Amateur Radio Emergency Communications in the Modern Era

Total Page:16

File Type:pdf, Size:1020Kb

Amateur Radio Emergency Communications in the Modern Era Amateur Radio Emergency Communications in the Modern Era Orv Beach, Amateur radio callsign W6BI [email protected] / [email protected] # 28 In the Beginning… Morse code, then voice In the Beginning… Radioteletype, then AX.25 packet radio Winlink (Winlink Global Radio Email) A worldwide messaging system. Can use these relatively low speed modulations/protocols. Data rates (not throughput) typically between 350 bits/second and 6 kilobits/second: ALE (Automatic Link Establishment) APRS (Automatic Packet Reporting System) AX.25 Packet Radio D-Star (“(Digital Smart Technologies for Amateur Radio)” – digital voice PACTOR, PACTOR-II, PACTOR-III, PACTOR-IV VARA FM, VARA HF Recently added support for: amateur radio IP networks Significantly faster: data rates can be over 100 Megabits/second. Throughput between 5 and 10 Megabits/second Has a large set of standardized messaging templates: FEMA, ICS (Incident Command System), SATERN, various state-specific templates, and more Ham IP networking goes here Winlink Express (Client). Like email but considerably more complex to configure, depending on protocol and route specified Ham Radio Networking Uses stock outdoor wireless access points – few hardware mods Ham radio network links can be more than 100 Megabits/second (That’s modulation rate, not throughput) Access points are loaded with custom software Together, they create a ham radio TCP/IP network Amateur Radio Emergency Data Network (AREDN) Software Derived from OpenWrt open source router software Supports: Ubiquiti, TP-Link, Mikrotik and GL.Inet brands - 70+ different models Four ham radio bands Internet tunneling between nodes Allows operations in Part 97-only channels* MIMO/802.11n operation* Provides DNS & DHCP services, route discovery and routing information* *These three combined make ham radio networks easy to construct! The Digital Networking Bands supported by AREDN Software 902-928 MHz –not used much: only one 5 MHz wide channel, very noisy in urban and suburban areas, we’re secondary on that band, and the gear is relatively expensive 2.4 GHz – 2300-2450 MHz –Only one usable 10 MHz wide Part 97 channel (Channel -2); Channel -1 may work OK away from cities. –Noisy due to splatter from poorly designed Part 15 wireless gear 3 GHz – 3300-3500 MHz –The good news: it’s all ours! No U.S. Part 15 in this band –The bad news: we have to buy export equipment and it’s almost double the price of 2 or 5 GHz equipment – The worse news: in November of 2020, the FCC took away this band and gave it to the 5G carriers; we’ll have one to two years of grandfathered use before being required to vacate. 5 GHz Band – 5650-5925 MHz –Lots of channels. –The Part 97 band overlaps a lot of Part 15 channels, which can be useful for spreading traffic out. – We’re secondary in this band. In October of 2020 the FCC took away primary occupancy of this band from the DOT (Department of Transportation). They’ll be allowing Part 15 users to spread into the entire band in the near future. Networking is a modern ham radio activity But it's just infrastructure. It doesn't accomplish anything… It's all about the “Services” Networking Services Services = things you can actually use Keyboard to keyboard Dropboxes (text) Web servers Voice Repeater linking Video Anything else you can think Email of subject to the Part 97 regulations Document editing/management Applications (Services) Some examples Team Communications Tools E.g., Slack, Mattermost, RocketChat Text & pictures Multiple channels available Web access + Windows, IOS, MacOS, and Android apps available Mattermost VOIP (Voice Over IP w/Phones) VOIP PBX installed in mountaintop repeater building (WD6EBY – Sulphur Mountain, Ojai, California) Voice mail, conference calls, etc VOIP Phones Showing a missed phone call Showing one or more voice messages waiting Another VOIP PBX Raspberry Pi 3 running FreePBX Deployed to the adjacent valley; trunked to first PBX Offers extensions, voice mail, conference bridges, etc. Collaboration Servers Like the gamers use to coordinate their teams Voice and/or video chat. Very useful – and fun! Like the gamers use to coordinate their teams TeamSpeak, Mumble, TeamTalk, etc. Teamtalk provides these features: – One to one chats – Many to many (chat rooms) – Can set up as many channels as necessary – Multiple, simultaneous conversations