<<

DUDOGNON Yohan 03/26/2015

Bibliography Seminar

The synthesis of cyclopropenes and their applications in cycloadditions from 2006 to nowadays

Bond lengths (2+1) Cycloaddition (2+2+1) Pauson‐Khand Angles 1,2‐Elimination (3+2+1) Strain energy From other cyclopropenes (2+2) Reactivity (4+2) (3+3)

2 Vinylic nature h C h = 115° of C3 protons 3 3 3 H 1.088 Å Reacts sometimes 1 H like an 3 H 2 1.296 Å c3C2c1 = 51° H Short bond

2 F. Allen, Tetraheddron, 1982, 38, 645 Vinylic nature h C h = 115° of C3 protons 3 3 3 H 1.088 Å Reacts sometimes 1 H like an alkyne 3 H 2 1.296 Å c3C2c1 = 51° H Short bond

2 F. Allen, Tetraheddron, 1982, 38, 645 Vinylic nature h C h = 115° of C3 protons 3 3 3 H 1.088 Å Reacts sometimes Strain Energy (kcal/mol): 1 H like an alkyne 3 Cyclohexane: 0.1 H 2 1.296 Å Cyclobutane: 26.3 c3C2c1 = 51° H : 27.5 Short bond Cyclopropene: 54.1

2 F. Allen, Tetraheddron, 1982, 38, 645 Vinylic nature h C h = 115° of C3 protons 3 3 3 H 1.088 Å Reacts sometimes Strain Energy (kcal/mol): 1 H like an alkyne 3 Cyclohexane: 0.1 H 2 1.296 Å Cyclobutane: 26.3 c3C2c1 = 51° H Cyclopropane: 27.5 Short bond Cyclopropene: 54.1

Because the ring is highly strained, cyclopropenes are both difficult to prepare and interesting to study 2 F. Allen, Tetraheddron, 1982, 38, 645 General scheme of all the ways to synthesize cyclopropenes

From carbenes and carbenoids

(2+1) cycloaddition Si

cycloisomerization 1,1-elimination/ of vinyl carbenes 1,2-Si shift 1.3/1.2-elimination X X

4-membered ring contraciton Ring X Y contraction 1.2-elimination Elimination 5-membered ring contraction,

extrusion of N2 N X X N Rn 1.3-elimination

MG O O 5-membered ring contraction, photochemical rearrangement extrusion of CO2

additions to cyclopropylium salts Rearrangement isomerization and isomerization from other · From other cyclopropenes cycloisomerization 3-membered rings retro-DA and other 3 retrocyclizations M. Rubin, M.Rubina, V. Gevorgyan, Synthesis, 2006, 8, 1221 (2+1) Cycloaddition between and carbenes or carbenoids

4 IUPAC Nomemclature of cycloaddition

5 Website: http://goldbook.iupac.org/C01496.html IUPAC Nomemclature of cycloaddition

Use [x+y] (square brackets) for the number of electrons involved in the transformation Use (x+y) (parenthesis) for the number of atoms involved in the transformation

5 Website: http://goldbook.iupac.org/C01496.html IUPAC Nomemclature of cycloaddition

Use [x+y] (square brackets) for the number of electrons involved in the transformation Use (x+y) (parenthesis) for the number of atoms involved in the transformation

Example of a 1,3‐dipolar cycloaddition:

5 Website: http://goldbook.iupac.org/C01496.html IUPAC Nomemclature of cycloaddition

Use [x+y] (square brackets) for the number of electrons involved in the transformation Use (x+y) (parenthesis) for the number of atoms involved in the transformation

Example of a 1,3‐dipolar cycloaddition:

1,3‐dipolar cycloadditions can be called: (3+2) cycloaddition (number of atoms) or [4+2] cycloaddition (number of electrons)

5 Website: http://goldbook.iupac.org/C01496.html (2+1) Cycloaddition between alkynes and carbenes or carbenoids

4 (2+1) Cycloaddition between alkynes and carbenes or carbenoids

General scheme

4 (2+1) Cycloaddition between alkynes and carbenes or carbenoids

General scheme Two types of cycloadditions

4 (2+1) Cycloaddition between alkynes and carbenes or carbenoids

General scheme Two types of cycloadditions

Transition‐Metal‐Catalysed (carbenoids):

Rh Ag Ir Co Cu Zn

4 (2+1) Cycloaddition between alkynes and carbenes or carbenoids

General scheme Two types of cycloadditions

Transition‐Metal‐Catalysed (carbenoids):

Rh Ag Ir Co Cu Zn

Transition‐Metal‐Free:

In situ generated carbenes

4 Transition‐Metal‐Catalysed cycloadditions

First general method for cyclopropenation that tolerates ß‐ Highly substituted cyclopropenes bearing an ester and different aromatics

6 P. Panne, J. Fox, J. Am. Chem. Soc., 2006, 129, 22 Transition‐Metal‐Catalysed cycloadditions

First general method for cyclopropenation that tolerates ß‐hydrogens Highly substituted cyclopropenes bearing an ester and different aromatics

Creation of distinct types of complex molecules from identical starting materials based solely on catalyst selection 6 P. Panne, J. Fox, J. Am. Chem. Soc., 2006, 129, 22 Transition‐Metal‐Catalysed cycloadditions

7 J.Briones, H. Davies, Org. Let., 2011, 13, 3984 Transition‐Metal‐Catalysed cycloadditions

Silver triflate: efficient for the cyclopropenation of internal alkynes using donor‐/‐ acceptor‐substituted diazo compounds as carbenoid precursors.

7 J.Briones, H. Davies, Org. Let., 2011, 13, 3984 Transition‐Metal‐Catalysed cycloadditions

Silver triflate: efficient for the cyclopropenation of internal alkynes using donor‐/‐ acceptor‐substituted diazo compounds as carbenoid precursors.

Highly substituted cyclopropenes

7 J.Briones, H. Davies, Org. Let., 2011, 13, 3984 Transition‐Metal‐Catalysed cycloadditions

Silver triflate: efficient for the cyclopropenation of internal alkynes using donor‐/‐ acceptor‐substituted diazo compounds as carbenoid precursors.

Highly substituted cyclopropenes

Cannot be synthesized via Rh(II)‐catalysed carbenoid chemistry (steric hindrance)

7 J.Briones, H. Davies, Org. Let., 2011, 13, 3984 Transition‐Metal‐Catalysed cycloadditions

Et2Zn CH2I2 (stoechiometric)

R R R R

R R R R not formed

Simmons‐Smith does not work with alkynes

8 M. Gonzalez, L. Lopez, R. Vincente, Org. Let., 2014, 16, 5780 Transition‐Metal‐Catalysed cycloadditions

1 R R2 R2 O R3 ZnCl2 R1 Et2Zn CH2I2 O (catalytic) [Zn] (stoechiometric) 3 R Proposed R R R R' intermediate R R R (This work)

3 Fu R Fu R3 R R R R not formed R R R'

Simmons‐Smith does not work with alkynes First zinc‐catalyzed cyclopropenation Inexpensive and less toxic catalyst Mild conditions (25 °C, DCM, 0.5‐7 h)

8 M. Gonzalez, L. Lopez, R. Vincente, Org. Let., 2014, 16, 5780 Transition‐Metal‐Catalysed cycloadditions

[Rh2(esp)2](2.5mol%) CF3 NH3Cl NaNO2 (2.4 equiv) R1 2 R 1 2 CF3 R R 2eq H2SO4 (10 mol%) NaOAc (20 mol%) 7 examples 67 to 78 % yield H2O, rt, 14 h

Highly useful subunits (CF3 groups and functionalisable cyclopropenes)

9 B. Morandi, E. Carreira, Angew. Chem., 2010, 49, 4294 Transition‐Metal‐Catalysed cycloadditions

[Rh2(esp)2](2.5mol%) CF3 NH3Cl NaNO2 (2.4 equiv) R1 2 R 1 2 CF3 R R 2eq H2SO4 (10 mol%) NaOAc (20 mol%) 7 examples 67 to 78 % yield H2O, rt, 14 h

Highly useful subunits (CF3 groups and functionalisable cyclopropenes)

First cyclopropenation of alkynes with trifluoromethyldiazomethane

9 B. Morandi, E. Carreira, Angew. Chem., 2010, 49, 4294 Transition‐Metal‐Catalysed cycloadditions

[Rh2(esp)2](2.5mol%) CF3 NH3Cl NaNO2 (2.4 equiv) R1 2 R 1 2 CF3 R R 2eq H2SO4 (10 mol%) NaOAc (20 mol%) 7 examples 67 to 78 % yield H2O, rt, 14 h

Highly useful subunits (CF3 groups and functionalisable cyclopropenes)

First cyclopropenation of alkynes with trifluoromethyldiazomethane

Key: identification of a robust catalyst to support harsh conditions

9 B. Morandi, E. Carreira, Angew. Chem., 2010, 49, 4294 Enantioselective Transition‐Metal‐Catalysed cycloadditions

Ar2 2 -45 °C, pentane, 2 h Ar CO2Me N2 Ar1 CO Me 2 Ar1 H O Rh N O Rh 13 examples SO C H C H 24-67% yield 2 6 4 12 25 66-96% ee 4 [Rh2(S-DOSP)4]

