Testing Pollen Viability

Total Page:16

File Type:pdf, Size:1020Kb

Testing Pollen Viability View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Epsilon Archive for Student Projects 2006-03-30 Master’s project in the Danish-Swedish Horticulture programme 2006:6 ISSN 1651-1579 Evaluation of transgenic Campanula carpatica plants by Stefan Bengtsson Biology Supervisors Sridevy Sriskandarajah Margrethe Serek Department of Agricultural Sciences The Royal Veterinary and Agricultural University Thorvaldensvej 40 DK-1871 Fredriksberg C Denmark 1 ___________________________________________________________________________ 2 ___________________________________________________________________________ Foreword This Master’s thesis forms part of my studies as a horticulturist at the University of Agricultural Sciences, Sweden. The work was carried out at the Royal Veterinary and Agricultural University, Denmark during the period April - November 2005. I am very happy to have had this opportunity to do my Master’s project in Denmark. I thank all the staff at the Department for support and help, especially since we had difficult circumstances to work under when the labs had to move and so on. The Royal Veterinary and Agricultural University Fredriksberg, March 2006 Stefan Bengtsson 3 ___________________________________________________________________________ 4 ___________________________________________________________________________ Table of contents Sammanfattning ........................................................................................................................... 13 Summary ...................................................................................................................................... 14 General introduction..................................................................................................................... 15 Problem statement ........................................................................................................................ 15 1 Literature review..................................................................................................................... 16 1.1 Campanula species ........................................................................................................ 16 1.1.1 Taxonomy of Campanula carpatica Jecq ......................................................... 16 1.1.2 Description of Campanulaceae family .............................................................. 16 1.1.3 Description of Campanula L. species................................................................ 16 1.1.4 Description of Campanula carpatica Jecq........................................................ 17 1.2 Postharvest quality of ornamentals ............................................................................... 17 1.2.1 Ethylene and postharvest life ............................................................................ 18 1.2.2 Biosynthesis of ethylene.................................................................................... 19 1.2.3 Effects of ethylene on plants and ornamentals.................................................. 21 1.3 Reproduction ................................................................................................................. 22 1.3.1 Development of the flower in Campanulaceae................................................. 22 1.3.2 Pollen viability .................................................................................................. 23 1.3.2.1 Staining for pollen viability................................................................ 23 1.3.2.2 Pollen tube germination ..................................................................... 24 1.3.2.2.1 In vitro germination for pollen viability................................. 24 1.3.2.2.2 In vivo germination for pollen viability.................................. 24 1.3.2.3 Crossing.............................................................................................. 25 1.4 Genetic engineering of ornamentals for longer postharvest life ................................... 26 1.4.1 Campanula......................................................................................................... 27 1.4.2 Carnation ........................................................................................................... 28 1.4.3 Petunia............................................................................................................... 29 1.4.4 Tomato .............................................................................................................. 30 1.4.5 Polymerase chain reaction (PCR) ..................................................................... 30 1.4.6 Promoters .......................................................................................................... 31 1.4.6.1 Cauliflower mosaic virus (35S) as a promoter................................... 31 1.4.6.2 Floral binding protein (fbp) as a promoter ......................................... 32 1.4.7 Gel electrophoresis............................................................................................ 32 1.4.8 Enzyme-linked immunosorbent assay (ELISA)................................................ 33 2 Materials and Methods ........................................................................................................... 35 2.1 Plant material................................................................................................................. 35 2.2 Ethylene sensitivity tests ............................................................................................... 