Physiology in the Service of Fisheries Science

Total Page:16

File Type:pdf, Size:1020Kb

Physiology in the Service of Fisheries Science Rev Fish Biol Fisheries (2015) 25:425–447 DOI 10.1007/s11160-015-9393-y REVIEWS Physiology in the service of fisheries science: Why thinking mechanistically matters Andrij Z. Horodysky . Steven J. Cooke . Richard W. Brill Received: 7 January 2015 / Accepted: 13 July 2015 / Published online: 21 July 2015 Ó Springer International Publishing Switzerland 2015 Abstract Behavioral responses of fishes to variabil- stock size occurring over time. Because physiology is ity in environmental conditions and habitat quality are the transfer function that links specific environmental central to population-level demographic processes. conditions to behavior and fitness, we argue great gains Although field surveys can correlate abundance to can be made through the integration of physiology and habitat variables (physiochemical, biotic, and struc- fisheries science. These are complementary disci- tural), they cannot provide mechanistic explanations. plines, albeit ones that generally function at very Moreover, field surveys are often stratified by time or different temporal and spatial scales, as well as geographic criteria relevant to humans, whereas fishes different levels of biological organization. We argue stratify by habitat variables relevant to them. If more specifically that integrating physiological mechanisms underlying behavior are not explicitly approaches with behavioral studies and traditional understood, conclusions based on survey data can lead fisheries survey data (where each approach develops to biased inferences as to species-specific habitat hypotheses to be tested in the other) can mechanisti- requirements and preferences, as well as changes in cally link processes from cells through populations to place fisheries management in an appropriate ecosys- tem context. We further contend that population- and A. Z. Horodysky (&) species-specific mechanistic understanding of physio- Department of Marine and Environmental Science, logical abilities and tolerances can significantly help Hampton University, 100 E. Queen St, Hampton, VA 23668, USA to: improve stock assessments, describe essential fish e-mail: [email protected] habitat, predict rates of post-release mortality, develop effective bycatch reduction strategies, and forecast the S. J. Cooke population effects of increases in global temperatures Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and ocean acidification. Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada Keywords Aquaculture Á Bycatch Á Climate change Á Ecology Á Fisheries Á Fry’s paradigm Á Physiology Á R. W. Brill National Marine Fisheries Service, Northeast Fisheries Post-release survival Science Center, 166 Water Street, Woods Hole, MA 02543, USA Introduction R. W. Brill Virginia Institute of Marine Science, College of William Natural and anthropogenic changes to the structure & Mary, Gloucester Point, VA 23062, USA and function of global ecosystems paint a future of 123 426 Rev Fish Biol Fisheries (2015) 25:425–447 potentially unstable food security for humans (Roseg- scales of days to centuries; and over spatial scales from rant and Cline 2003). Global fisheries are simultane- a habitat patch to ocean basins with a focus on ously fishing down and farming up food webs to meet populations, communities, and ecosystems. Fisheries the ever-increasing demands for protein of a burgeon- science provides inferences that range from descrip- ing world population (Pauly et al. 1998; Naylor et al. tive to highly quantitative, but that are rarely mech- 2000; Jackson et al. 2001; Essington et al. 2006; Worm anistic in isolation (Smith 2002). We contend that et al. 2009). Humans are thus demanding more synoptic understanding of the environment-organism- productivity from aquatic habitats at a time when ecosystem interface will be greatly advanced through directional climate change and ocean acidification interdisciplinary collaborations between the mecha- further threaten the health of aquatic ecosystems nistically-driven physiological sciences, the pattern- worldwide (Sumaila et al. 2011; Halpern et al. 2012). oriented behavioral sciences, and the quantitatively- A sustainable future necessitates understanding the driven fisheries sciences. relationship of fisheries resources to environmental The disciplines of