possible – all full duplex (you can interrupt whomever’s speaking :-D ) – Speaker/microphone or headset (HIGH quality audio; not limited to 300-3,000 Hz like regular ham radio) PTT, VOX or open mic (each audio stream uses about 30 kbps – minimal load on a healthy network) File sharing and desktop sharing are also available The Teamtalk server runs nicely on a Raspberry Pi (RPI 3: typically < 10-15% CPU utilization) Clients available for Windows, Debian Linux, MacOS, IOS, and Android Teamtalk Weekly Net – Call of person talking has green background; when they unkey it turns yellow Teamtalk Net Video can be bandwidth-heavy. It’s optional Aux channels; switch to one by double-clicking Green – who’s talking Yellow – who talked last EmComm Network nodes are deployed to EOCs, hospitals, etc., alongside existing amateur radio installations. Computer is equipped with Teamtalk app Winlink Express app Also equipped with VOIP phone The Thomas Fire – Ventura, CA Dec 2017. Streamed to from ham network to YouTube for wide viewing The Woolsey Fire – Thousand Oaks, CA 11/2018 Also streamed to YouTube Network map – Yakima, WA Network map – San Francisco, CA Network map – Hawaiian Islands Network map – SoCal (~410 reachable nodes visible) Typical end-user Configuration AREDN nodes for both 2 and 5 GHz; provides redundancy. Done when possible at EOCs, hospitals and other critical sites. Typical end-user Configuration High-gain dish for access to distant network backbone node; Lower-gain node for local user access (neighborhood) Mikrotik LDF 5 (5 GHz) installed at surplus satellite dish feedpoint using universal mount ($8 from Amazon) Ideal for hams under an HOA, as satellite dishes are allowed LDF 2 (2 GHz) now also supported by AREDN software Small site Example - North Orange County, California 120 degree sector antennas + nodes for 2.4, 3 & 5 GHZ Medium Site Example – Chatsworth Peak, California User access points on 2.4 & 5 GHz; dish for backbone link; PTZ camera Another medium-sized site (post wind-storm) (80% FM repeaters, 20% networking) Verdugo Peak, California Large site (co-located at commercial site) Yellow-highlighted gear is for mesh network. Multiple sector antennas provide for 360 degree user access. Backbone links (not visible, lower on tower) + PTZ camera Ham Radio Allocations – 2.4 & 3 GHz Only one usable 10 MHz channel. Splatter from Part 15 limits usefulness 11/2020 – FCC removed amateur allocation; will be given to 5G carriers. We’ll have 1-2 years to vacate. Ham Radio Allocations – 5 GHz 11/2020 – FCC removed DOT’s primary allocation (they hadn’t started using it). We kept our secondary allocation but the FCC will let Part 15 users expand into the entire band. Over time, expect channel noise levels to rise. Will need to deploy higher gain devices to compensate. Questions, comments? [email protected] .
Recommended publications
  • Winlink 2000 System - Software - Hardware
    PSCM, APP. B, NTS MPG-6, W3YVQ MPG6V14A-3/14, P-1 ARRL PSCM, App. B, NTS METHODS AND PRACTICES GUIDELINES CHAPTER 6 - NTSD - RADIO-EMAIL - W3YVQ MPG6V14A-3/14 Table of contents: ATTACHED GUIDANCE DOCUMENTS ........................................................................................... 2 LINKS ..................................................................................................................................................... 2 6. MPG 6 - DIGITAL - INTRODUCTION ..................................................................................................... 3 6.1 NTSD - GUIDELINES .............................................................................................................................. 4 6.1.1 NTSDGD4 - EAS/CAS/PAS - 6/2001 ........................................................................................... 4 I. SCOPE AND PURPOSE ............................................................................................................... 4 II. NTSD ROUTING APPROACHES .............................................................................................. 4 III. COORDINATION AND ROLES ............................................................................................... 4 IV. DIGITAL STATION OPERATING PRINCIPLES AND PRACTICES .................................... 5 V. AREA DIGITAL STANDARD OPERATING PROCEDURES ................................................. 7 6.1.2 NTSD & NTS NATIONAL EMCOMM ......................................................................................
