Lys05 – a Promising Autophagy Inhibitor in the Radiosensitization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected]. -
Epigenome-Wide Association of Father's Smoking
Environmental Epigenetics, 2019, 1–10 doi: 10.1093/eep/dvz023 Research article RESEARCH ARTICLE Epigenome-wide association of father’s smoking with offspring DNA methylation: a hypothesis-generating study G.T. Mørkve Knudsen1,2,*,†, F.I. Rezwan3,†, A. Johannessen2,4, S.M. Skulstad2, R.J. Bertelsen1, F.G. Real1, S. Krauss-Etschmann5,6, V. Patil7, D. Jarvis8, S.H. Arshad9,10, J.W. Holloway3,‡ and C. Svanes2,4,‡ 1Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; 2Department of Occupational Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; 3Human Genetics and Genomic Medicine, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; 4Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, N-5018 Bergen, Norway; 5Division of Experimental Asthma Research, Research Center Borstel, 23845 Borstel, Germany; 6German Center for Lung Research (DZL) and Institute of Experimental Medicine, Christian- Albrechts University of Kiel, 24118 Kiel, Germany; 7David Hide Asthma and Allergy Research Centre, St. Mary’s Hospital, Isle of Wight PO30 5TG, UK; 8Faculty of Medicine, National Heart & Lung Institute, Imperial College, London SW3 6LY, UK; 9Clinical and Experimental Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; 10NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, UK *Correspondence address. Haukanesvegen 260, N-5650 Tysse, Norway; Tel: þ47 977 98 147; E-mail: [email protected] and [email protected] †Equal first authors. ‡Equal last authors. Managing Editor: Moshe Szyf Abstract Epidemiological studies suggest that father’s smoking might influence their future children’s health, but few studies have addressed whether paternal line effects might be related to altered DNA methylation patterns in the offspring. -
Sensing and Relayaing of the Autophagic Signal by the ULK1
SENSING AND RELAYING THE AUTOPHAGIC SIGNAL BY THE ULK1 KINASE COMPLEX by Cindy Puente A Dissertation Presented to the Faculty of the Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy New York, NY May, 2016 __________________________ __________________________ Xuejun Jiang, PhD Date Dissertation Mentor Copyright © 2016 by Cindy Puente To my husband, son, family and friends for their indefinite love and support iii ABSTRACT Autophagy is a conserved catabolic process that utilizes a defined series of membrane trafficking events to generate a double-membrane vesicle termed the autophagosome, which matures by fusing to the lysosome. Subsequently, the lysosome facilitates the degradation and recycling of the cytoplasmic cargo. Autophagy plays a vital role in maintaining cellular homeostasis, especially under stressful conditions, such as nutrient starvation. As such, it is implicated in a plethora of human diseases, particularly age-related conditions such as neurodegenerative disorders. The long-term goals of this proposal were to understand the upstream molecular mechanisms that regulate the induction of mammalian autophagy and understand how this signal is transduced to the downstream, core machinery of the pathway. In yeast, the upstream signals that modulate the induction of starvation- induced autophagy are clearly defined. The nutrient-sensing kinase Tor inhibits the activation of autophagy by regulating the formation of the Atg1-Atg13-Atg17 complex, through hyper-phosphorylation of Atg13. However, in mammals, the homologous complex ULK1-ATG13-FIP200 is constitutively formed. As such, the molecular mechanism by which mTOR regulates mammalian autophagy is unknown. -
Xio Is a Component of the Drosophila Sex Determination Pathway and RNA N6-Methyladenosine Methyltransferase Complex