physiology and ecology, whether variation, including perturbations of anthropogenic through training, funding, or charge, differentially origin. approach the fundamental versus applied science In this synthesis, we therefore cover advances continuum. Physiologists have historically investi- arising from a synergistic view of fish physiology and gated questions that piqued their intellectual curiosity, field fisheries ecology, first in the context of ecological often using a reductionist approach to minimize sciences, and second, in the context of applied variation (Mangum and Hochachka 1998). Fishery fisheries science. Fish physiology and fisheries science biologists, in contrast, have traditionally conducted are complementary disciplines that function at differ- multivariable research more concerned with optimal ent temporal and spatial scales, but are united at the or sustainable harvesting strategies (Ulltang 1998; study of individual behavior (Fig. 1). Fish physiolo- Rothschild and Beamish 2009), or (more recently) gists typically investigate questions over temporal with mitigating the profound effects that humans have scales from milliseconds to seasons, and over spatial on the living aquatic world (Halpern et al. 2008) and scales from the sub-micron to mesocosms, with a educating society about the need for resource conser- primary focus on cellular, organ, and organismal vation (e.g., Jacquet and Pauly 2007). It is long function. Such investigations typically try to identify overdue for this dichotomy to be jettisoned because cause and effect relationships, providing mechanistic fertile interdisciplinary ground exists, especially when insights at the level of the individual or below, but fisheries scientists consider directly the mechanistic they may not scale to meaningful population and basis underlying the hypotheses and field-observed ecosystem contexts in isolation. By contrast, fisheries patterns they are investigating, and when physiologists scientists (including ecologists and population biolo- reach beyond reductionist approaches and univariate gists) typically investigate questions over temporal statistical analyses so that inferences can scale Fig. 1 Complementary Biosphere Ecosystem temporal, spatial, and Ocean Basin Community Descriptive or organizational scales of fish Species Range Fisheries Species Organizational Scale physiology and fisheries quantitative, biology. The intersection Seascape but rarely mechanistic Biology Population between these disciplines— Habitat patch Subpopulation the study of behavior and Whole organism Behavior, Fitness Individual (internal fitness (including growth, milieu Organ survival, and Spatial Scale or Tissue reproduction)—is fertile in vivo) Fish Physiology ground for collaboration Primarily Cell mechanistic, rarely quantitative Organelle In vitro Molecule Millisecond Second Minute Hour Day Month Year Decade Century Temporal Scale 123 Rev Fish Biol Fisheries (2015) 25:425–447 427 meaningfully to the population level. This incorpora- collaboration (e.g., Iwama et al. 1997), we focus this tion, however, generally requires a detailed under- synthesis on the interactions between physiology and standing of physiological principles that fisheries the field-based and quantitative ecological sciences. biologists—and of quantitative techniques and applied fisheries-relevant issues that fish physiologists—are generally ill-equipped to apply (by interest, training, The need for understanding how fishes relate and available resources) or many not fully appreciate. to the environment The direct interaction of the physiological and fisheries sciences, and collaboration with the ecosys- Defining how animals relate to their environment bears tem sciences, economics, and the social sciences, consequences for how the disciplines of physiology holds the potential to describe and forecast the effects and ecology approach studying them, with clear of natural and anthropogenic changes on fisheries, and implications for management and policy. Following to address the societal concerns that operate at the the seminal work of Frederick Fry, fish physiologists scale of populations, communities, and ecosystems have generally used an autecological approach to (Metcalfe et al. 2012). Similar arguments are also define how environmental resources and habitat affect being made for the integration of physiology, behav- an individual; whereas