35 2.3 Morphological studies................................................................................................... 37 2.4 Pollen fertility tests........................................................................................................ 37 2.4.1 Aniline blue staining test of pollen ................................................................... 37 2.4.2 Pollen tube germination test.............................................................................. 38 2.4.3 Crossing of transgenic lines .............................................................................. 38 2.5 Molecular investigations ............................................................................................... 40 5 ___________________________________________________________________________ 2.5.1 Extraction of DNA ............................................................................................ 40 2.5.2 Polymerase chain reaction (PCR) ..................................................................... 43 2.5.3 Recipe for the gel .............................................................................................. 44 2.5.4 Neomycin phosphotransferase II enzyme-linked immunosorbent assay (nptII ELISA) ....................................................................................................................... 45 3 Results ...................................................................................................................................... 47 3.1 Ethylene sensitivity tests ............................................................................................... 47 3.2 Morphological studies................................................................................................... 50 3.2.1 Description of the flower organs at different stages ......................................... 50 3.2.2 Description of the different transgenic lines ..................................................... 51 3.3 Results of the pollen fertility tests................................................................................. 53 3.3.1 Results of the aniline blue staining test............................................................. 53 3.3.2 Results of the pollen tube germination test ....................................................... 54 3.3.3 Results of the crossings..................................................................................... 55 3.4 Results from the PCR analyses ..................................................................................... 56 3.4.1 Extraction of DNA ............................................................................................ 56 3.4.2 Results of the first PCR set-up .......................................................................... 56 3.4.3 Results of the second PCR set-up ..................................................................... 58 3.5 Results of the nptII ELISA-test..................................................................................... 59 4 Discussion................................................................................................................................. 61 4.1 Methods......................................................................................................................... 61 4.2 Results ........................................................................................................................... 62 4.2.1 Ethylene sensitivity tests ................................................................................... 62 4.2.2 Morphological studies....................................................................................... 62 4.2.3 Pollen fertility tests............................................................................................ 62 4.2.4 Amplification of etr1-1 using the PCR method ................................................ 63 4.2.5 Concentration
Recommended publications
  • Testing Pollen Viability
    2006-03-30 Master’s project in the Danish-Swedish Horticulture programme 2006:6 ISSN 1651-1579 Evaluation of transgenic Campanula carpatica plants by Stefan Bengtsson Biology Supervisors Sridevy Sriskandarajah Margrethe Serek Department of Agricultural Sciences The Royal Veterinary and Agricultural University Thorvaldensvej 40 DK-1871 Fredriksberg C Denmark 1 ___________________________________________________________________________ 2 ___________________________________________________________________________ Foreword This Master’s thesis forms part of my studies as a horticulturist at the University of Agricultural Sciences, Sweden. The work was carried out at the Royal Veterinary and Agricultural University, Denmark during the period April - November 2005. I am very happy to have had this opportunity to do my Master’s project in Denmark. I thank all the staff at the Department for support and help, especially since we had difficult circumstances to work under when the labs had to move and so on. The Royal Veterinary and Agricultural University Fredriksberg, March 2006 Stefan Bengtsson 3 ___________________________________________________________________________ 4 ___________________________________________________________________________ Table of contents Sammanfattning ........................................................................................................................... 13 Summary .....................................................................................................................................
    [Show full text]