    [Show full text]
  • Citizens' Band (CB) Radio
    Citizens’ Band (CB) radio – Authorising Amplitude Modulation (AM) modes of operation Permitting AM double and single side band CB radio in the UK Statement Publication date: 10 December 2013 Contents Section Page 1 Executive Summary 1 2 Introduction and background 2 3 Consultation Responses 5 4 Conclusions and next steps 10 Annex Page 1 List of non-confidential respondents 11 Citizens’ Band (CB) radio – Authorising Amplitude Modulation (AM) modes of operation Section 1 1 Executive Summary 1.1 This Statement sets out Ofcom’s decision to proceed with proposals made in our Consultation “Citizens’ Band (CB) radio – Authorising Amplitude Modulation (AM) modes of operation”1 (the ‘Consultation') which was published on 7 October 2013 and closed on 8 November 2013. 1.2 The Consultation proposed to amend current arrangements for Citizens’ Band (CB) Radio in the UK to allow the use of Amplitude Modulation (AM) Double-sideband (DSB) and Single-sideband (SSB) transmission on CB radio. 1.3 Ofcom specifically proposed to: • Authorise the use of AM emissions on European Conference of Postal and Telecommunications Administrations (CEPT) harmonised channels in line with European Communication Committee (ECC) Decision (11)032; and • Authorise such use on a licence exempt basis (in line with our authorisation approach for other modes of operation for CB). 1.4 These proposals followed on from work carried out in Europe. In June 2011 the ECC, part of CEPT, published a Decision, ECC/DEC/ (11)03 (the ‘Decision’) on the harmonised use of frequencies for CB radio equipment. The Decision sought to harmonise the technical standards and usage conditions relating to the use of frequencies for CB radio equipment in CEPT administrations.
    [Show full text]
  • 47 CFR §97 - Rules of the Amateur Radio Service
    47 CFR §97 - Rules of the Amateur Radio Service (updated January, 2014) Subpart A—General Provisions §97.1 Basis and purpose. The rules and regulations in this part are designed to provide an amateur radio service having a fundamental purpose as expressed in the following principles: (a) Recognition and enhancement of the value of the amateur service to the public as a voluntary noncommercial communication service, particularly with respect to providing emergency communications. (b) Continuation and extension of the amateur's proven ability to contribute to the advancement of the radio art. (c) Encouragement and improvement of the amateur service through rules which provide for advancing skills in both the communication and technical phases of the art. (d) Expansion of the existing reservoir within the amateur radio service of trained operators, technicians, and electronics experts. (e) Continuation and extension of the amateur's unique ability to enhance international goodwill. §97.3 Definitions. (a) The definitions of terms used in part 97 are: (1) Amateur operator. A person named in an amateur operator/primary license station grant on the ULS consolidated licensee database to be the control operator of an amateur station. (2) Amateur radio services. The amateur service, the amateur-satellite service and the radio amateur civil emergency service. (4) Amateur service. A radiocommunication service for the purpose of self-training, intercommunication and technical investigations carried out by amateurs, that is, duly authorized persons interested in radio technique solely with a personal aim and without pecuniary interest. (5) Amateur station. A station in an amateur radio service consisting of the apparatus necessary for carrying on radiocommunications.