following the seminal work of ior, and ecology, especially as it relates to predicting G. Evelyn Hutchenson, fisheries ecologists and mod- the effects of anthropogenic activities (e.g., climate elers generally follow a synecological focus on how change, deforestation, pollution) on the world’s interacting individuals and species affect the environ- ecosystems and preservation of critical ecosystem ment (Devictor et al. 2010). Fry (1947) elucidated the services (e.g., Chown and Gaston 2008; Denny and metabolic basis for behavior and activity in response to Helmuth 2009; Helmuth 2010; Sih et al. 2010). environmental conditions, defining the metabolic In this synthesis, we briefly describe the potential scope for activity (the difference between maximum for productive interdisciplinary collaboration
Recommended publications
  • Horodysky Throws Light on Fish Vision
    3 Horodysky Throws Light on Fish Vision Andrij Horodysky’s research can be The research is part of an emerg- Horodysky also benefits summed up in a simple saying—what ing field called “visual ecology” that from collaborations with Char- you see is what you get. promises to throw new light on animal ter captains like Steve Wray, Horodysky, a VIMS graduate behavior and the interactions between who provide him with the fish student working with faculty members predators and prey. Horodysky and his he needs for his experiments. Drs. Rich Brill, Rob Latour, and Jack advisors are pioneers in applying this Horodysky’s preliminary Musick, is using electroretinography—a field to Bay fishes. results provide basic insight technique first developed for studying The researchers are focusing their into how Bay fishes see the human vision—to explore how fishes initial studies on recreationally impor- world. The results show that see the underwater world of Chesapeake tant Bay species such as striped bass, some species, like striped bass, Bay. weakfish, croaker, and drum. This re- are adapted to see large, swiftly Brill, an internationally recognized flects the source of their funding, which moving prey in daylight. Oth- fish physiologist who heads NOAA’s comes from the Recreational Fishing ers, like weakfish, are adapted Cooperative Marine Education and Advisory Board of the Virginia Marine to see small, sluggish prey at Research (CMER) program at VIMS, Resources Commission. The Board uses night. has recently turned his attention to the money from Virginia’s saltwater fishing He is also comparing the sensory world of fish and other marine license to fund projects that improve the types of prey that fishes are organisms.
    [Show full text]
  • Hughes and Shelton: the Fathers of Fish Respiration
    © 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 3191-3192 doi:10.1242/jeb.095513 CLASSICS Hughes and Shelton: the oxygen carried in the blood is usually 1984) and studies of gas exchange in far greater than that in an equivalent elasmobranchs and birds also owe much fathers of fish respiration volume of water. Hughes and Shelton to the analysis by Hughes and Shelton. concluded, therefore, that water flow As fish gas exchange systems became over the gills must be much higher than better understood and described, blood flow through the gills to deliver mammalian terms such as V (ventilation), the required rate of oxygen transfer for Q (blood flow) and the V/Q ratio were metabolism. Hughes and Shelton adopted to facilitate comparison between introduced the term ‘capacity rate ratio’ different gas exchange systems so that (ratio of flow × oxygen content of blood the terms ‘capacity rate ratio’, and and water) and analyzed the effects of ‘effectiveness of transfer’ have largely this on oxygen transfer. They also disappeared from discussions of gas introduced the term ‘effectiveness of exchange. transfer’, defined as the actual rate of Fish Respiration oxygen transfer in relation to the At the time of the review, knowledge David Randall discusses George Hughes maximum possible rate of transfer. There of the blood circulation in fish was and Graham Shelton’s classic paper ‘Respiratory mechanisms and their were insufficient data for a detailed limited. Fish had been placed in sealed nervous control in fish’, published in analysis, but what they pointed out was chambers and the extent to which Advances in Comparative Physiology and that effectiveness depended on the oxygen could be removed from the Biochemistry in 1962.