Xio is a component of the Drosophila sex determination pathway and RNA N6-methyladenosine methyltransferase complex Jian Guoa,b, Hong-Wen Tangc, Jing Lia,b, Norbert Perrimonc,d,1, and Dong Yana,1 aKey Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China; bUniversity of Chinese Academy of Sciences, 100049 Beijing, China; cDepartment of Genetics, Harvard Medical School, Boston, MA 02115; and dHoward Hughes Medical Institute, Harvard Medical School, Boston, MA 02115 Contributed by Norbert Perrimon, February 14, 2018 (sent for review December 6, 2017; reviewed by James W. Erickson and Helen Salz) N6-methyladenosine (m6A), the most abundant chemical modifica- reader YT521-B, are required for Drosophila sex determination 6 tion in eukaryotic mRNA, has been implicated in Drosophila sex and Sxl splicing regulation. Further, m A modification sites have determination by modifying Sex-lethal (Sxl) pre-mRNA and facili- been mapped to Sxl introns, thus facilitating Sxl pre-mRNA al- 6 tating its alternative splicing. Here, we identify a sex determina- ternative splicing. Importantly, m A methylation is required in CG7358 xio human dosage compensation by modifying the long noncoding tion gene, , and rename it according to its loss-of- 6 function female-to-male transformation phenotype. xio encodes RNA XIST,suggestingthatmA-mediated gene regulation is an ancient -
Rule Mining on Microrna Expression Profiles For
Faculty of Engineering and Information Technology University of Technology, Sydney Rule Mining on MicroRNA Expression Profiles for Human Disease Understanding A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Renhua Song July 2016 CERTIFICATE OF AUTHORSHIP/ORIGINALITY I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Signature of Candidate i Acknowledgments First, and foremost, I would like to express my gratitude to my chief supervisor, Assoc. Prof. Jinyan Li, and to my co-supervisors Assoc. Prof. Paul Kennedy and Assoc. Prof. Daniel Catchpoole. I am extremely grateful for all the advice and guidance so unselfishly given to me over the last three and half years by these three distinguished academics. This research would not have been possible without their high order supervision, support, assistance and leadership. The wonderful support and assistance provided by many people during this research is very much appreciated by me and my family. I am very grateful for the help that I received from all of these people but there are some special individuals that I must thank by name. A very sincere thank you is definitely owed to my loving husband Jing Liu, not only for his tremendous support during the last three and half years, but also his unfailing and often sorely tested patience. -
Coxsackievirus Infection Induces a Non-Canonical Autophagy Independent of the ULK and PI3K Complexes
www.nature.com/scientificreports OPEN Coxsackievirus infection induces a non‑canonical autophagy independent of the ULK and PI3K complexes Yasir Mohamud1,2, Junyan Shi1,2, Hui Tang1,3, Pinhao Xiang1,2, Yuan Chao Xue1,2, Huitao Liu1,2, Chen Seng Ng1,2 & Honglin Luo1,2* Coxsackievirus B3 (CVB3) is a single‑stranded positive RNA virus that usurps cellular machinery, including the evolutionarily anti‑viral autophagy pathway, for productive infections. Despite the emergence of double‑membraned autophagosome‑like vesicles during CVB3 infection, very little is known about the mechanism of autophagy initiation. In this study, we investigated the role of established autophagy factors in the initiation of CVB3‑induced autophagy. Using siRNA‑mediated gene‑silencing and CRISPR‑Cas9‑based gene‑editing in culture cells, we discovered that CVB3 bypasses the ULK1/2 and PI3K complexes to trigger autophagy. Moreover, we found that CVB3‑ induced LC3 lipidation occurred independent of WIPI2 and the transmembrane protein ATG9 but required components of the late‑stage ubiquitin‑like ATG