Cbu 0006 0040 0384 0523 0

Total Page:16

File Type:pdf, Size:1020Kb

Cbu 0006 0040 0384 0523 0 Acidobacteria Proteobacteria: Acidithiobacillia Aquificae Proteobacteria: Alphaproteobacteria Deferribacteres Proteobacteria: Betaproteobacteria Elusimicrobia Proteobacteria: Candidatus Muproteobacteria FCB Group Proteobacteria: Delta Epsilon Subdivisions Fusobacteria Proteobacteria: Gammaproteobacteria Nitrospinae Tectomicrobia Group Proteobacteria: Hydrogenophilalia Nitrospirae Proteobacteria: Oligoflexia PVC Group Proteobacteria: Zetaproteobacteria * Spirochaetes Proteobacteria: Unclassified & Environmental Samples Synergistetes Bacteria: Unclassified & Environmental Samples Terrabacteria Group Viruses & Constructs Thermodesulfobacteria Eukaryota Thermotogae Archaea Page 1 A B Rickettsia_sp_AUS118.WP_103896843 uncultured_bacterium Rickettsia_argasii.WP_045805461 Acidobacteria_bacterium_RIFCSPLOWO2_12_FULL_54_10 Rickettsia_massiliae.WP_041404619 Bacteria Omnitrophica_bacterium_RIFCSPHIGHO2_02_FULL_49_9 0 Rickettsia_montanensis.WP_041404130 Planctomycetes Planctomycetes_bacterium_RIFCSPHIGHO2_02_FULL_40_12 0 spotted_fever_group.WP_014120706 0 0 Rickettsia_honei.WP_016916662 Candidatus_Scalindua_rubra 0 Rickettsia_raoultii.WP_064463486 Bacteria bacterium_BMS3Abin10 0 Rickettsia_sp_Tenjiku01.WP_064428784 Candidatus_Schekmanbacteria Candidatus_Schekmanbacteria_bacterium_GWA2_38_9 0 0 Rickettsia_gravesii.WP_024547272 Candidatus_Schekmanbacteria_bacterium_RBG_16_38_10 spotted_fever_group.WP_010977119 Candidatus_Schekmanbacteria_bacterium_RIFCSPHIGHO2_02_FULL_38_11 Rickettsia_endosymbiont_of_Proechinophthirus_fluctus.WP_062811392 Thermodesulfovibrio_sp_RBG_19FT_COMBO_42_12 1 0 Rickettsia_philipii.WP_014364616 Nitrospirae Nitrospirae_bacterium_CG_4_8_14_3_um_filter_44_28 0 Rickettsia_africae.WP_041471838 Nitrospirae_bacterium_CG1_02_44_142 0 Rickettsia_rickettsii.WP_041472449 Nitrospirae Nitrospirae_bacterium_GWA2_46_11 1 Rickettsia_rickettsii_str_Sheila_Smith.ABV76084 0 Nitrospirae_bacterium_GWC2_46_6 Rickettsia_rickettsii.WP_014363038 Nitrospirae_bacterium_RBG_13_41_22 Rickettsia_monacensis.WP_023508084 Nitrospirae_bacterium_RIFOXYC2_FULL_44_7 spotted_fever_group.WP_008580035 Candidatus_Glomeribacter_gigasporarum 1 uncultured_bacterium.EKD55325 Syntrophobacterales_bacterium_CG23_combo_of_CG06-09_8_20_14_all_48_27 0.51CBU_2085 0.93 Desulfonatronum_thioautotrophicum Gammaproteobacteria_bacterium_RIFCSPHIGHO2_12_FULL_45_9.OGT68271 0.98 Desulfobacterales Desulfurivibrio_alkaliphilus 0.9 Candidatus_Glomeribacter_gigasporarum.WP_065380763 Deltaproteobacteria 1 Desulfotignum_balticum Coxiella_sp_RIFCSPHIGHO2_12_FULL_42_15.OGO92794 Desulfuromonadales 0.95 Gammaproteobacteria_bacterium_RIFCSPHIGHO2_12_FULL_37_14.OGT36635 Geobacter_thiogenes 0.95Gammaproteobacteria_bacterium_GWE2_42_36.OGT09394 Desulfuromonas_sp_SDB 1 1 Gammaproteobacteria_bacterium_GWF2_41_13.OGT06819 Deltaproteobacteria_bacterium_CG2_30_43_15 Gammaproteobacteria_bacterium_RIFCSPHIGHO2_12_FULL_37_34.OGT44327 Deltaproteobacteria