    [Show full text]
  • Success Stories and Emerging Themes in Conservation Physiology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship at UWindsor University of Windsor Scholarship at UWindsor Biological Sciences Publications Department of Biological Sciences 2016 Success stories and emerging themes in conservation physiology Christine L. Madliger University of Windsor Steven J. Cooke Erica J. Erica Jennifer L. Funk Kevin R. Hultine See next page for additional authors Follow this and additional works at: https://scholar.uwindsor.ca/biologypub Part of the Biology Commons Recommended Citation Madliger, Christine L.; Cooke, Steven J.; Erica, Erica J.; Funk, Jennifer L.; Hultine, Kevin R.; Hunt, Kathleen E.; Rohr, Jason R.; Sinclair, Brent J.; Suski, Cory D.; Willis, Craig K.R.; and Love, Oliver P., "Success stories and emerging themes in conservation physiology" (2016). Conservation Physiology, 4, 1. https://scholar.uwindsor.ca/biologypub/1137 This Article is brought to you for free and open access by the Department of Biological Sciences at Scholarship at UWindsor. It has been accepted for inclusion in Biological Sciences Publications by an authorized administrator of Scholarship at UWindsor. For more information, please contact [email protected]. Authors Christine L. Madliger, Steven J. Cooke, Erica J. Erica, Jennifer L. Funk, Kevin R. Hultine, Kathleen E. Hunt, Jason R. Rohr, Brent J. Sinclair, Cory D. Suski, Craig K.R. Willis, and Oliver P. Love This article is available at Scholarship at UWindsor: https://scholar.uwindsor.ca/biologypub/1137 Volume 4 • 2016 10.1093/conphys/cov057 Perspective Success stories and emerging themes in conservation physiology Christine L. Madliger1,*, Steven J. Cooke2, Erica J. Crespi3, Jennifer L.
    [Show full text]
  • Should I Eat the Fish I Catch?
    EPA 823-F-14-002 For More Information October 2014 Introduction What can I do to reduce my health risks from eating fish containing chemical For more information about reducing your Fish are an important part of a healthy diet. pollutants? health risks from eating fish that contain chemi- Office of Science and Technology (4305T) They are a lean, low-calorie source of protein. cal pollutants, contact your local or state health Some sport fish caught in the nation’s lakes, Following these steps can reduce your health or environmental protection department. You rivers, oceans, and estuaries, however, may risks from eating fish containing chemical can find links to state fish advisory programs Should I Eat the contain chemicals that could pose health risks if pollutants. The rest of the brochure explains and your state’s fish advisory program contact these fish are eaten in large amounts. these recommendations in more detail. on the National Fish Advisory Program website Fish I Catch? at: http://water.epa.gov/scitech/swguidance/fish- The purpose of this brochure is not to 1. Look for warning signs or call your shellfish/fishadvisories/index.cfm. discourage you from eating fish. It is intended local or state environmental health as a guide to help you select and prepare fish department. Contact them before you You may also contact: that are low in chemical pollutants. By following fish to see if any advisories are posted in these recommendations, you and your family areas where you want to fish. U.S. Environmental Protection Agency can continue to enjoy the benefits of eating fish.
    [Show full text]
  • One Hundred Research Questions in Conservation Physiology for Generating Actionable
    Volume 00 • 2021 10.1093/conphys/coab009 Perspective One hundred research questions in conservation physiology for generating actionable evidence to inform conservation policy Downloaded from https://academic.oup.com/conphys/article/9/1/coab009/6214572 by guest on 16 April 2021 and practice Steven J. Cooke1,*, Jordanna N. Bergman1, Christine L. Madliger1, Rebecca L. Cramp2, John Beardall3,GaryBurness4,TimothyD.Clark5,BenDantzer6, Erick de la Barrera7, Nann A. Fangue8, Craig E. Franklin2, Andrea Fuller9,LucyA.Hawkes10, Kevin R. Hultine11, Kathleen E. Hunt12,OliverP.Love13, Heath A. MacMillan14, John W. Mandelman15,FelixC.Mark16, Lynn B. Martin17,AmyE.M.Newman18, Adrienne B. Nicotra19,GrahamD.Raby4,SharonA.Robinson20, Yan Ropert-Coudert21, Jodie L. Rummer22, Frank Seebacher23, Anne E. Todgham24, Sean Tomlinson25 and Steven L. Chown3 1Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1S 5B6, Canada 2School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia 3Securing Antarctica’s Environmental Future, School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia 4Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada 5School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia. 6 Department of Psychology, Department of Ecology & Evolutionary Biology, Ann Arbor, MI 48109,
