Laser History

Total Page:16

File Type:pdf, Size:1020Kb

Laser History PHY 452/562 Laser History In 1916, Albert Einstein predicted the existence of stimulated emission, based on statistical physics considerations. Einstein, A., “Zur Quantentheorie der Strahlung,” Physikalische Gesellschaft Zürich, 18, 47‐62 (1916). He never considered the possibility of amplification. PHY 452/562 Amplification of light through stimulated emission requires population inversion. In equilibrium, lower energy levels are always more populated. As a result, absorption always dominates. In order for the stimulated emission to become significant, higher energy levels should be artificially made There are many ways of more populated. This is called pumping, including population inversion. It is achieved electrical and optical. via «pumping». PHY 452/562 MASER Amplification of electromagnetic radiation via stimulated emission was first performed in the microwave region, by Charles Townes and Arthur Schawlow. Also by Nikolay Basov and Alexandr Prokhorov in the USSR. (Nobel prize 1964). Phys.Rev., 95 p‐282 (1954) Townes and Schawlow suggested that achieving optical masers could be solved by using feedback via an optical cavity. PHY 452/562 The term laser was first used by Gordon Gould in 1959. He also sketched the first laser resonator. The first working laser was built By Theodore Maiman at Hughes Research lab, in 1960. The laser was a solid state ruby laser, optically pumped. Nature,187 p‐493 (1960) PHY 452/562 This unique powerful and coherent light source received enormous attention for various applications. New uses of lasers emerge almost every day. Since the laser developments preceded the applications, the term “solution looking for a problem” is used for lasers. CO2 laser was invented in 1963 by K. Pattel. CO2 is the workhorse for laser metal cutting and welding. Phys. Rev., 136a, P‐1187 (1964) PHY 452/562 Fiber Lasers In 1964 C. J. Koester and E. Snitzer developed the first neodymium‐doped fiber amplification, paving the way for fiber telecommunications. Applied Optics, 3, 1182‐1186 (1964). PHY 452/562 The first barcode scanner was made in 1974. Ultrafast Laser Pulses Today it’s routine to generate ultrashort laser pulses with durations < 100 femtosecond (10‐13 s). The extreme high intensities yield many nonlinear‐optical effects. The first femtosecond laser was developed in 1974 by Ippen and Shank. Appl. Phys. Lett. 24, 373‐375 (1974) PHY 452/562 Laser Nobel Prizes 1964: Charles H. Townes, Alexander M. Prokhorov, and Nicolay G. Basov for the construction of oscillators and amplifiers based on the maser‐laser principle. 1966: Alfred Kastler for the discovery and development of optical methods for studying resonances in atoms. 1971: Dennis Gabor for his invention and development of the holographic method. 1981: Arthur Schawlow and Nicolaas Bloembergen for the development of laser spectroscopy. PHY 452/562 Laser Nobel Prizes 1997: Steven Chu, Claude Cohen‐Tannoudji and William D. Phillips for the development of methods to cool and trap atoms with laser light. 1999: Ahmed Zewail for his studies of the transition states of chemical reactions using femtosecond spectroscopy. 2000: Zhores I. Alferov and Herbert Kroemer for developing semiconductor heterostructures used in high‐speed‐ and opto‐ electronics. PHY 452/562 Laser Nobel Prizes 2001: Eric Cornell, Carl Wieman, Wolfgang Ketterle for the “achievement of Bose‐Einstein condensation in dilute gases of alkali atoms.“ 2005: Roy J. Glauber, John L. Hall, Theodor W. Hansch for their "contributions to the development of laser‐based precision spectroscopy, including the optical frequency comb technique". PHY 452/562 Laser Nobel Prizes 2009: Charles K. Kao, Willard S. Boyle, and George E. Smith for groundbreaking achievements concerning the transmission of light in fibers for optical communication". 2012: Serge Haroche and David Wineland for ground‐breaking experimental methods that enable measuring and manipulation of individual quantum systems..