[Rh2(S‐DOSP)4] effective catalyst for highly enantioselective cyclopropenation

10 J. Briones, J. Hansen, K. Hardcastle, J. Autschbach, H. Davies; J. Am. Chem. Soc., 2010, 132, 17211 Enantioselective Transition‐Metal‐Catalysed cycloadditions

Ar2 2 -45 °C, pentane, 2 h Ar CO2Me N2 Ar1 CO Me 2 Ar1 H O Rh N O Rh 13 examples SO C H C H 24-67% yield 2 6 4 12 25 66-96% ee 4 [Rh2(S-DOSP)4]

[Rh2(S‐DOSP)4] effective catalyst for highly High enantioselectivity governed by: enantioselective cyclopropenation Specific orientation of the approach of the alkyne due to bonding

10 J. Briones, J. Hansen, K. Hardcastle, J. Autschbach, H. Davies; J. Am. Chem. Soc., 2010, 132, 17211 Enantioselective Transition‐Metal‐Catalysed cycloadditions

O R2 O R1O R1O P CN [Rh2(S-IBAZ)4](1mol%) P CN R1O R1O 1 N2 R = iPr (degassed) R2 rt, 20 h 5 examples Rh O 73-95% yield Isosteres 91-98% ee Rh N

2 O CO2i-Bu R 4 O C CN [Rh2(S-IBAZ)4](1mol%) R1O [Rh2(S-IBAZ)4] 1 C CN R O R2 N2 Toluene/Mesitylene (4:1) R1 = tBu 2 examples 0° C to rt, 20 h 88-99% yield 83-93% ee First catalyticasymmetricroute to diacceptor cyclopropenylphosphonates

11 V. Lindsay, D. Fiset, P. Gritsch, S. Azzi, A. Charrette, J. Am. Chem. Soc., 2013, 135, 1463 Enantioselective Transition‐Metal‐Catalysed cycloadditions

O R2 O R1O R1O P CN [Rh2(S-IBAZ)4](1mol%) P CN R1O R1O 1 N2 R = iPr Toluene (degassed) R2 rt, 20 h 5 examples Rh O 73-95% yield Isosteres 91-98% ee Rh N

2 O CO2i-Bu R 4 O C CN [Rh2(S-IBAZ)4](1mol%) R1O [Rh2(S-IBAZ)4] 1 C CN R O R2 N2 Toluene/Mesitylene (4:1) R1 = tBu 2 examples 0° C to rt, 20 h 88-99% yield 83-93% ee First catalyticasymmetricroute to diacceptor cyclopropenylphosphonates Takes advantages of the particuliar reactivity of the cyanocarbenes

11 V. Lindsay, D. Fiset, P. Gritsch, S. Azzi, A. Charrette, J. Am. Chem. Soc., 2013, 135, 1463 Enantioselective Transition‐Metal‐Catalysed cycloadditions

O R2 O R1O R1O P CN [Rh2(S-IBAZ)4](1mol%) P CN R1O R1O 1 N2 R = iPr Toluene (degassed) R2 rt, 20 h 5 examples Rh O 73-95% yield Isosteres 91-98% ee Rh N

2 O CO2i-Bu R 4 O C CN [Rh2(S-IBAZ)4](1mol%) R1O [Rh2(S-IBAZ)4] 1 C CN R O R2 N2 Toluene/Mesitylene (4:1) R1 = tBu 2 examples 0° C to rt, 20 h 88-99% yield 83-93% ee First catalyticasymmetricroute to diacceptor cyclopropenylphosphonates Takes advantages of the particuliar reactivity of the cyanocarbenes Scope extented to ester cyclopropenes and substituted allenes

11 V. Lindsay, D. Fiset, P. Gritsch, S. Azzi, A. Charrette, J. Am. Chem. Soc., 2013, 135, 1463 Transition‐Metal‐Free cycloadditions

Increasing demand for gem‐difluorocyclopropa(e)nes and hetereoatom difluoromethyl compounds

12 L. Li, F. Wang, C. Ni, J. Hu, Angew. Chem., 2013, 52, 12390 Transition‐Metal‐Free cycloadditions

Increasing demand for gem‐difluorocyclopropa(e)nes and hetereoatom difluoromethyl compounds

12 L. Li, F. Wang, C. Ni, J. Hu, Angew. Chem., 2013, 52, 12390 Transition‐Metal‐Free cycloadditions

Increasing demand for gem‐difluorocyclopropa(e)nes and hetereoatom difluoromethyl compounds

