PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Geodetic exploration of strain along the El Pilar 10.1002/2014JB011483 Fault in northeastern Venezuela Key Points: C. Reinoza1,2, F. Jouanne1, F. A. Audemard2, M. Schmitz2, and C. Beck1 • Creep in the upper part of the EPF • Key GNSS data for the NE Venezuela 1Université de Savoie Mont Blanc, ISTerre, Le Bourget du Lac, France, 2Venezuelan Foundation for Seismological Research, • Identification of a compliant zone and rigidity contrast associated to the EPF Caracas, Venezuela Abstract We use Global Navigation Satellite Systems observations in northeastern Venezuela to constrain Correspondence to: the El Pilar Fault (EPF) kinematics and to explore the effects of the variable elastic properties of the surrounding C. Reinoza, medium and of the fault geometry on inferred slip rates and locking depth. The velocity field exhibits an
[email protected] asymmetric velocity gradient on either side of the EPF. We use five different approaches to explore possible models to explain this asymmetry. First, we infer a 1.6 km locking depth using a classic elastic half-space Citation: dislocation model. Second, we infer a 1.5 km locking depth and a 0.33 asymmetry coefficient using a Reinoza, C., F. Jouanne, F. A. Audemard, M. Schmitz, and C. Beck (2015), Geodetic heterogeneous asymmetric model, including contrasting material properties on either side of a vertical exploration of strain along the El Pilar fault, suggesting that the igneous-metamorphic terranes on the northern side are ~2 times more rigid Fault in northeastern Venezuela, than the sedimentary southern side. Third, we use a three-dimensional elastostatic model to evaluate the J.