14,17,60,68,210]

SrSO 4 Pnma 2.452 2 82(5) [211]

CdMoO 4 I4 1/a 2.419 2 104(2) [60]

ZnWO 4 P2/c 2.112 2 140 [70]

CdWO 4 P2/c 2.197 2 120(8) [62]

KReO 4 I4 1/a 2.791 1 18(6) [213]

TlReO 4 Pnma 2.765 1 26(4) [57]

AgReO 4 I4 1/a 2.524 1 31(6) [147]

NaAlH 4 I4 1/a 2.850 1 27(4) [180]

113 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure Captions

Figure 1: Schematic view of the scheelite structure. The drawing was done using the

structural parameters of CaWO 4 given in Table I . Large circles represent the Ca atoms,

middlesizecirclescorrespondtotheWatoms,andthesmallcirclesaretheOatoms.The

unitcell,CaObonds,andWObondsarealsoshowntogetherwithaWO 4tetrahedronanda

CaO 8dodecahedron.

Figure 2: Selected xray powder patterns of CaWO 4 at different pressures. Differences between the spectra collected at 9.7 GPa and 11.3 GPa illustrate the occurrence of the

scheelitetofergusonitetransition.

Figure 3: Pressuredependenceofthelatticeparameters,volumeandaxialratioofCaWO 4

andSrWO 4.Solidsquares[14,18],circles[17],anddiamonds[68]correspondtodataforthe

scheelitephaseandopencircles[17]andsquares[14,18]todataforthefergusonitephase.

The stars [71] and crosses [44, 81] represent atmospheric pressure data. The solid lines

represent the EOS described in the text and a fit to the pressure dependence of the axial

ratios.

Figure 4: WO and PbO distances in scheelite and fergusonite PbWO 4. Theoretical WO

(PbO) distances are represented by solid and empty squares (circles) in the scheelite and

fergusonitephases,respectively.ExperimentalWO(PbO)distancesarerepresentedbysolid

triangles (diamonds). The dashed line indicates the onset of the scheelitetofergusonite

transition.ThedottedlineindicatesthepressurewheretheWOcoordinationbecomes4+2.

114 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 5: Experimental XANES spectra (W L 3edge) of PbWO 4 at different pressures. A

spectrumcollectedonpressurereleaseismarkedwithd.Theanalysisofthespectrarevealsa

coordinationchangeassociatedwithapressureinducedphasetransitionbetween9GPaand

10.5GPa.SubtlechangesinthespectrasuggestasecondphasetransitioninPbWO 4at16.7

GPa.FigurereproducedfromRef.[19].

Figure 6: RamanspectrainPbWO 4atthreedifferentpressures.Arrowsshowthemainpeaks

ofthescheelite,fergusoniteandPbWO 4IIIstructures.Thedashedlineindicatestheposition

ofaplasmalineusedforspectralcalibration.TheasteriskindicatesthepositionofaRaman

modearisingfromthepressuretransmittingmedium.

Figure 7: Totalenergyversusvolume ab initio calculationsforBaWO 4.Differentcandidate

structuresareindicatedintheplot.Theinsetextendsthepressurerangetotheregionwhere

theBaWO 4IIstructurebecomesunstable.FigurereproducedfromRef.[19].

Figure 8: ADXRDpatternofCaWO 4at11.3GPawhichhasbeenassignedtothefergusonite

structure.Thebackgroundwassubtracted.Blacksymbols:experimentalobservations,solid

line:refinedmodel,anddottedline:thedifferencebetweenthemeasureddataandtherefined profile.Thebarsindicatethecalculatedpositionsofthereflections.

Figure 9: Schematic view of fergusonite PbWO 4 at two different pressures. In order to

illustrate the structural distortion induced by pressure, figure (a) shows the fergusonite

structure at 7.9 GPa where W is tetrahedrally coordinated while figure (b) shows the

fergusonite structure at 9.5 GPa where W is octahedrally coordinated [19]. Large circles

representthePbatoms,middlesizecirclescorrespondtotheWatoms,andthesmallcircles

115 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

aretheOatoms.Theunitcell,PbObonds,andWObondsarealsoshowntogetherwiththe

WOandPbOpolyhedra.