conjugation system including ATG5 and ATG16L1. Remarkably, we showed the canonical autophagy factor ULK1 was cleaved through the catalytic activity of the viral proteinase 3C. Mutagenesis experiments identifed the cleavage site of ULK1 after Q524, which separates its N‑terminal kinase domain from C‑terminal substrate binding domain. Finally, we uncovered PI4KIIIβ (a PI4P kinase), but not PI3P or PI5P kinases as requisites for CVB3‑induced LC3 lipidation. Taken together, our studies reveal that CVB3 initiates a non‑canonical form of autophagy that bypasses ULK1/2 and PI3K signaling pathways to ultimately converge on PI4KIIIβ‑ and ATG5–ATG12–ATG16L1 machinery. -
Genetic and Neurodevelopmental Spectrum Of
Cognitive and behavioural genetics J Med Genet: first published as 10.1136/jmedgenet-2015-103451 on 17 March 2016. Downloaded from ORIGINAL ARTICLE Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy Cyril Mignot,1,2,3 Celina von Stülpnagel,4,5 Caroline Nava,1,6 Dorothée Ville,7 Damien Sanlaville,8,9,10 Gaetan Lesca,8,9,10 Agnès Rastetter,6 Benoit Gachet,6 Yannick Marie,6 G Christoph Korenke,11 Ingo Borggraefe,12 Dorota Hoffmann-Zacharska,13 Elżbieta Szczepanik,14 Mariola Rudzka-Dybała,14 Uluç Yiş,15 Hande Çağlayan,16 Arnaud Isapof,17 Isabelle Marey,1 Eleni Panagiotakaki,18 Christian Korff,19 Eva Rossier,20 Angelika Riess,21 Stefanie Beck-Woedl,21 Anita Rauch,22 Christiane Zweier,23 Juliane Hoyer,23 André Reis,23 Mikhail Mironov,24 Maria Bobylova,24 Konstantin Mukhin,24 Laura Hernandez-Hernandez,25 Bridget Maher,25 Sanjay Sisodiya,25 Marius Kuhn,26 Dieter Glaeser,26 Sarah Weckhuysen,6,27 Candace T Myers,28 Heather C Mefford,28 Konstanze Hörtnagel,29 Saskia Biskup,29 EuroEPINOMICS-RES MAE working group, Johannes R Lemke,30 Delphine Héron,1,2,3,4 Gerhard Kluger,4,5 Christel Depienne1,6 ▸ Additional material is ABSTRACT INTRODUCTION published online only. To view Objective We aimed to delineate the neurodevelopmental The human SYNGAP1 gene on chromosome please visit the journal online (http://dx.doi.org/10.1136/ spectrum associated with SYNGAP1 mutations and to 6p21.3 encodes the synaptic RAS-GTPase-activating jmedgenet-2015-103451). investigate genotype–phenotype correlations. protein 1, a protein of the post-synaptic density Methods We sequenced the exome or screened the exons (PSD) of glutamatergic neurons.12SYNGAP1 inter- For numbered affiliations see end of article. -
Mutational Landscape Differences Between Young-Onset and Older-Onset Breast Cancer Patients Nicole E
Mealey et al. BMC Cancer (2020) 20:212 https://doi.org/10.1186/s12885-020-6684-z RESEARCH ARTICLE Open Access Mutational landscape differences between young-onset and older-onset breast cancer patients Nicole E. Mealey1 , Dylan E. O’Sullivan2 , Joy Pader3 , Yibing Ruan3 , Edwin Wang4 , May Lynn Quan1,5,6 and Darren R. Brenner1,3,5* Abstract Background: The incidence of breast cancer among young women (aged ≤40 years) has increased in North America and Europe. Fewer than 10% of cases among young women are attributable to inherited BRCA1 or BRCA2 mutations, suggesting an important role for somatic mutations. This study investigated genomic differences between young- and older-onset breast tumours. Methods: In this study we characterized the mutational landscape of 89 young-onset breast tumours (≤40 years) and examined differences with 949 older-onset tumours (> 40 years) using data from The Cancer Genome Atlas. We examined mutated genes, mutational load, and types of mutations. We used complementary R packages “deconstructSigs” and “SomaticSignatures” to extract mutational signatures. A recursively partitioned mixture model was used to identify whether combinations of mutational signatures were related to age of onset. Results: Older patients had a higher proportion of mutations in PIK3CA, CDH1, and MAP3K1 genes, while young- onset patients had a higher proportion of mutations in GATA3 and CTNNB1. Mutational load was lower for young- onset tumours, and a higher proportion of these mutations were C > A mutations, but a lower proportion were C > T mutations compared to older-onset tumours. The most common mutational signatures identified in both age groups were signatures 1 and 3 from the COSMIC database. -