    [Show full text]
  • Amateur Radio Satellites 101 an Introduction to the AMSAT “Easy Sats”
    Amateur Radio Satellites 101 An introduction to the AMSAT “Easy Sats” Presented to the: Fayette County Amateur Radio Club Presented by: Joe Domaleski, KI4ASK AMSAT #41409 Date: November 21, 2019 Revision 2 [email protected] 1 The real title of this presentation How to have a QSO on a repeater that is 4 inches square, traveling 17,000 MPH 600 miles away, in outer space, with a handheld radio, running 5 watts. 2 Agenda • Why satellites? • Where are the satellites located? • What is a “hamsat”? • What are the Easy Sats? • What’s inside a hamsat? • An example pass of AO-91 • Emergency traffic via AO-92 • Basic equipment I use • An example pass of AO-92 • Here’s how to make your 1st QSO • Where the “cool kids” hang out • Some memorable QSO’s Stone Mountain Hamfest 2019 • Other satellite topics with Daryl Young, K4RGK President of NFARL & • Some general tips AMSAT Ambassador • Suggested resources 3 Why satellites? • Easy to get started • Only need a Technician license • Doesn’t require expensive gear • DX when HF conditions are poor • Science involved in tracking • Camaraderie of AMSAT community • Skill involved in making contact • Fun for kids of all ages • Adds another skill to your toolkit • Like “foxhunting” in the sky • The passes are short • The wonderment of it all • Because I couldn’t be an astronaut • It’s a lot of fun! Example QSO with K5DCC https://www.facebook.com/dennyj/videos/10157742522839570/ 4 Where are the satellites located? The Easy Sats are in LEO – 300-600 miles up Source: Steve Green (KS1G) & Paul Stoetzer (N8HM) 5 What
    [Show full text]
  • The Beginner's Handbook of Amateur Radio
    FM_Laster 9/25/01 12:46 PM Page i THE BEGINNER’S HANDBOOK OF AMATEUR RADIO This page intentionally left blank. FM_Laster 9/25/01 12:46 PM Page iii THE BEGINNER’S HANDBOOK OF AMATEUR RADIO Clay Laster, W5ZPV FOURTH EDITION McGraw-Hill New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto McGraw-Hill abc Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per- mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-139550-4 The material in this eBook also appears in the print version of this title: 0-07-136187-1. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade- marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe- ment of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc.
    [Show full text]
  • 1115-Dromas-SSTV.Pdf
    10th Annual CubeSat Developers’ Workshop 2013 Cal Poly, San Luis Obispo – California – USA Development of an SSTV camera (Use of a commercial product) DROMAS C.*, SWINGEDOUW F., DELAPORTE J., CAPITAINE T. *: [email protected] (Ph.D Student) 1. Laboratoire des Technologies Innovantes (LTI - EA3899), Université de Picardie Jules Verne (UPJV) Saint-Quentin, France 2. Institut Supérieur des Sciences et Techniques (INSSET/UPJV) 48, rue Raspail CS 10422 02315 Saint-Quentin cedex, France Outline 1. Institut Supérieur des Sciences et Techniques (INSSET/UPJV) 2. Sending images from space 3. Slow Scan TeleVision 4. Proof of concept 5. Conclusion [email protected] 10th Annual CubeSat Developers’ Workshop 2013 – San Luis Obispo – USA 2/19 INstitut Supérieur des Sciences et Techniques (INSSET/UPJV) Université de Picardie Jules Verne (Amiens) +8 +7 Doctor +6 +5 Embedded Systems +4 Logistic – Management and engineering Master +3 +2 Web development Engineer Sciences +1 Bachelor European Academic Degree System [email protected] 10th Annual CubeSat Developers’ Workshop 2013 – San Luis Obispo – USA 3/19 INstitut Supérieur des Sciences et Techniques (INSSET/UPJV) Platforms projects We are mainly working on three different platforms : PRO.MO.CO; composed of a set of mobile robots built from autonomous software and hardware modules. The ground station (GENSO compatible); for amateur radio and scientific data transmitted by satellites decoding, controllable remotely through the Internet. The CubeSat projects; based on the development of all the modules constituting a CubeSat and which the payload will include a scientific experiment and will handle video images transmission to different ground stations.