Figure 10: PressuredependenceoftheRamanactivemodesinthescheelite,fergusonite,and

PbWO 4–IIIphasesofPbWO 4.

Figure11: ADXRDpatternofBaWO 4at10.9GPawhichhasbeenassignedtotheBaWO 4II

structure.Thebackgroundwassubtracted.Blacksymbols:experimentalobservations,solid

line:refinedmodel,anddottedline:thedifferencebetweenthemeasureddataandtherefined profile.Thebarsindicatethecalculatedpositionsofthereflections.

Figure 12: SchematicviewofthestructureoftheBaWO 4IItypephase.Thedrawingwas

doneusingthestructuralparametersofBaWO 4at9.3GPa givenin Table VIII .Largecircles

representtheBaatoms,middlesizecirclescorrespondtotheWatoms,andthesmallcircles

aretheOatoms.Theunitcell,BaObonds,andWObondsarealsoshowntogetherwiththe

WOandBaOpolyhedra.

Figure 13: SchematicHPHTphasediagramofBaWO 4.ThesolidlinewastakenfromRef.

[46] and the room temperature transition pressures from Ref. [19]. The dotted line is the

meltingcurveandthedottedlinespostulatedphaseboundaries.TheexistenceofanewHP

HTphaseisalsoindicated.

Figure 14: PhasetransitionpressureinseveralscheelitesasafunctionoftheBX 4/Aratio.

Thesymbolscorrespondtothedatasummarizedin Table IX ,thesolidlinescorrespondto

thefittedlinearrelationandtoitslowerandhigherdeviations.

116 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 15: Updated Bastide’s diagram for ABX 4 compounds. The dashed lines show the

evolutionoftheionicradiiratioswithincreasingpressureinanumberofscheelitestructured

compounds.

Figure 16: EvolutionofstructureswithincreasingpressureforABX 4compoundsdepending

on their r A/r X ratios. Arrows show the most likely phase transitions to occur in ABX 4

compounds.

Figure 17: Correlationbetweenthespontaneousstrain εsandtheLandauorderparameter η’

inCaWO 4.

Figure 18: ValuesoftheambientpressurebulkmodulusofABO 4scheeliteandscheelite

related compounds plotted against the value of the cation charge density of the AO 8 polyhedra.

Figure 19: Opticalabsorption spectra of scheelite PbWO 4 single crystals for different pressures.

Figure 20: PressuredependenceoftheabsorptionedgeofPbWO 4.

117 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 1

118 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 2

119 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 3

120 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 4

3.4 PbWO 4

3.2 W-O

3.0 fergusonite

2.8 Pb-O 2.6

2.4

2.2 scheelite Interatomic distances (Å) distances Interatomic 2.0 W-O 1.8

0 2 4 6 8 10 12 14

Pressure (GPa)

121 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 5

122 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 6

PbWO 4

13.7 GPa *

PbWO 4-III

!

9.0 GPa

*

fergusonite ν T(B g) 1(A g) Raman intensity (arb. units) (arb. intensity Raman T(E ) ν g 2(A g+B g) R(A g) ν ν ν (E ) 3(B g) 4(B g+E g) 3 g R(E g) 0.3 GPa * scheelite 100 300 500 700 900 Raman shift (cm -1 )

123 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 7

124 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 8

125 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 9

126 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 10

1000

ν 1(A g) 900

PbWO 4-III ν 800 3(B g)

ν 3(E g)

) 700 -1

600 fergusonite 500 scheelite ν 4(E g) 400 ν 4(E g)

ν (A ) Raman frequency (cm frequency Raman 300 2 g ν 2(B g)

R(E ) 200 g

R(A g) T(B g) T(E ) 100 g

T(B ) g T(E ) 0 g 0 2 4 6 8 10 12 14 16 Pressure (GPa)

127 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 11

128 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 12

129 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 13

130 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 14

131 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 15

132 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 16

133 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 17

134 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 18

135 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 19

136 ToappearinProgressinMaterialsSciences–Acceptedforpublication29/1/2008

Figure 20

137