Recommended publications
  • Fotonica Ed Elettronica Quantistica
    Fotonica ed elettronica quantistica http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Fotonica ed elettronica quantistica Quantum optics - Quantization of electromagnetic field - Statistics of light, photon counting and noise; - HBT and correlation; g1 e g2 coherence; antibunching; single photons - Squeezing - Quantum cryptography - Quantum computer, entanglement and teleportation Light-matter Interaction - Two-level atom - Laser physics - Spectroscopy - Electronics and photonics at the nanometer scale - Cold atoms - Photodetectors - Solar cells http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Energy Temperature LHC at CERN, Higgs, SUSY, ??? TeV 15 q q particle accelerators 10 K q GeV proton rest mass - quarks 1012K MeV electron rest mass / gamma rays 109K keV Nuclear Fusion, x rays, Sun center 106K Atoms ionize - visible light eV Sun surface fundamental components components fundamental room temperature 103K meV Liquid He, superconductors, space 1K dilution refrigerators, quantum Hall µeV laser-cooled atoms 10-3K neV Bose-Einstein condensates 10-6K peV low T record 480 picokelvin 10-9K -12 complexity, organization organization complexity, 10 K Nobel Prizes in Physics 2010 - Andre Geims, Konstantin Novoselov 2009 - Charles K. Kao, Willard S. Boyle, George E. Smith 2007 - Albert Fert, Peter Gruenberg 2005 - Roy J. Glauber, John L. Hall, Theodor W. Hänsch 2001 - Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman 1997 - Steven Chu, Claude Cohen-Tannoudji, William D. Phillips 1989 - Norman F. Ramsey, Hans G. Dehmelt, Wolfgang Paul 1981 - Nicolaas Bloembergen, Arthur L. Schawlow, Kai M. Siegbahn 1966 - Alfred Kastler 1964 - Charles H. Townes, Nicolay G. Basov, Aleksandr M. Prokhorov 1944 - Isidor Isaac Rabi 1930 - Venkata Raman 1921 - Albert Einstein 1907 - Albert A.
    [Show full text]
  • Laboratoire Kastler Brossel, LKB, ENS PARIS, Sorbonne Université, COLL DE FRANCE, CNRS, Mr Antoine HEIDMANN
    Research evaluation REPORT ON THE RESEARCH UNIT: Kastler Brossel Laboratory LKB UNDER THE SUPERVISION OF THE FOLLOWING INSTITUTIONS AND RESEARCH BODIES: École Normale Supérieure Sorbonne Université Collège de France Centre National de la Recherche Scientifique - CNRS EVALUATION CAMPAIGN 2017-2018 GROUP D In the name of Hcéres1 : In the name of the expert committee2 : Michel Cosnard, President Vahid Sandoghdar, Chairman of the committee Under the decree No.2014-1365 dated 14 November 2014, 1 The president of HCERES "countersigns the evaluation reports set up by the expert committees and signed by their chairman." (Article 8, paragraph 5); 2 The evaluation reports "are signed by the chairman of the expert committee". (Article 11, paragraph 2). Laboratoire Kastler Brossel, LKB, ENS PARIS, Sorbonne Université, COLL DE FRANCE, CNRS, Mr Antoine HEIDMANN This report is the sole result of the unit’s evaluation by the expert committee, the composition of which is specified below. The assessments contained herein are the expression of an independent and collegial reviewing by the committee. UNIT PRESENTATION Unit name: Laboratoire Kastler-Brossel Unit acronym: LKB Requested label: UMR Application type: Renewal Current number: UMR 8552 Head of the unit Mr Antoine HEIDMANN (2017-2018): Project leader Mr Antoine HEIDMANN (2019-2023): Number of teams: 12 COMMITTEE MEMBERS Chair: Mr Vahid SANDOGHDAR, Max Planck Institute, Germany Experts: Mr Jean-Claude BERNARD, CNRS (supporting personnel) Mr Benoît BOULANGER, Université Grenoble Alpes (representative
    [Show full text]
  • 2007-2008 Physics at Brown Newsletter
    Physics at Brown NEWS FOR ALUM N I an D FRIE N DS 2007 ISSUE GREETINGS FROM THE CHAIR - SP RING 2008 elcome to another issue of the Brown Physics newsletter. the rank of Associate Professor with tenure. We also report on WI wrote three years ago, during my first term as the some notable faculty achievements for the past year. department chair--with a committed faculty, dedicated staff, enthusiastic students, supportive administration, and engaged e continue the tradition of highlighting the research of alumni and friends--that the future of physics at Brown looked Wour 2007 Galkin Foundation Fellow on page 2. Also bright. Many things have taken place since then. Here we the effort in enriching our physics instruction continues. Three highlight some of the activities of the past year. new courses are offered this year and proposals for three new physics concentrations are under way. Other noteworthy 007 marked the 50th anniversary of the BCS Theory activities include WiSE, Poster Session, UTRA Awards, 2of Superconductivity. We honored Prof. Leon Resource Center, etc. In addition, community outreach Cooper with a two-day symposium on April remains a priority for the Department with a weekly 12-13. A brief description of this event is open house at Ladd and a greatly expanded five- provided on page 3. year NSF supported GK-12 program. e also report on the establishment hanks to a generous gift from his family, an Wof the Institute for Molecular and TAnthony Houghton Prize will be awarded Nanoscale Innovation, which represents an annually for the best theoretical thesis.