    [Show full text]
  • Bell Telephone Magazine
    »y{iiuiiLviiitiJjitAi.¥A^»yj|tiAt^^ p?fsiJ i »^'iiy{i Hound / \T—^^, n ••J Period icsl Hansiasf Cttp public Hibrarp This Volume is for 5j I REFERENCE USE ONLY I From the collection of the ^ m o PreTinger a V IjJJibrary San Francisco, California 2008 I '. .':>;•.' '•, '•,.L:'',;j •', • .v, ;; Index to tne;i:'A ";.""' ;•;'!!••.'.•' Bell Telephone Magazine Volume XXVI, 1947 Information Department AMERICAN TELEPHONE AND TELEGRAPH COMPANY New York 7, N. Y. PRINTKD IN U. S. A. — BELL TELEPHONE MAGAZINE VOLUME XXVI, 1947 TABLE OF CONTENTS SPRING, 1947 The Teacher, by A. M . Sullivan 3 A Tribute to Alexander Graham Bell, by Walter S. Gifford 4 Mr. Bell and Bell Laboratories, by Oliver E. Buckley 6 Two Men and a Piece of Wire and faith 12 The Pioneers and the First Pioneer 21 The Bell Centennial in the Press 25 Helen Keller and Dr. Bell 29 The First Twenty-Five Years, by The Editors 30 America Is Calling, by IVilliani G. Thompson 35 Preparing Histories of the Telephone Business, by Samuel T. Gushing 52 Preparing a History of the Telephone in Connecticut, by Edward M. Folev, Jr 56 Who's Who & What's What 67 SUMMER, 1947 The Responsibility of Managcincnt in the r^)e!I System, by Walter S. Gifford .'. 70 Helping Customers Improve Telephone Usage Habits, by Justin E. Hoy 72 Employees Enjoy more than 70 Out-of-hour Activities, by /()/;// (/. Simmons *^I Keeping Our Automotive Equipment Modern. l)y Temf^le G. Smith 90 Mark Twain and the Telephone 100 0"^ Crossed Wireless ^ Twenty-five Years Ago in the Bell Telephone Quarterly 105 Who's Who & What's What 107 3 i3(J5'MT' SEP 1 5 1949 BELL TELEPHONE MAGAZINE INDEX.
    [Show full text]
  • The FCC Filing
    Dr. Theodore S. Rappaport, PE PO BOX 888 Riner, Virginia 24149 [email protected] November 10, 2018 Commissioners Federal Communications Commission 445 12th Street, SW Washington, DC 20554 Dear FCC Commissioners: This is a notice of ex parte, based on email communication I had with the CTO of the FCC, Dr. Eric Burger, on November 8, 2018, his reply on November 10, 2018, and my reply on November 11, 2018. The email communication is centered around a posting that appeared on the FCC ECFS system on November 7, 2018, and is part of an ongoing proceeding at the FCC, NPRM 16-239, that I and thousands of others view as a direct threat to the national security interests of the United States, as well as being detrimental to the hobby of amateur (“ham”) radio. Public comments made in FCC’s NPRM 16-239, and in FCC proceedings RM-11708, RM-11759, and RM-11306 proposed by the American Radio Relay League, show the vast number of rule violations and national security threats that continue to go unaddressed by the FCC. Commenters such as me view the lack of FCC acknowledgement of these problems as jeopardizing the safety of US citizens. NPRM 16-239 attempts to remove a limit on the baud rate of High Frequency (HF) shortwave transmissions, without first addressing ongoing rule violations pertaining to proper usage of the amateur radio service, the use of obscured, private messaging which is forbidden in Part 97 rules and creates national security concerns, as well as other violations. If allowed, NPRM 16-239 would perpetuate the current violations, and would authorize obscured transmissions of unlimited bandwidth over the global airwaves, further increasing the danger to our national security, since these transmissions cannot be intercepted or eavesdropped by other amateur radio operators or the FCC.
    [Show full text]
  • SCS PACTOR 4 (Pdf)
    1. Introduction 1 Introduction 1.1 SCS P4dragon, the next Generation Thank you for purchasing the SCS P4dragon DR7800 high performance HF radio modem. SCS modems are the original PACTOR mode modems developed by the people who have created all PACTOR modes. From SCS and SCS representatives, you will receive the best possible support and benefit from the concentrated knowledge of the PACTOR engineers who invented PACTOR. With the introduction of the P4dragon DR7800 modem, SCS also announces PACTOR-4 as a new mode of high performance data transmission over HF frequencies. P4dragon stands for high sophisticated algorithms of communication engineering and high computation power of the PACTOR modems of the fourth generation. 1.2 Packaging list This is a complete list of hardware and software supplied with the SCS P4dragon: • 1 x P4dragon DR7800 High Performance HF-Radio Modem • 1 x Installation Guide • 1 x SCS CD-ROM • 1 x 8 pole DIN cable • 1 x 13 pole DIN cable • 1 x USB cable • 1 x RJ45 Patch cable (with installed “network option”) 1.3 Requirements to operate a PACTOR Modem A transceiver capable of switching between transmit and receive within 20 ms. Most modern transceivers fulfill this requirement. A computer that provides an USB interface or Bluetooth capability. An appropriate terminal program to operate with a USB or Bluetooth virtual COM port. 1.4 About this installation guide This installation manual contains only relevant information about the installation of your SCS P4dragon modem and popular applications like HF email. You can find complete documentation and detailed descriptions of the command set of the P4dragon in the electronic version of the complete manual (PDF format) on the SCS CD-ROM supplied with your modem.