  • Systematic Studies of the South African Campanulaceae Sensu Stricto with an Emphasis on Generic Delimitations
    Town The copyright of this thesis rests with the University of Cape Town. No quotation from it or information derivedCape from it is to be published without full acknowledgement of theof source. The thesis is to be used for private study or non-commercial research purposes only. University Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido Thesis presented for the degree of DOCTOR OF PHILOSOPHY in the Department of Botany Town UNIVERSITY OF CAPECape TOWN of September 2009 University Roella incurva Merciera eckloniana Microcodon glomeratus Prismatocarpus diffusus Town Wahlenbergia rubioides Cape of Wahlenbergia paniculata (blue), W. annularis (white) Siphocodon spartioides University Rhigiophyllum squarrosum Wahlenbergia procumbens Representatives of Campanulaceae diversity in South Africa ii Town Dedicated to Ursula, Denroy, Danielle and my parents Cape of University iii Town DECLARATION Cape I confirm that this is my ownof work and the use of all material from other sources has been properly and fully acknowledged. University Christopher N Cupido Cape Town, September 2009 iv Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido September 2009 ABSTRACT The South African Campanulaceae sensu stricto, comprising 10 genera, represent the most diverse lineage of the family in the southern hemisphere. In this study two phylogenies are reconstructed using parsimony and Bayesian methods. A family-level phylogeny was estimated to test the monophyly and time of divergence of the South African lineage. This analysis, based on a published ITS phylogeny and an additional ten South African taxa, showed a strongly supported South African clade sister to the campanuloids.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,822,539 B2 Jensen (45) Date of Patent: Sep
    USOO8822.539B2 (12) United States Patent (10) Patent No.: US 8,822,539 B2 Jensen (45) Date of Patent: Sep. 2, 2014 (54) COMBINATION THERAPIES: INHIBITORS Bialer et al., “Progress report on new antiepileptic drugs: a Summary OF GABA TRANSAMINASE AND NKCC1 of the Seventh Eilat Conference (EILATVII).” Epilepsy Res., 61:1- 48, 2004 (Abstract only). (75) Inventor: Frances E. Jensen, Boston, MA (US) Clift and Silverman, “Synthesis and Evaluation of Novel Aromatic Substrates and Competitive Inhibitors of GABA Aminotransferase.” (73) Assignee: Children's Medical Center Bioorg. Med. Chem. Left., 18:3122-3125, 2008. Crewther et al., “Potassium Channel and NKCC Cotransporter Corporation, Boston, MA (US) Involvement in Ocular Refractive Control Mechanisms. PlosOne, 3:e2839, 2008. (*) Notice: Subject to any disclaimer, the term of this Cubells et al., “In vivo action of enzyme-activated irreversible inhibi patent is extended or adjusted under 35 tors of glutamic acid decarboxylase and gamma-aminobutyric acid U.S.C. 154(b) by 149 days. transaminase in retina vs. brain.” J. Pharmacol. Exp. Ther. 238:508 514, 1986 (Abstract only). (21) Appl. No.: 13/069,311 Duboc et al., “Vigabatrin, the GABA-transaminase inhibitor, dam ages cone photoreceptors in rats.” Ann. Neurol. 55:695-705, 2004 (22) Filed: Mar 22, 2011 (Abstract only). Dzhala et al., “Bumetanide enhances phenobarbital efficacy in a (65) Prior Publication Data neonatal seizure model.” Ann. Neurol. 63:222-235, 2008 (Abstract US 2011/0237554 A1 Sep. 29, 2011 only). Dzhala et al., “NKCC1 transporter facilitates seizures in the devel oping brain.” Nature Med., 11:1205-1213, 2005 (Abstract only). Follett et al., “Glutamate Receptor-Mediated Oligodendrocyte Tox Related U.S.
    [Show full text]
  • Plant Introduction, Vol. 53, 2012
    НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ•НАЦІОНАЛЬНИЙ БОТАНІЧНИЙ САД ім. М.М. ГРИШКА 1/2012 Plant introduction МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ • ЗАСНОВАНИЙ У 1999 р. • ВИХОДИТЬ 4 РАЗИ НА РІК • КИЇВ ЗМІСТ CONTENTS Теорія, методи і практичні аспекти Theory, Methods and Practical Aspects інтродукції рослин of Plant Introduction ГОРОБЕЦЬ В.Ф., АНДРУХ Н.А. Рід гейхера (Heu- 3 GOROBETS V.F., ANDRUKH N.A. The genus heu che- chera L.): історія інтродукції та селекції ra (Heuchera L.). history of introduction and selection УСМАНОВА Н.В. Итоги интродукции Dianthus 10 USMANOVA N.V. Results of Dianthus tianschanicus tian schancus Schischk. на юго-востоке Украины Schischk. introduction in the south-east of Ukraine ОПАЛКО О.А., ЧЕРНЕНКО А.Д., ОПАЛКО А.І. Фі- 16 OPALKO O.A., CHERNENKO A.D., OPALKO A.I. логенетичні зв’язки культивованих в Україні пред- Phylogenetic relationships in the representatives of ставників роду Malus Mill. genus Malus Mill. cultivated in Ukraine Збереження різноманіття рослин Conservation of Plant Diversity КОСЕНКО І.С., СЕРГІЄНКО Н.В. Стан вперше ін- 24 KOSENKO I.S., SERGIENKO N.V. Condition of ha- тродукованих в Україну ліщин у насадженнях zelnuts introduced for the first time in Ukraine and Національного дендропарку «Софіївка» НАН Ук- growing in plantations in the National Dendrological раїни Park Sofiyivka ПОДОРОЖНИЙ Д.С. Географічне поширення Iris 29 PODOROZHNIY D.S. Geographical distribution of sibirica L. в Україні Iris sibirica L. in Ukraine Біологічні особливості Biological Peculiarities інтродукованих рослин of Introduced Plants ВОЛОЩУК М.І., ШУМИК М.І. Особливості репро- 37 VOLOSHCHUK M.I., SHUMIK M.I. Features of the дуктивної біології Rhododendron myrtifolium Schott reproductive biology of Rhododendron myrtifolium and Kotschy в Українських Карпатах та перспек- Schott and Kotschy in the Ukrainian Carpathians тиви інтродукції and the prospects of introduction ВАШЕКА О.В.