12 L. Li, F. Wang, C. Ni, J. Hu, Angew. Chem., 2013, 52, 12390 Transition‐Metal‐Free cycloadditions

Increasing demand for gem‐difluorocyclopropa(e)nes and hetereoatom difluoromethyl compounds Highly efficient method for the difluoromethylation

12 L. Li, F. Wang, C. Ni, J. Hu, Angew. Chem., 2013, 52, 12390 Transition‐Metal‐Free cycloadditions

Increasing demand for gem‐difluorocyclopropa(e)nes and hetereoatom difluoromethyl compounds Highly efficient method for the difluoromethylation Much safer and more convenient for large‐scale application than other methods 12 L. Li, F. Wang, C. Ni, J. Hu, Angew. Chem., 2013, 52, 12390 Transition‐Metal‐Free cycloadditions

First Hypervalent iodine‐mediated cyclopropenation under mild conditions

13 S. Lin, M. Li, Z. Dong, F. Liang, J. Zhang, Org. Biomol. Chem., 2014, 12, 1341 Transition‐Metal‐Free cycloadditions

Ph OAc Ph OAc NC CN PhI(OAc) I I R1 R2 2 1 R2 1 2 R -AcOH R R CN OAc OAc CN 2 Ph I R Ph I R2 R1 R2 1 R CN -AcOH R1 CN Ph I CN NC NC NC First Hypervalent iodine‐mediated R1 R2 NC CN -IPh cyclopropenation under mild I CN Ph 1 R2 conditions CN R Hypervalent iodine‐mediated cyclopropenation mechanism postulated by the authors

13 S. Lin, M. Li, Z. Dong, F. Liang, J. Zhang, Org. Biomol. Chem., 2014, 12, 1341 1,2‐Elimination ‐ General scheme

14 W. Sherrill, R. Kim, M. Rubin, Tetraheddron, 2008, 64, 8610 1,2‐Elimination ‐ General scheme Limitations of the (2+1) cycloaddition: ‐ Poorly applicable to some substrates (i.a. aryl diazoacetates with EWG substituents) ‐ Poor chemoselectivity in some cases: dimerization or further transformation into furans

14 W. Sherrill, R. Kim, M. Rubin, Tetraheddron, 2008, 64, 8610 1,2‐Elimination ‐ General scheme Limitations of the (2+1) cycloaddition: ‐ Poorly applicable to some substrates (i.a. aryl diazoacetates with EWG substituents) ‐ Poor chemoselectivity in some cases: dimerization or further transformation into furans

Good alternative: 1,2‐Elimination

14 W. Sherrill, R. Kim, M. Rubin, Tetraheddron, 2008, 64, 8610 1,2‐Elimination ‐ Examples

1,2 Elimination followed by Nucleophilic addition L. Sydnes, E. Bakstad, Acta Chem. Scand., 1996, 50, 446

15 1,2‐Elimination ‐ Examples Me Me Me Me [Rh2(OAc)4](0.5mol%) OH OH CH Cl ,rt,2h R O 2 2 R O Rh‐Catalyzed Stereoselective C(sp3)H insertion

A. Archambeau, F. Miege, C. Meyer, J. Cossy Angew. Chem., 2012, 51, 11540

1,2 Elimination followed by Nucleophilic addition L. Sydnes, E. Bakstad, Acta Chem. Scand., 1996, 50, 446

15 1,2‐Elimination ‐ Examples Me Me Me Me [Rh2(OAc)4](0.5mol%) OH OH CH Cl ,rt,2h R O 2 2 R O Rh‐Catalyzed Stereoselective C(sp3)H insertion

A. Archambeau, F. Miege, C. Meyer, J. Cossy Angew. Chem., 2012, 51, 11540

1,2 Elimination followed by Nucleophilic addition L. Sydnes, E. Bakstad, Acta Chem. Scand., 1996, 50, 446 Au‐Catalysed cycloisomerisation