    [Show full text]
  • Famous Physicists Himansu Sekhar Fatesingh
    Fun Quiz FAMOUS PHYSICISTS HIMANSU SEKHAR FATESINGH 1. The first woman to 6. He first succeeded in receive the Nobel Prize in producing the nuclear physics was chain reaction. a. Maria G. Mayer a. Otto Hahn b. Irene Curie b. Fritz Strassmann c. Marie Curie c. Robert Oppenheimer d. Lise Meitner d. Enrico Fermi 2. Who first suggested electron 7. The credit for discovering shells around the nucleus? electron microscope is often a. Ernest Rutherford attributed to b. Neils Bohr a. H. Germer c. Erwin Schrödinger b. Ernst Ruska d. Wolfgang Pauli c. George P. Thomson d. Clinton J. Davisson 8. The wave theory of light was 3. He first measured negative first proposed by charge on an electron. a. Christiaan Huygens a. J. J. Thomson b. Isaac Newton b. Clinton Davisson c. Hermann Helmholtz c. Louis de Broglie d. Augustin Fresnel d. Robert A. Millikan 9. He was the first scientist 4. The existence of quarks was to find proof of Einstein’s first suggested by theory of relativity a. Max Planck a. Edwin Hubble b. Sheldon Glasgow b. George Gamow c. Murray Gell-Mann c. S. Chandrasekhar d. Albert Einstein d. Arthur Eddington 10. The credit for development of the cyclotron 5. The phenomenon of goes to: superconductivity was a. Carl Anderson b. Donald Glaser discovered by c. Ernest O. Lawrence d. Charles Wilson a. Heike Kamerlingh Onnes b. Alex Muller c. Brian D. Josephson 11. Who first proposed the use of absolute scale d. John Bardeen of Temperature? a. Anders Celsius b. Lord Kelvin c. Rudolf Clausius d.
    [Show full text]
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • From Theory to the First Working Laser Laser History—Part I
    I feature_ laser history From theory to the first working laser Laser history—Part I Author_Ingmar Ingenegeren, Germany _The principle of both maser (microwave am- 19 US patents) using a ruby laser. Both were nom- plification by stimulated emission of radiation) inated for the Nobel Prize. Gábor received the 1971 and laser (light amplification by stimulated emis- Nobel Prize in Physics for the invention and devel- sion of radiation) were first described in 1917 by opment of the holographic method. To a friend he Albert Einstein (Fig.1) in “Zur Quantentheorie der wrote that he was ashamed to get this prize for Strahlung”, as the so called ‘stimulated emission’, such a simple invention. He was the owner of more based on Niels Bohr’s quantum theory, postulated than a hundred patents. in 1913, which explains the actions of electrons in- side atoms. Einstein (born in Germany, 14 March In 1954 at the Columbia University in New York, 1879–18 April 1955) received the Nobel Prize for Charles Townes (born in the USA, 28 July 1915–to- physics in 1921, and Bohr (born in Denmark, 7 Oc- day, Fig. 2) and Arthur Schawlow (born in the USA, tober 1885–18 November 1962) in 1922. 5 Mai 1921–28 April 1999, Fig. 3) invented the maser, using ammonia gas and microwaves which In 1947 Dennis Gábor (born in Hungarian, 5 led to the granting of a patent on March 24, 1959. June 1900–8 February 1972) developed the theory The maser was used to amplify radio signals and as of holography, which requires laser light for its re- an ultra sensitive detector for space research.