    [Show full text]
  • Kenwood TH-D74A/E Operating Tips
    1 Copyrights for this Manual JVCKENWOOD Corporation shall own all copyrights and intellectual properties for the product and the manuals, help texts and relevant documents attached to the product or the optional software. A user is required to obtain approval from JVCKENWOOD Corporation, in writing, prior to redistributing this document on a personal web page or via packet communication. A user is prohibited from assigning, renting, leasing or reselling the document. JVCKENWOOD Corporation does not warrant that quality and functions described in this manual comply with each user’s purpose of use and, unless specifically described in this manual, JVCKENWOOD Corporation shall be free from any responsibility for any defects and indemnities for any damages or losses. Software Copyrights The title to and ownership of copyrights for software, including but not limited to the firmware and optional software that may be distributed individually, are reserved for JVCKENWOOD Corporation. The firmware shall mean the software which can be embedded in KENWOOD product memories for proper operation. Any modifying, reverse engineering, copying, reproducing or disclosing on an Internet website of the software is strictly prohibited. A user is required to obtain approval from JVCKENWOOD Corporation, in writing, prior to redistributing this manual on a personal web page or via packet communication. Furthermore, any reselling, assigning or transferring of the software is also strictly prohibited without embedding the software in KENWOOD product memories. Copyrights for recorded Audio The software embedded in this transceiver consists of a multiple number of and individual software components. Title to and ownership of copyrights for each software component is reserved for JVCKENWOOD Corporation and the respective bona fide holder.
    [Show full text]
  • Merit Badge Requirements 1
    Scout Name: ____________________________________________ Unit #: __________ Date: ________________ RADIO Merit Badge Requirements 1. Explain what radio is. Include in your explanation: the differences between broadcast radio and hobby radio, and the differences between broadcasting and two-way communicating. Also discuss broadcast radio and amateur radio call signs and using phonetics. 2. Sketch a diagram showing how radio waves travel locally and around the world. How do the broadcast radio stations, WWV and WWVH, help determine what you will hear when you listen to the radio? 3. Do the following: A. Draw a chart of the electromagnetic spectrum covering 100 kilohertz (khz) to 1000 megahertz (Mhz). B. Label the MF, HF, VHF UHF, and microwave portions of the spectrum on your diagram. C. Locate on your chart at least eight radio services such as AM and FM commercial broadcast, CB, television, amateur radio (at least four ham radio bands), and police. D. Discuss why some radio stations are called DX and others are called local. Explain who the FCC and the ITU are. 4. Explain how radio waves carry information. Include in your explanation: transceiver, transmitter, amplifier, and antenna. 5. Explain to your counselor the safety precautions for working with radio gear, particularly direct current and Rf grounding. 6. Do the following: A. Explain the differences between a block diagram and a schematic diagram. B. Draw a block diagram that includes a transceiver, amplifier, microphone, antenna, and feedline. C. Explain the differences between an open circuit, a closed circuit, and a short circuit. D. Draw eight schematic symbols. Explain what three of the represented parts do.
    [Show full text]
  • JOTA Activity Booklet KE4TIO
    1 2 3 Gulf Ridge Council Pack 415 KE4TIO Alan Wentzell (Operator) Amateur Call Signs Heard and Worked: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ States Contacted: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ Countries Contacted: __________________________________ __________________________________ __________________________________ __________________________________ Scouts Present: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ Akela’s Present: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ 4 Q Codes The “Q” code was originally developed as a way of sending shorthand messages in Morse Code. However, it is still used by operators for voice communications. Some of those in common use are listed below: QRA What is your call sign? QRM I have interference (manmade). QRN I am receiving static (atmospheric noise). QRT I am closing
    [Show full text]