F. Miege, C. Meyer, J. Cossy, Chem. Eur. J. 2012, 18, 7810

15 From other cyclopropenes

16 S. Chuprakov, D. Malyshev, A. Trofimov, V. Gevorgyan, J. Am. Chem. Soc., 2007, 129, 14868 From other cyclopropenes

Sila Morita‐Baylis‐Hillman Reaction of Cyclopropenes

16 S. Chuprakov, D. Malyshev, A. Trofimov, V. Gevorgyan, J. Am. Chem. Soc., 2007, 129, 14868 From other cyclopropenes

Sila Morita‐Baylis‐Hillman Reaction of Cyclopropenes

Mechanism

16 S. Chuprakov, D. Malyshev, A. Trofimov, V. Gevorgyan, J. Am. Chem. Soc., 2007, 129, 14868 From other cyclopropenes

Stille Coupling Reactions with Base‐Sensitive Cyclopropenes

Ring‐opening of Cyclopenyl Lithium Species

17 E. Fordyce, T. Luebbers, H. W. Lam, Org. Let., 2008, 10, 3993 From other cyclopropenes

Stille Coupling Reactions with Base‐Sensitive Cyclopropenes

Ring‐opening of Cyclopenyl Lithium Species Stannylation of various cyclopropenes

17 E. Fordyce, T. Luebbers, H. W. Lam, Org. Let., 2008, 10, 3993 From other cyclopropenes

Stille Coupling Reactions with Base‐Sensitive Cyclopropenes

Ring‐opening of Cyclopenyl Lithium Species Stannylation of various cyclopropenes

Stille Coupling

17 E. Fordyce, T. Luebbers, H. W. Lam, Org. Let., 2008, 10, 3993 Reactivity of cyclopropenes – General scheme

18 Reactivity of cyclopropenes – General scheme

Cycloaddition reactions

n n with preservation with ring‐opening Ring‐opening of the ring metathesis Ene reactions

Rn Double‐bond Formal migration Rn' substitution n X Y m X Ring expansions Y X Y with ring‐ with preservation opening of the ring Addition reactions 18 M. Rubin, M.Rubina, V. Gevorgyan, Synthesis, 2006, 8, 1221 (2+2+1) Pauson‐Khand Cycloaddition

19 (2+2+1) Pauson‐Khand Cycloaddition General mechanism

R R Co (CO) ‐ CO 2 8 Co(CO) Co(CO) R R 3 3 ‐2CO R Co(CO) R Co(CO) alkyne 3 2 insertion R Co(CO) R RCo(CO) R 3 CO R 3 CO Co(CO)3 Co(CO)3 Co(CO)3 alkene R Co(CO)2 CO insertion O complexation insertion

Co(CO)3 R R Co(CO)3 R R

reductive O decobaltation O elimination

19 (2+2+1) Pauson‐Khand Cycloaddition General mechanism

R R Co (CO) ‐ CO 2 8 Co(CO) Co(CO) R R 3 3 ‐2CO R Co(CO) R Co(CO) alkyne 3 2 insertion R Co(CO) R RCo(CO) R 3 CO R 3 CO Co(CO)3 Co(CO)3 Co(CO)3 alkene alkene R Co(CO)2 CO insertion O complexation insertion

Co(CO)3 R R Co(CO)3 R R

reductive O decobaltation O elimination

Applicable to cyclopropenes 19 (2+2+1) Pauson‐Khand Cycloaddition ‐ Application to cyclopropenes

Enantioselective Synthesis of (–)‐Pentalenene

19 M. Pallerla, J. Fox, Org. Let., 2007, 9, 5625 (2+2+1) Pauson‐Khand Cycloaddition ‐ Application to cyclopropenes

Enantioselective Synthesis of (–)‐Pentalenene

Using [2+2+1] Pauson‐Khand cycloaddition of cyclopropenes as key step

19 M. Pallerla, J. Fox, Org. Let., 2007, 9, 5625 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

An unexpected discovery…

CO2Et

Et OC Me TMS 2 TMS NMO O Me TMS TMS

(OC)3Co Co(CO)3

20 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

An unexpected discovery…

CO2Et

Et OC Me TMS 2 TMS NMO O Me TMS TMS

(OC)3Co Co(CO)3

20 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

An unexpected discovery…

CO2Et

Et OC Me TMS 2 TMS NMO O Me TMS TMS

(OC)3Co Co(CO)3

Why is the isolation of this cobalt complexe interesting ?

20 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

An unexpected discovery…

CO2Et

Et OC Me TMS 2 TMS NMO O Me TMS TMS

(OC)3Co Co(CO)3

Why is the isolation of this cobalt complexe interesting ?

Alkene insertion is the rate‐determining step in Pauson‐Khand reactions Hard to have information about intermediates formed after the alkene insertion

20 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

An unexpected discovery…

CO2Et

Et OC Me TMS 2 TMS NMO O Me TMS TMS

(OC)3Co Co(CO)3

Why is the isolation of this cobalt complexe interesting ?