    [Show full text]
  • Neopterygian Fish with Secondary Sexual Characteristics Found from the Middle Triassic of China 18 February 2016
    Neopterygian fish with secondary sexual characteristics found from the Middle Triassic of China 18 February 2016 Sciences, and his collaborator reported a new sexually dimorphic primitive neopterygian fish, Venusichthys comptus, based on 30 exceptionally well-preserved specimens from the Middle Triassic (Pelsonian, Anisian) Luoping Lagerstätte of eastern Yunnan, China. The discovery represents the oldest known secondary sexual characteristics in Neopterygii, and provides an important addition for understanding the behavior, reproduction, and early diversification of Neopterygii. The Luoping Lagerstätte fossil beds are composed of thinly laminated micritic limestone alternating with silty limestone, indicating a semi-enclosed intraplatform depositional environment. This new species has a blunt snout, an elongate and fusiform body, and an almost homocercal caudal fin with a forked profile. All 30 specimens represent a small- Fig.1 Female specimen of Venusichthys comptus before sized primitive neopterygian with a standard length (a) and after coated with ammonium chloride. Credit: XU ranging from 25 to 38 mm. Guanghui Secondary sexual characteristics are features that appear at sexual maturity and distinguish the two sexes of a species. Studies of secondary sexual characteristics in a species are vital for fully understanding its behavior, reproduction, and evolution. Secondary sexual characteristics are easily observed and studied in living animals, but the situation is rather more complicated in extinct animals, primarily due to inadequacies of sample size or the fragmentary nature of fossil remains. Neopterygii are the most diverse group of extant ray-finned fishes, which underwent a rapid radiation in the aftermath of end-Permian mass extinction. In a paper published online 23 January in the journal Science Bulletin, Dr.
    [Show full text]
  • Fishery Science – Biology & Ecology
    Fishery Science – Biology & Ecology How Fish Reproduce Illustration of a generic fish life cycle. Source: Zebrafish Information Server, University of South Carolina (http://zebra.sc.edu/smell/nitin/nitin.html) Reproduction is an essential component of life, and there are a diverse number of reproductive strategies in fishes throughout the world. In marine fishes, there are three basic reproductive strategies that can be used to classify fish. The most common reproductive strategy in marine ecosystems is oviparity. Approximately 90% of bony and 43% of cartilaginous fish are oviparous (See Types of Fish). In oviparous fish, females spawn eggs into the water column, which are then fertilized by males. For most oviparous fish, the eggs take less energy to produce so the females release large quantities of eggs. For example, a female Ocean Sunfish is able to produce 300 million eggs over a spawning cycle. The eggs that become fertilized in oviparous fish may spend long periods of time in the water column as larvae before settling out as juveniles. An advantage of oviparity is the number of eggs produced, because it is likely some of the offspring will survive. However, the offspring are at a disadvantage because they must go through a larval stage in which their location is directed by oceans currents. During the larval stage, the larvae act as primary consumers (See How Fish Eat) in the food web where they must not only obtain food but also avoid predation. Another disadvantage is that the larvae might not find suitable habitat when they settle out of the ~ Voices of the Bay ~ [email protected] ~ http://sanctuaries.noaa.gov/education/voicesofthebay.html ~ (Nov 2011) Fishery Science – Biology & Ecology water column.