Ck1δ Over-Expressing Mice Display ADHD-Like Behaviors, Frontostriatal Neuronal Abnormalities and Altered Expressions of ADHD-Candidate Genes
Molecular Psychiatry (2020) 25:3322–3336 https://doi.org/10.1038/s41380-018-0233-z ARTICLE CK1δ over-expressing mice display ADHD-like behaviors, frontostriatal neuronal abnormalities and altered expressions of ADHD-candidate genes 1 1 1 2 1 1 1 Mingming Zhou ● Jodi Gresack ● Jia Cheng ● Kunihiro Uryu ● Lars Brichta ● Paul Greengard ● Marc Flajolet Received: 8 November 2017 / Revised: 4 July 2018 / Accepted: 18 July 2018 / Published online: 19 October 2018 © Springer Nature Limited 2018 Abstract The cognitive mechanisms underlying attention-deficit hyperactivity disorder (ADHD), a highly heritable disorder with an array of candidate genes and unclear genetic architecture, remain poorly understood. We previously demonstrated that mice overexpressing CK1δ (CK1δ OE) in the forebrain show hyperactivity and ADHD-like pharmacological responses to D- amphetamine. Here, we demonstrate that CK1δ OE mice exhibit impaired visual attention and a lack of D-amphetamine- induced place preference, indicating a disruption of the dopamine-dependent reward pathway. We also demonstrate the presence of abnormalities in the frontostriatal circuitry, differences in synaptic ultra-structures by electron microscopy, as 1234567890();,: 1234567890();,: well as electrophysiological perturbations of both glutamatergic and GABAergic transmission, as observed by altered frequency and amplitude of mEPSCs and mIPSCs. Furthermore, gene expression profiling by next-generation sequencing alone, or in combination with bacTRAP technology to study specifically Drd1a versus Drd2 medium spiny neurons, revealed that developmental CK1δ OE alters transcriptional homeostasis in the striatum, including specific alterations in Drd1a versus Drd2 neurons. These results led us to perform a fine molecular characterization of targeted gene networks and pathway analysis. Importantly, a large fraction of 92 genes identified by GWAS studies as associated with ADHD in humans are significantly altered in our mouse model. -
Translational Regulation of Syngap1 by FMRP Modulates NMDAR Mediated Signalling
bioRxiv preprint doi: https://doi.org/10.1101/345058; this version posted June 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Translational regulation of Syngap1 by FMRP modulates NMDAR mediated signalling Abhik Paul1#, Bharti Nawalpuri2#, Shruthi Sateesh1, Ravi S Muddashetty2, James P Clement1* 1 Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064. India Phone: +91-80-22082613 2 The Institute for Stem Cell Biology and Regenerative Medicine, GKVK post, Bellary Road, Bangalore 560065. India # Equal contribution * Corresponding author: Email: [email protected] Phone: +91-80-22082613 Number of Pages: 34 including figures Number of Figure: 5 main and 4 extended Figures Number of words for: Abstract:157 Introduction: 452 Discussion: 854 Conflict of Interest: The authors declare no competing financial interests Acknowledgement: This work was supported by grants to JPC by DST-SERB (SB/YS/LS- 215/2013), and to RSM in part, by Dept. of Biotechnology, India (BT/PR8723/AGR/36/776/2013, and BT/IN/Denmark/07/RSM/2015-2016), and intramural funds from both the Institutes. We thank Bhavana Kayyar, Utsa Bhaduri, and Vijay Kumar M J for technical support in our bioinformatics analysis, and Sudhriti Ghosh Dastidar for technical advice on Figure 4. Further, we thank Dr Ravi Manjithaya and his group, and Prof. Kaustuv Sanyal’s group for technical assistance. We also thank Prof MRS Rao, Prof Tapas K Kundu, 1 bioRxiv preprint doi: https://doi.org/10.1101/345058; this version posted June 26, 2018. -