Alkene insertion is the rate‐determining step in Pauson‐Khand reactions Hard to have information about intermediates formed after the alkene insertion First insight of what happens after the alkene insertion 20 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

Purification of the complex

By silica gel chromatography Only 13% yield due to partial decomposition during the purification

21 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

Purification of the complex

By silica gel chromatography Only 13% yield due to partial decomposition during the purification

Description of the complex

21 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

Purification of the complex

By silica gel chromatography Only 13% yield due to partial decomposition during the purification

Description of the complex

From the Fragmentation of cyclopropane 21 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

IR Analysis υ = 4 external carbonyls: 2067, 2038, 2008 (I= 2) υ(free CO) = 2170 cm‐1 (retro donation of Co)

υ = 1 bridging carbonyl: 1853 cm‐1 υ(classic carbonyl) = 1760‐1665 cm‐1 (smaller angle, greater s‐character)

22 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

IR Analysis υ = 4 external carbonyls: 2067, 2038, 2008 (I= 2) υ(free CO) = 2170 cm‐1 (retro donation of Co)

υ = 1 bridging carbonyl: 1853 cm‐1 υ(classic carbonyl) = 1760‐1665 cm‐1 (smaller angle, greater s‐character)

X‐Ray analysis

22 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

IR Analysis υ = 4 external carbonyls: 2067, 2038, 2008 (I= 2) υ(free CO) = 2170 cm‐1 (retro donation of Co)

υ = 1 bridging carbonyl: 1853 cm‐1 υ(classic carbonyl) = 1760‐1665 cm‐1 (smaller angle, greater s‐character)

X‐Ray analysis Selected bond lengths: Co1‐Co2 2.469 Å Co2‐C5 2.183 Å (longest Co‐C bond) Co2‐C8 1.884 Å (smallest Co‐C bond)

22 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

IR Analysis υ = 4 external carbonyls: 2067, 2038, 2008 (I= 2) υ(free CO) = 2170 cm‐1 (retro donation of Co)

υ = 1 bridging carbonyl: 1853 cm‐1 υ(classic carbonyl) = 1760‐1665 cm‐1 (smaller angle, greater s‐character)

X‐Ray analysis Selected bond lengths: Co1‐Co2 2.469 Å Co2‐C5 2.183 Å (longest Co‐C bond) Co2‐C8 1.884 Å (smallest Co‐C bond)

Selected angles: Co1‐C3‐Co2 76.22 ° Co1‐C8‐Co2 79.31 ° (very small C(sp2) angle) 22 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

13C NMR Analysis

23 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

13C NMR Analysis At 25°C: Three picks at 197, 202 and 212 ppm (I= 3) for the 5 carbonyls

23 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

13C NMR Analysis At 25°C: Three picks at 197, 202 and 212 ppm (I= 3) for the 5 carbonyls At ‐25°C: peak at 212 ppm (I= 3) not observed

23 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

13C NMR Analysis At 25°C: Three picks at 197, 202 and 212 ppm (I= 3) for the 5 carbonyls At ‐25°C: peak at 212 ppm (I= 3) not observed

At ‐60°C: Four picks at 198, 203, 206 (I= 2) and 230 ppm for the 5 carbonyls

23 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

13C NMR Analysis At 25°C: Three picks at 197, 202 and 212 ppm (I= 3) for the 5 carbonyls At ‐25°C: peak at 212 ppm (I= 3) not observed

At ‐60°C: Four picks at 198, 203, 206 (I= 2) and 230 ppm for the 5 carbonyls

Interpretation:

Slow exchange between bridging and terminal carbonyls at ‐ 60 °C

23 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

13C NMR Analysis At 25°C: Three picks at 197, 202 and 212 ppm (I= 3) for the 5 carbonyls At ‐25°C: peak at 212 ppm (I= 3) not observed

At ‐60°C: Four picks at 198, 203, 206 (I= 2) and 230 ppm for the 5 carbonyls

Interpretation:

Slow exchange between bridging and terminal carbonyls at ‐ 60 °C Fast exchange on the NMR time scale at 25 °C

23 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Serendipity in the (2+2+1) Pauson‐Khand Cycloaddition

13C NMR Analysis At 25°C: Three picks at 197, 202 and 212 ppm (I= 3) for the 5 carbonyls At ‐25°C: peak at 212 ppm (I= 3) not observed

At ‐60°C: Four picks at 198, 203, 206 (I= 2) and 230 ppm for the 5 carbonyls

Interpretation:

Slow exchange between bridging and terminal carbonyls at ‐ 60 °C Fast exchange on the NMR time scale at 25 °C Coalescence observed at ‐ 25 °C (signals too broad to be seen)

23 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137 Regioselectivity of the Pauson‐Khand cycloaddition