    [Show full text]
  • The Syntheses of Β-Lactam Antibiotics from 3-Formylcephalosporins As the Key-Intermediates
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/19082 Please be advised that this information was generated on 2021-10-03 and may be subject to change. The Syntheses of β-Lactam Antibiotics from 3-Formylcephalosporins as the Key-intermediates Een wetenschappelijke proeve op het gebied van de Natuurwetenschappen, Wiskunde en Informatica Proefschrift ter verkrijging van de graad van doctor aan de Katholieke Universiteit Nijmegen, volgens besluit van het College van Decanen in het openbaar te verdedigen op woensdag 6 februari 2002 des namiddags om 1.30 uur precies door Rolf Keltjens Geboren op 9 april 1972 te Horst Promotor Prof. dr. B. Zwanenburg Copromotor Dr. A.J.H. Klunder Manuscriptcommissie Dr. E. de Vroom (DSM Anti-Infectives, Delft) Dr. J. Verweij (voorheen DSM Anti-Infectives, Delft) Prof. dr. ir. J.C.M. van Hest The research described in this PhD thesis was part of the Cluster Project "Fine- Chemistry" and was financially supported by DSM (Geleen, The Netherlands) and the Dutch Ministry of Economical Affairs (Senter). ISBN 90-9015389-6 Omslag: Penicillium chrysogenum (copyright DSM N.V.) "Experiment is the sole interpreter of the artifices of Nature" Leonardo da Vinci (1452-1519) Aan mijn ouders Paranimfen René Gieling Sander Hornes VOORWOORD Als het manuscript nagenoeg gereed is en het geheel klaar is voor verzending naar de drukker, is het ook de hoogste tijd om de mensen met wie je vier jaar lang intensief hebt samengewerkt te bedanken.
    [Show full text]
  • COST EFFECTIVE PRODUCTION of SPECIALTY CUT FLOWERS By
    COST EFFECTIVE PRODUCTION OF SPECIALTY CUT FLOWERS By TODD JASON CAVINS Bachelor of Science Southwestern Oklahoma State University Weatherford, Oklahoma 1997 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 1999 COST EFFECTIVE PRODUCTION OF SPECIALTY CUT FLOWERS Thesis Approved: ' 1 Thesis Advisor .. ;.; ,, ( Dean of the Graduate College 11 ACKNOWLEDGEMENTS The purpose of this study was to improve production methods of various specialty cut flower species. Improving production methods allows growers to reduce cost, improve plant quality and earn higher profits. This study involved three research areas of specialty cut flowers. Partial funding was provided by a S.A.R.E. grant and Bear Creek Farm, Stillwater, OK. I would like to thank my principle advisor Dr. John Dole for his encouragement, support, honesty and perseverance. I would like to thank Dr. Janet Cole and Dr. Jim Ownby for serving on my thesis committee. Dr. Cole offered valuable insight and direction towards the research. Dr. Ownby contributed with his wealth of knowledge in plant physiology. A special thanks goes to Vicki Stamback and the gang at Bear Creek Farm. Vicki's experience as a specialty cut flower grower allowed me to gain personal knowledge of the cut flower industry that would not have taken place without her. Vicki's efforts and cooperation greatly improved this study. I want to thank Randall Smith and Leah Aufill for their assistance and plant care. Tim Hooper also contributed by offering his experiences from the floriculture industry and providing stress relieving lunch breaks.
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Accd Nuclear Transfer of Platycodon Grandiflorum and the Plastid of Early
    Hong et al. BMC Genomics (2017) 18:607 DOI 10.1186/s12864-017-4014-x RESEARCH ARTICLE Open Access accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae Chang Pyo Hong1, Jihye Park2, Yi Lee3, Minjee Lee2, Sin Gi Park1, Yurry Uhm4, Jungho Lee2* and Chang-Kug Kim5* Abstract Background: Campanulaceae species are known to have highly rearranged plastid genomes lacking the acetyl-CoA carboxylase (ACC) subunit D gene (accD), and instead have a nuclear (nr)-accD. Plastid genome information has been thought to depend on studies concerning Trachelium caeruleum and genome announcements for Adenophora remotiflora, Campanula takesimana, and Hanabusaya asiatica. RNA editing information for plastid genes is currently unavailable for Campanulaceae. To understand plastid genome evolution in Campanulaceae, we have sequenced and characterized the chloroplast (cp) genome and nr-accD of Platycodon grandiflorum, a basal member of Campanulaceae. Results: We sequenced the 171,818 bp cp genome containing a 79,061 bp large single-copy (LSC) region, a 42,433 bp inverted repeat (IR) and a 7840 bp small single-copy (SSC) region, which represents the cp genome with the largest IR among species of Campanulaceae. The genome contains 110 genes and 18 introns, comprising 77 protein-coding genes, four RNA genes, 29 tRNA genes, 17 group II introns, and one group I intron. RNA editing of genes was detected in 18 sites of 14 protein-coding genes. Platycodon has an IR containing a 3′ rps12 operon, which occurs in the middle of the LSC region in four other species of Campanulaceae (T. caeruleum, A. remotiflora, C.