    [Show full text]
  • Giant Fossil Coelacanths from the Late Cretaceous of the Eastern
    ^rfij^i^v^^™, - » v ' - - 4 j/ N ^P"" ,- V ^™ V- -*^ >•;:-* ' ^ * -r;' David R. Schwimmer, Geologist, Columbus State University Introduction In Autumn, 1987, a sizeable mass of fossil bone was discovered by amateur collectors in the bed of a small creek in eastern Alabama. The bone-bearing rock, some 300 kg in weight, was collected by a party led by G. Dent Williams and transferred to the paleontology laboratory at Columbus State University. Williams prepared most of the material using air percussion tools, and I further cleared some bones with acetic acid. A mandible (lower jaw bone) of 502 mm length was the first bone prepared from the material. It strangely lacked evidence of both teeth and tooth sockets, and it was covered medially with coarse denticulation resembling #40 grit sandpaper. The jawbone conformed with no recognizable North American Late Cretaceous fish or four-legged animal, and, given the large size of the mandible, my initial search for an identification ranged from ankylosaurid dinosaurs, to mosasaurs, to the larger contemporary fish, such as Xiphactinus. Nothing known in the Late Cretaceous of North America matched the mandible nor any other bone which was subsequently prepared from this matrix. J.D. Stewart of the L.A. County Museum was prior fossil record of a North American coelacanth is concurrently studying fossils of small marine Diplurus newarki, from freshwater deposits of earliest coelacanths from the Late Cretaceous of western Kansas, Jurassic age (ca. 205 Myr.: Schaeffer, 1941, 1952). USA (which were also a new discovery at the time: see Forey (1981) and Maisey (1991) recognized two sub- Stewart et al., 1991).
    [Show full text]
  • Leigh SC, Papastamatiou Y, and DP German. 2017. the Nutritional
    Rev Fish Biol Fisheries (2017) 27:561–585 DOI 10.1007/s11160-017-9481-2 REVIEWS The nutritional physiology of sharks Samantha C. Leigh . Yannis Papastamatiou . Donovan P. German Received: 28 December 2016 / Accepted: 9 May 2017 / Published online: 25 May 2017 Ó Springer International Publishing Switzerland 2017 Abstract Sharks compose one of the most diverse Keywords Digestive efficiency Á Digestive and abundant groups of consumers in the ocean. biochemistry Á Gastrointestinal tract Á Microbiome Á Consumption and digestion are essential processes for Spiral intestine Á Stable isotopes obtaining nutrients and energy necessary to meet a broad and variable range of metabolic demands. Despite years of studying prey capture behavior and Introduction feeding habits of sharks, there has been little explo- ration into the nutritional physiology of these animals. Sharks make up one of the most abundant and diverse To fully understand the physiology of the digestive groups of consumers in the ocean (Fig. 1, Compagno tract, it is critical to consider multiple facets, including 2008). They may play an important ecological role in the evolution of the system, feeding mechanisms, energy fluxes in marine environments and in impact- digestive morphology, digestive strategies, digestive ing the biodiversity of lower trophic levels that we biochemistry, and gastrointestinal microbiomes. In depend on as a food and economic resource (e.g., each of these categories, we make comparisons to Wetherbee et al. 1990; Corte´s et al. 2008). However, what is currently known about teleost nutritional beyond prey capture methods and dietary analyses, the physiology, as well as what methodology is used, and nutritional physiology of sharks is woefully under- describe how similar techniques can be used in shark studied.