High regioseletivity Opposite regioselectivity between cyclopentenone 9 and complex 10

24 78 Regioselectivity of the Pauson‐Khand cycloaddition

High regioseletivity Opposite regioselectivity between cyclopentenone 9 and complex 10

Selectivity in alkene insertion Kinetic discrimination after alkene insertion

24 79 Regioselectivity of the Pauson‐Khand cycloaddition

High regioseletivity Opposite regioselectivity between cyclopentenone 9 and complex 10

Selectivity in alkene insertion Kinetic discrimination after alkene insertion

Facts: After alkene insertion: ‐ Product 13 leads to ring‐opening of the cyclopropane to Co complex 10 ‐ Diastereomers 12 and 12’ leads to Pauson‐Khand cyclopentenone product 9

24 80 Regioselectivity of the Pauson‐Khand cycloaddition

High regioseletivity Opposite regioselectivity between cyclopentenone 9 and complex 10

Selectivity in alkene insertion Kinetic discrimination after alkene insertion

Facts: After alkene insertion: ‐ Product 13 leads to ring‐opening of the cyclopropane to Co complex 10 ‐ Diastereomers 12 and 12’ leads to Pauson‐Khand cyclopentenone product 9

Possible explanations: ‐ Stabilisation of the α‐carbon‐metal bond by Si ‐ Steric interactions

24 81 (3+2+1) Cycloaddition

Much less developed than other carbonylative cycloadditions

25 C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Org. Let., 2010, 12, 3082 (3+2+1) Cycloaddition

Much less developed than other carbonylative cycloadditions

Difficulty to introduce the required three‐carbon component …

25 C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Org. Let., 2010, 12, 3082 (3+2+1) Cycloaddition

Much less developed than other carbonylative cycloadditions

Difficulty to introduce the required three‐carbon component … Cyclopropenes !

25 C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Org. Let., 2010, 12, 3082 (3+2+1) Cycloaddition

Much less developed than other carbonylative cycloadditions

Difficulty to introduce the required three‐carbon component … Cyclopropenes !

ene‐cyclopropene

25 C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Org. Let., 2010, 12, 3082 (3+2+1) Cycloaddition

Much less developed than other carbonylative cycloadditions

Difficulty to introduce the required three‐carbon component … Cyclopropenes !

ene‐cyclopropene

Stereochemistry confirmed by NOESY experiment Trans configuration of the fused rings 25 C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Org. Let., 2010, 12, 3082 (3+2+1) Cycloaddition

Much less developed than other carbonylative cycloadditions

Difficulty to introduce the required three‐carbon component … Cyclopropenes !

2 2 R3 R [Rh(CO)2Cl]2 (5 mol%) R CO (1 atm) OH Z Z 3 R R2 DCE, 80 °C R1 R1 R1 1to12h 7examples 55‐90% yield ene‐cyclopropene yne‐cyclopropene

Stereochemistry confirmed by NOESY experiment Trans configuration of the fused rings 25 C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Org. Let., 2010, 12, 3082 (3+2+1) Cycloaddition Steps of the mecanism:

26 C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Org. Let., 2010, 12, 3082 (3+2+1) Cycloaddition Steps of the mecanism: A: complexation of Rh(I)

26 C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Org. Let., 2010, 12, 3082 (3+2+1) Cycloaddition Steps of the mecanism: A: complexation of Rh(I) B: oxidative addition of the Rh(I) to σ‐bond of the cyclopropene generating rhodacyclobutene

26 C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Org. Let., 2010, 12, 3082 (3+2+1) Cycloaddition Steps of the mecanism: A: complexation of Rh(I) B: oxidative addition of the Rh(I) to σ‐bond of the cyclopropene generating rhodacyclobutene Path a: C: CO insertion; D: alkene insertion Path b: F: alkene insertion; D: CO insertion

26 C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Org. Let., 2010, 12, 3082 (3+2+1) Cycloaddition Steps of the mecanism: A: complexation of Rh(I) B: oxidative addition of the Rh(I) to σ‐bond of the cyclopropene generating rhodacyclobutene Path a: C: CO insertion; D: alkene insertion Path b: F: alkene insertion; D: CO insertion

26 C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Org. Let., 2010, 12, 3082 (3+2+1) Cycloaddition Steps of the mecanism: A: complexation of Rh(I) B: oxidative addition of the Rh(I) to σ‐bond of the cyclopropene generating rhodacyclobutene Path a: C: CO insertion; D: alkene insertion Path b: F: alkene insertion; D: CO insertion