    [Show full text]
  • Light and Electron Microscope Evidence for Involvement of Neuroglia (Cerebellum/Cyclic AMP/Y-Aminobutyric Acid/Harmaline/Diazepam) V
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 3, pp, 1485-1488, March 1979 Neurobiology Immunocytochemical localization of cyclic GMP: Light and electron microscope evidence for involvement of neuroglia (cerebellum/cyclic AMP/y-aminobutyric acid/harmaline/diazepam) V. CHAN-PALAY* AND S. L. PALAYt Departments of *Neurobiology and tAnatomy, Harvard Medical School, Boston, Massachusetts 02115 Contributed by Sanford L. Palay, December 7, 1978 ABSTRACT Guanosine 3',5'-cyclic monophosphate (cGMP) presents cytopharmacological evidence from immunocyto- immunoreactivity in the rat's cerebellum was studied with light chemistry for the cellular and subcellular location of cGMP in and electron microscopy by the indirect fluorescence method some cerebellar neurons and particularly in neuroglial cells. and the peroxidase-antiperoxidase method. Labeled cells in- cluded neuroglial cells in the cerebellar cortex, white matter, and deep nuclei; some stellate and basket cells in the cortex; and MATERIALS AND METHODS some large neurons in the deep nuclei. No evidence was found Adult 200-300 g Sprague-Dawley rats, the indirect immu- for sagittal microzonation in the cGMP distribution. In the la- nofluorescence method (11), and the peroxidase-antiperoxidase beled cells, cGMP immunoreactive sites were localized to sur- face membranes, organelles, and the cytoplasmic matrix. (PAP) method (12) for light and electron microscopy were used. Specificity was indicated by the same pattern of labeling after Rabbit antisera were raised against the 2'-O-succinyl derivative treatment with cGMP immunoglobulin that had been adsorbed of cGMP or cAMP conjugated to limpet hemocyanin (13). More with adenosine 3',5'-cyclic monophosphate (cAMP) and by the than 50% of 2'-O-succinyl-cGMP ([125I]iodotyrosine methyl failure to label after treatment with normal rabbit sera or with ester derivative) or 2'-O-succinyl-cAMP ([1251]iodotyrosine cGMP immunoglobulin that had been adsorbed with 1 mM methyl ester derivative) (<0.01 pmol) was bound at a serum cGMP.
    [Show full text]
  • Increase in the Bmax of Y-Aminobutyric Acid-A Recognition Sites in Brain Regions of Mice Receiving Diazepam
    Proc. Nati. Acad. Sci. USA Vol. 81, pp. 2247-2251, April 1984 Neurobiology Increase in the Bmax of y-aminobutyric acid-A recognition sites in brain regions of mice receiving diazepam (muscimol/-aminobutyric acid receptors/benzodiazepine receptors/locomotor activity) P. FERRERO, A. GuIDOTTI, AND E. COSTA* Laboratory of Preclinical Pharmacology, National Institute of Mental Health, Saint Elizabeths Hospital, Washington, DC 20032 Contributed by E. Costa, December 12, 1983 ABSTRACT y-Aminobutyric acid (GABA) receptors were MATERIALS AND METHODS characterized in vivo by studying ex vivo the binding of [3H]Muscimol (New England Nuclear) labeled on the meth- [3H]muscimol to cerebellum, cortex, hippocampus, and cor- ylene side-chain (specific activity, 29.4 Ci/mmol; 1 Ci = 37 pus striatum of mice receiving intravenous injections of tracer GBq) was injected into the tail vein of female mice (20-25 g). doses of high-specific-activity (-30 Ci/mmol) [3H]muscimol. Routinely, the dose of [3H]muscimol injected was 5 uCi per This ligand binds with high affinity (apparent Kd, 2-3 x 10-9 20 g of body weight in 0.2 ml of saline. This radiolabeled M) to a single population of binding sites (apparent Bmax, 250- ligand dose was administered either alone or with various 180 fmol per 10 mg of protein). Pharmacological studies using doses of unlabeled muscimol. In some experiments, drugs that selectively bind to GABAA or GABAB receptors [3H]muscimol was injected into cerebral ventricles through a suggest that [3H]muscimol specifically labels a GABAA recog- polyethylene cannula chronically implanted (13). The dissec- nition site. Moreover, diazepam (1.5 ,umol/kg, i.p.) increases tion of the different brain areas (cerebellum, cortex, stria- the Bmax but fails to change the affinity of [3Hlmuscimol bind- tum, and hippocampus) was carried out on a chilled (00C) ing to different brain areas.