    [Show full text]
  • Conservation Physiology of Marine Fishes: State of the Art and Prospects
    Volume 4 • 2016 10.1093/conphys/cow046 Review article Conservation physiology of marine fishes: state of the art and prospects for policy David J. McKenzie1,*, Michael Axelsson2, Denis Chabot3, Guy Claireaux4, Steven J. Cooke5, Richard A. Corner6, Gudrun De Boeck7, Paolo Domenici8, Pedro M. Guerreiro9, Bojan Hamer10, Christian Jørgensen11, Shaun S. Killen12, Sjannie Lefevre13, Stefano Marras8, Basile Michaelidis14, Downloaded from Göran E. Nilsson13, Myron A. Peck15, Angel Perez-Ruzafa16, Adriaan D. Rijnsdorp17, Holly A. Shiels18, John F. Steffensen19, Jon C. Svendsen20, Morten B. S. Svendsen19, Lorna R. Teal17, Jaap van der Meer21, Tobias Wang22, Jonathan M. Wilson23, Rod W. Wilson24 and Julian D. Metcalfe25 1 Centre for Marine Biodiversity Exploitation and Conservation, UMR MARBEC (CNRS, IRD, IFREMER, UM), Place E. Bataillon cc 093, 34095 http://conphys.oxfordjournals.org/ Montpellier, France 2Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, 413 90 Gothenburg, Sweden 3Fisheries and Oceans Canada, Institut Maurice-Lamontagne, Mont-Joli, QC, Canada G5H 3Z4 4Université de Bretagne Occidentale, UMR LEMAR, Unité PFOM-ARN, Centre Ifremer de Bretagne, ZI Pointe du Diable. CS 10070, 29280 Plouzané, France 5Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6 6Longline Environment Ltd, 88 Wood Street, London EC2V 7RS, UK 7Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp,
    [Show full text]
  • Explore a Fish Lesson Plan
    Grade Level 4 - 12 EXPLORE A FISH Duration FISH DISSECTION 1 - 1 ½ hours Subject/Subject Area Focus Overview Science, language arts; Students will examine the external and internal anatomy of various fish Analysis, application, species. They will note similarities and differences. Students will then communication, use their observations to make inferences about the relationships among comparing similarities and them. differences, description, discussion, drawing, small Background information group work, using time This activity gives students first-hand experience exploring the and space, writing. adaptations which allow fish to function in their environment. Students look at both form and function of different systems to help understand Materials how specific adaptations assist organisms in adapting to their For each pair (or group) of environment. How do fish move through the water and keep their vertical students: position within the water? Students can make comparisons between their • Whole body fresh fish own anatomy and the anatomy of a fish. • Dissecting trays or thick pads of newspaper It is important for students to understand the purpose of this activity • Scissors or Scalpel is to study the internal and external anatomy of a fish. It requires (Most cuts can be concentration, listening skills and being able to follow directions. All made with a pair of students should be given the option of not participating in the activity classroom scissors) and be allowed an alternate activity. You may want to do a practice run on • Probe (A large partially your own. straightened paper clip works well) You can either do this activity as a teacher-led class discussion or break • Forceps (A nice tool but the students into cooperative learning groups and give each group: a fish, not necessary) “Explore a Fish” worksheet, dissection and anatomy sheet, newspaper • Paper towels and and something to cut the fish with.
    [Show full text]
  • Fish Anatomy
    Fish Anatomy Objectives: become acquainted with the general external and internal structures of fishes, and how they vary functionally and taxonomically Head mouth mouth position – superior, terminal, sub-terminal, inferior teeth types and locations barbels, tubercules – what are their positions and uses? sensory pores nares Body shapes – which taxa have each, what are the advantages of each type? fusiform sagittaform aguilliform compressiform depressiform filiform Fins – what are each used for? how does their presence or location vary among taxa? paired fins: pelvic pectoral anal single fins: dorsal - one or two; rarely three, as in cod family (median) caudal - adipose spines vs. rays Internal organs GI tract, reproductive organs, excretory system including kidneys, liver gas bladder (present or absent, sealed or unsealed, connected or not to other organs) Body musculature (more on these later when we talk about swimming) hypaxial muscles epaxial muscles myomeres Skin and scales presence, absence, or partial covering of scales functions of scales types of scales: placoid, ganoid, cycloid, ctenoid, scutes skin pigmentation: melanophores Anatomy, cont. Terms/structures you should know: Osteology Skull branchial arches; gill rakers premaxilla, maxilla, dentary operculum: opercle, subopercle, preopercle, interopercle bones which have teeth attached, including pharyngeal teeth otoliths Vetebral column neural spine, neural arch, neural canal centrum zygopophysis, basapophysis hemal spine, hemal arch (not always present?), hemal canal ribs (dorsal - epipleurals, and ventral - pleurals) Caudal skeleton urostyle hypurals epurals Appendicular skeleton pterygiophores lepidotrichia ceratotrichia pectoral girdle - cleithrum pelvic girdle .
    [Show full text]