E’ cis‐fused not observed only cis‐fused cycloadduct G

26 C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Org. Let., 2010, 12, 3082 (3+2+1) Cycloaddition Steps of the mecanism: A: complexation of Rh(I) B: oxidative addition of the Rh(I) to σ‐bond of the cyclopropene generating rhodacyclobutene Path a: C: CO insertion; D: alkene insertion Path b: F: alkene insertion; D: CO insertion

E’ cis‐fused not observed only cis‐fused cycloadduct G

Conclusion: likely Path a 26 C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Org. Let., 2010, 12, 3082 (2+2) Cycloaddition ‐ Original formation of substituted

G. Lee, W. Wang, S. Jiang, C. Chang, R. Tsai, J. Org. Chem. , 2009, 74, 7994

27 L. Fisher, N. Smith, J. Fox, J. Org. Chem., 2013, 78, 3342 (2+2) Cycloaddition ‐ Original formation of substituted benzene

G. Lee, W. Wang, S. Jiang, C. Chang, R. Tsai, J. Org. Chem. , 2009, 74, 7994 (4+2) Cycloaddition ‐ Cyclopropenes as Reactive and Selective Dienophiles

27 L. Fisher, N. Smith, J. Fox, J. Org. Chem., 2013, 78, 3342 (3+2) Cycloaddition

Formation of Isoxazolidines, aziridines and pyrroles thermically controlled

28 V. Diev, O. Stetsenko, T. Tung, J. Kopf, R. Kostikov, A. Molchanov, J. Org. Chem, 2008, 73, 2396 Before i thank you for your kind attention …

29 Before i thank you for your kind attention …

Let’s go back to the Hypervalent iodine mechanism described before …

29 Postulated mechanism Reaction Ph OAc Ph OAc NC CN PhI(OAc) I I R1 R2 2 1 R2 1 2 R -AcOH R R CN OAc OAc CN 2 Ph I R Ph I R2 R1 R2 1 R CN -AcOH R1 CN Ph I CN NC NC NC R1 R2 NC CN -IPh I CN Ph 1 2 CN R R

30 S. Lin, M. Li, Z. Dong, F. Liang, J. Zhang, Org. Biomol. Chem., 2014, 12, 1341 Postulated mechanism Reaction Ph OAc Ph OAc NC CN PhI(OAc) I I R1 R2 2 1 R2 1 2 R -AcOH R R CN OAc OAc CN 2 Ph I R Ph I R2 R1 R2 1 R CN -AcOH R1 CN Ph I CN NC NC NC R1 R2 NC CN -IPh I CN Ph 1 2 CN R R

Exercise: Find 2 possibles flaws of the mechanism Which electrophile is the strongest in the medium ? How this electrophile could react with hypervalent iodine ? Write a mechanism.

30 S. Lin, M. Li, Z. Dong, F. Liang, J. Zhang, Org. Biomol. Chem., 2014, 12, 1341 What is the strongest electrophile in the medium ? ?

31 S. Lin, M. Li, Z. Dong, F. Liang, J. Zhang, Org. Biomol. Chem., 2014, 12, 1341 What is the strongest electrophile in the medium ?

31 What is the strongest electrophile in the medium ?

Possible flaws of mechanism:

31 What is the strongest electrophile in the medium ?

Possible flaws of mechanism:

Why would the weakest electrophile react first ?

31 What is the strongest electrophile in the medium ?

Possible flaws of mechanism:

Why would the weakest Reductive elmination to create an electrophile react first ? even more strained cycle

31 What is the strongest electrophile in the medium ?

Possible flaws of mechanism:

Why would the weakest Reductive elmination to create an electrophile react first ? even more strained cycle

Sir XB’s approved postulated Concerted Deprotonation‐Electrophilic Iodination Mechanism:

31 What is the strongest electrophile in the medium ?

Possible flaws of mechanism:

Why would the weakest Reductive elmination to create an electrophile react first ? even more strained cycle

Sir XB’s approved postulated Concerted Deprotonation‐Electrophilic Iodination Mechanism:

31 What is the strongest electrophile in the medium ?

Possible flaws of mechanism:

Why would the weakest Reductive elmination to create an electrophile react first ? even more strained cycle

Sir XB’s approved postulated Concerted Deprotonation‐Electrophilic Iodination Mechanism:

31 What is the strongest electrophile in the medium ?

Possible flaws of mechanism:

Why would the weakest Reductive elmination to create an electrophile react first ? even more strained cycle

Sir XB’s approved postulated Concerted Deprotonation‐Electrophilic Iodination Mechanism:

CN NC CN R1 R2 NC I (2+1) cycloaddition 31 Ph R1 R2 Now i can thank you for your kind attention