    [Show full text]
  • Nfap Policy Brief » O C T O B E R 2017
    NATIONAL FOUNDATION FOR AMERICAN POLICY NFAP POLICY BRIEF» O CTOBER 2017 IMMIGRANTS AND NOBEL PRIZES : 1901- 2017 EXECUTIVE SUMMARY Immigrants have been awarded 39 percent, or 33 of 85, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics since 2000. In 2017, the sole American winner of the Nobel Prize in Chemistry was an immigrant, Joachim Frank, a Columbia University professor born in Germany. Immigrant Reiner Weiss, who was born in Germany and came to the United States as a teenager, was awarded the 2017 Nobel Prize in Physics, sharing it with two other Americans, Kip S. Thorne and Barry C. Barish. In 2016, all 6 American winners of the Nobel Prize in economics and scientific fields were immigrants. These achievements by immigrants point to the gains to America of welcoming talent from across the globe. It does not mean America should welcome only Nobel Prize winners. Such a policy would be impossible to implement, since most immigrant Nobel Prize winners enter the United States many years before being awarded this honor. Most people immigrate to another country in their 20s, particularly employment-based immigrants, who either study in America or come here to work shortly after obtaining a degree abroad. The average of age of Nobel Prize winners at the time of the award is 59.5 years, according to economist Mark J. Perry.1 Table 1 Immigrant Nobel Prize Winners in Chemistry, Medicine and Physics Since 2000 Immigrant Nobel Winners Since 2000 33 of 85 American winners have been immigrants Percentage of Immigrant Winners Since 2000 39% Source: Royal Swedish Academy of Sciences, National Foundation for American Policy, George Mason University Institute for Immigration Research.
    [Show full text]
  • Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman
    Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman Louis de Broglie Norman Ramsey Willis Lamb Otto Stern Werner Heisenberg Walther Gerlach Ernest Rutherford Satyendranath Bose Max Born Erwin Schrödinger Eugene Wigner Arnold Sommerfeld Julian Schwinger David Bohm Enrico Fermi Albert Einstein Where discovery meets practice Center for Integrated Quantum Science and Technology IQ ST in Baden-Württemberg . Introduction “But I do not wish to be forced into abandoning strict These two quotes by Albert Einstein not only express his well­ more securely, develop new types of computer or construct highly causality without having defended it quite differently known aversion to quantum theory, they also come from two quite accurate measuring equipment. than I have so far. The idea that an electron exposed to a different periods of his life. The first is from a letter dated 19 April Thus quantum theory extends beyond the field of physics into other 1924 to Max Born regarding the latter’s statistical interpretation of areas, e.g. mathematics, engineering, chemistry, and even biology. beam freely chooses the moment and direction in which quantum mechanics. The second is from Einstein’s last lecture as Let us look at a few examples which illustrate this. The field of crypt­ it wants to move is unbearable to me. If that is the case, part of a series of classes by the American physicist John Archibald ography uses number theory, which constitutes a subdiscipline of then I would rather be a cobbler or a casino employee Wheeler in 1954 at Princeton. pure mathematics. Producing a quantum computer with new types than a physicist.” The realization that, in the quantum world, objects only exist when of gates on the basis of the superposition principle from quantum they are measured – and this is what is behind the moon/mouse mechanics requires the involvement of engineering.