    [Show full text]
  • Molecular Aspects of Flower Senescence and Strategies to Improve Flower Longevity
    Breeding Science 68: 99–108 (2018) doi:10.1270/jsbbs.17081 Review Molecular aspects of flower senescence and strategies to improve flower longevity Kenichi Shibuya* Institute of Vegetable and Floriculture Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-0852, Japan Flower longevity is one of the most important traits for ornamental plants. Ethylene plays a crucial role in flower senescence in some plant species. In several species that show ethylene-dependent flower senescence, genetic modification targeting genes for ethylene biosynthesis or signaling has improved flower longevity. Although little is known about regulatory mechanisms of petal senescence in flowers that show ethylene- independent senescence, a recent study of Japanese morning glory revealed that a NAC transcription factor, EPHEMERAL1 (EPH1), is a key regulator in ethylene-independent petal senescence. EPH1 is induced in an age-dependent manner irrespective of ethylene signal, and suppression of EPH1 expression dramatically delays petal senescence. In ethylene-dependent petal senescence, comprehensive transcriptome analyses revealed the involvement of transcription factors, a basic helix-loop-helix protein and a homeodomain-leucine zipper protein, in the transcriptional regulation of the ethylene biosynthesis enzymes. This review summarizes molecular aspects of flower senescence and discusses strategies to improve flower longevity by molecular breeding. Key Words: ethylene, flower, programmed cell death, senescence, transcription factor. Introduction cell death (PCD),
    [Show full text]
  • Pharmacological Studies on a Locust Neuromuscular Preparation
    J. Exp. Biol. (1974). 6i, 421-442 421 *&ith 2 figures in Great Britain PHARMACOLOGICAL STUDIES ON A LOCUST NEUROMUSCULAR PREPARATION BY A. N. CLEMENTS AND T. E. MAY Woodstock Research Centre, Shell Research Limited, Sittingbourne, Kent {Received 13 March 1974) SUMMARY 1. The structure-activity relationships of agonists of the locust excitatory neuromuscular synapse have been reinvestigated, paying particular attention to the purity of compounds, and to the characteristics and repeatability of the muscle response. The concentrations of compounds required to stimu- late contractions of the retractor unguis muscle equal in force to the neurally evoked contractions provided a measure of the relative potencies. 2. Seven amino acids were capable of stimulating twitch contractions, glutamic acid being the most active, the others being analogues or derivatives of glutamic or aspartic acid. Aspartic acid itself had no excitatory activity. 3. Excitatory activity requires possession of two acidic groups, separated by two or three carbon atoms, and an amino group a to a carboxyl. An L-configuration appears essential. The w-acidic group may be a carboxyl, sulphinyl or sulphonyl group. Substitution of any of the functional groups generally causes total loss of excitatory activity, but an exception is found in kainic acid in which the nitrogen atom forms part of a ring. 4. The investigation of a wide variety of compounds revealed neuro- muscular blocking activity among isoxazoles, hydroxylamines, indolealkyl- amines, /?-carbolines, phenazines and phenothiazines. No specific antagonist of the locust glutamate receptor was found, but synaptic blocking agents of moderately high activity are reported. INTRODUCTION The study of arthropod neuromuscular physiology has been impeded by the lack of an antagonist which can be used to block excitatory synaptic transmission by a specific postsynaptic effect.
    [Show full text]