Mechanism of Completion of Peptidyltransferase Centre
RESEARCH ARTICLE Mechanism of completion of peptidyltransferase centre assembly in eukaryotes Vasileios Kargas1,2,3†, Pablo Castro-Hartmann1,2,3†, Norberto Escudero-Urquijo1,2,3, Kyle Dent1,2,3, Christine Hilcenko1,2,3, Carolin Sailer4, Gertrude Zisser5, Maria J Marques-Carvalho1,2,3, Simone Pellegrino1,2,3, Leszek Wawio´ rka1,2,3,6, Stefan MV Freund7, Jane L Wagstaff7, Antonina Andreeva7, Alexandre Faille1,2,3, Edwin Chen8, Florian Stengel4, Helmut Bergler5, Alan John Warren1,2,3* 1Cambridge Institute for Medical Research, Cambridge, United Kingdom; 2Department of Haematology, University of Cambridge, Cambridge, United Kingdom; 3Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; 4Department of Biology, University of Konstanz, Konstanz, Germany; 5Institute of Molecular Biosciences, University of Graz, Graz, Austria; 6Department of Molecular Biology, Maria Curie-Skłodowska University, Lublin, Poland; 7MRC Laboratory of Molecular Biology, Cambridge, United Kingdom; 8Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom Abstract During their final maturation in the cytoplasm, pre-60S ribosomal particles are converted to translation-competent large ribosomal subunits. Here, we present the mechanism of peptidyltransferase centre (PTC) completion that explains how integration of the last ribosomal *For correspondence: [email protected] proteins is coupled to release of the nuclear export adaptor Nmd3. Single-particle cryo-EM reveals that eL40 recruitment stabilises helix 89 to form the uL16 binding site. The loading of uL16 unhooks † These authors contributed helix 38 from Nmd3 to adopt its mature conformation. In turn, partial retraction of the L1 stalk is equally to this work coupled to a conformational switch in Nmd3 that allows the uL16 P-site loop to fully accommodate Competing interests: The into the PTC where it competes with Nmd3 for an overlapping binding site (base A2971). -
Identification of Candidate Genes and Pathways Associated with Obesity
animals Article Identification of Candidate Genes and Pathways Associated with Obesity-Related Traits in Canines via Gene-Set Enrichment and Pathway-Based GWAS Analysis Sunirmal Sheet y, Srikanth Krishnamoorthy y , Jihye Cha, Soyoung Choi and Bong-Hwan Choi * Animal Genome & Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea; [email protected] (S.S.); [email protected] (S.K.); [email protected] (J.C.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +82-10-8143-5164 These authors contributed equally. y Received: 10 October 2020; Accepted: 6 November 2020; Published: 9 November 2020 Simple Summary: Obesity is a serious health issue and is increasing at an alarming rate in several dog breeds, but there is limited information on the genetic mechanism underlying it. Moreover, there have been very few reports on genetic markers associated with canine obesity. These studies were limited to the use of a single breed in the association study. In this study, we have performed a GWAS and supplemented it with gene-set enrichment and pathway-based analyses to identify causative loci and genes associated with canine obesity in 18 different dog breeds. From the GWAS, the significant markers associated with obesity-related traits including body weight (CACNA1B, C22orf39, U6, MYH14, PTPN2, SEH1L) and blood sugar (PRSS55, GRIK2), were identified. Furthermore, the gene-set enrichment and pathway-based analysis (GESA) highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) which were found to be shared among all the traits.