    [Show full text]
  • Herbert Kroemer: Biography
    Herbert Kroemer: Biography Herbert Kroemer was born in 1928 in Weimar, Germany. He received a Doctorate in Theoretical Solid-State Physics in 1952 from the University of Göttingen, Germany, with a dissertation on high-field electron transport in the collector junction of the then-new transistor. One of the Göttingen professors, Fritz Sauter, had organized a seminar sequence, where the students had to give in-depth reports on selected key papers in the emerging semiconductor field. Kroemer was assigned the 1949 paper by Bardeen and Brattain on Physical Principles Involved in Transistor Action. The paper mentioned a few as-yet unexplained observations, and during his presentation, Kroemer suggested that the drift velocity of the charge carriers might decrease again with increasing field at sufficiently high fields. Sauter was intrigued and suggested that this might be a good topic for a dissertation. Ultimately, the observations in question had a different explanation. But the dissertation led to a career in the physics and technology of semiconductors and semiconductor devices, in a number of research laboratories in Germany and the U.S. Since 1976, he has been with the University of California at Santa Barbara. Dr. Kroemer is the originator of several device concepts, including the heterostructure bipolar transistor, and the double-heterostructure laser. During the ‘60s, he also worked on microwave device problems, and in 1964 he was the first to publish an explanation for the Gunn Effect. With the emergence of molecular beam epitaxy in the mid-‘70s, he returned to heterostructure devices, and he was one of the first to apply the emerging new technology to new and unconventional materials combinations, such as GaP-on-Si and InAs/(Al,Ga)Sb structures, making several contributions to the development of MBE itself.
    [Show full text]
  • Ion Trap Nobel
    The Nobel Prize in Physics 2012 Serge Haroche, David J. Wineland The Nobel Prize in Physics 2012 was awarded jointly to Serge Haroche and David J. Wineland "for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems" David J. Wineland, U.S. citizen. Born 1944 in Milwaukee, WI, USA. Ph.D. 1970 Serge Haroche, French citizen. Born 1944 in Casablanca, Morocco. Ph.D. from Harvard University, Cambridge, MA, USA. Group Leader and NIST Fellow at 1971 from Université Pierre et Marie Curie, Paris, France. Professor at National Institute of Standards and Technology (NIST) and University of Colorado Collège de France and Ecole Normale Supérieure, Paris, France. Boulder, CO, USA www.college-de-france.fr/site/en-serge-haroche/biography.htm www.nist.gov/pml/div688/grp10/index.cfm A laser is used to suppress the ion’s thermal motion in the trap, and to electrode control and measure the trapped ion. lasers ions Electrodes keep the beryllium ions inside a trap. electrode electrode Figure 2. In David Wineland’s laboratory in Boulder, Colorado, electrically charged atoms or ions are kept inside a trap by surrounding electric fields. One of the secrets behind Wineland’s breakthrough is mastery of the art of using laser beams and creating laser pulses. A laser is used to put the ion in its lowest energy state and thus enabling the study of quantum phenomena with the trapped ion. Controlling single photons in a trap Serge Haroche and his research group employ a diferent method to reveal the mysteries of the quantum world.
    [Show full text]
  • The Innovation Mindset Through Real-World Lessons from Inventors
    BUILDING THE INNOVATION MINDSET THROUGH REAL-WORLD LESSONS FROM INVENTORS Before STEM (science, technology, engineering and COLLABORATION mathematics) and invention education became widely recognized as effective methods of teaching 21st-century skills, the National Inventors Hall of Fame® (NIHF) began crafting education programs that promote creativity. For more than 30 years, we have collaborated with our NIHF Inductees to develop meaningful opportunities for children to engage in hands-on innovation. Informed by lessons and stories from our Inductees’ professional lives, we have identified nine essential skills and traits that turn creative potential into tangible results. We call this the Innovation Mindset. Each year, while developing new curricula, our education team uses the Innovation Mindset as a guide to ensure that all participants in our in-person and at-home programs are developing the vital skills they need to succeed. Because many COLLABORATION of today’s students will likely enter a workforce filled with jobs that do not yet exist,1 we believe that one of the best ways to her life, she made the decision to do whatever it took to lead a prepare them is to teach them how to adapt and innovate when productive and active life. faced with challenges and adversity. She started learning Braille at age 15 and became so proficient By exploring the stories of NIHF Inductees, children can learn at reading English Braille that she earned a degree in English from real-world examples of the Innovation Mindset in action. literature from Otemon Gakuin University in Osaka, Japan, in 1982. As she considered what type of career she wanted to pursue, she came across an article that changed her life.
    [Show full text]
  • Sterns Lebensdaten Und Chronologie Seines Wirkens
    Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete.
    [Show full text]