Deltaproteobacteria_bacterium_RBG_13_53_10 0.95 Gammaproteobacteria_bacterium_RIFCSPHIGHO2_12_FULL_38_11.OGT46057 delta_proteobacterium_ML8_D Omnitrophica_bacterium_RIFCSPHIGHO2_02_FULL_49_9.OGW76330 delta_proteobacterium_MLMS-1 1 Candidatus_Scalindua_rubra.ODS31392 Rickettsia_endosymbiont_of_Proechinophthirus_fluctus 1 delta_proteobacterium_ML8_D.OPL17188 Proteobacteria Rickettsia_rickettsii 0.94 0.93delta_proteobacterium_MLMS_1.WP_040867939 1 Rickettsia_raoultii Desulfonatronum_thioautotrophicum.WP_045220117 Rickettsia Rickettsia_massiliae Desulfuromonas_sp_SDB.KQC13188 Rickettsia_montanensis 0.95 Desulfotignum_balticum.WP_024335156 Rickettsia_monacensis Candidatus_Schekmanbacteria_bacterium_RBG_16_38_10.OGL42805 0 Rickettsia_honei Deltaproteobacteria_bacterium_CG2_30_43_15.OIP29159 Rickettsia 0.99 0 Rickettsia_gravesii Nitrospirae_bacterium_CG22_combo_CG10_13_8_21_14_all_44_11.PIP69492 1 Rickettsia_africae 0.93 Nitrospirae_bacterium_CG1_02_44_142.OIO30896 1 Nitrospirae_bacterium_GWC2_46_6.OGW19649 Rickettsia_japonica 1 Nitrospirae_bacterium_GWA2_46_11.OGW21851 Rickettsia_sp_Tenjiku01 Candidatus_Schekmanbacteria_bacterium_GWA2_38_9.OGL42130 Rickettsia_fournieri 0.99 0.99 Candidatus_Schekmanbacteria_bacterium_RIFCSPHIGHO2_02_FULL_38_11.OGL55541 Rickettsia_argasii_T170-B 0.7 1 Planctomycetes_bacterium_RIFCSPHIGHO2_02_FULL_40_12.OHB86085 Rickettsia_philipii_str_364D 0 Nitrospirae_bacterium_RBG_13_41_22.OGW43735 Marinimicrobium_sp_LS-A18 0.78 Thermodesulfovibrio_sp_RBG_19FT_COMBO_42_12.OHE59158 Coxiella Coxiella_burnetii_RSA_493 0.3 Nitrospirae_bacterium_RIFOXYC2_FULL_44_7.OGW73189 Coxiella_sp_RIFCSPHIGHO2_12_FULL_42_15 1 Syntrophobacterales_bacterium_CG23_combo_of_CG06_09_8_20_14_all_48_27.PIP05833 Halorhodospira_halochloris Ectothiorhodospiraceae Geobacter_thiogenes.WP_078789237 Ectothiorhodospira_magna Deltaproteobacteria_bacterium_RBG_13_53_10.OGP66585 Thioalkalivibrio Thioalkalivibrio_sulfidiphilus_HL-EbGr7 0.95 0.71Acidobacteria_bacterium_RIFCSPLOWO2_12_FULL_54_10.OFV96277 0.57 Thioalkalivibrio_sp_ALM2T bacterium_BMS3Abin10.GBE05955 0.99 GammaproteobacteriaMethylococcales Crenothrix_polyspora Methyloprofundus_sedimenti.WP_080522390 Methylocaldum_marinum Crenothrix_polyspora.WP_087145442 Methylococcaceae 1 Methyloprofundus_sedimenti Halomonas_caseinilytica.WP_064702621 0.41 0.98 Methylomicrobium Methylomicrobium_alcaliphilum Thioalkalivibrio_sulfidiphilus.WP_012639822 1 Halorhodospira_halochloris.WP_096409129 Methylomicrobium_buryatense 0.67 Halomonas_meridiana.WP_044630232 Gammaproteobacteria_bacterium_RIFCSPHIGHO2_12_FULL_37_14 Gammaproteobacteria_bacterium_RIFCSPHIGHO2_12_FULL_37_34 0 Nitrincola_sp_A_D6.WP_036520363 Gammaproteobacteria Gammaproteobacteria_bacterium_RIFCSPHIGHO2_12_FULL_38_11 0.99 Halomonas_urumqiensis.WP_102586366 Halomonas_subterranea.WP_092828785 Gammaproteobacteria_bacterium_RIFCSPHIGHO2_12_FULL_45_9 0 Halomonas_zincidurans.WP_031383183 Gammaproteobacteria_bacterium_GWE2_42_36 0 0 Methylocaldum_marinum.BBA36942 Gammaproteobacteria_bacterium_GWF2_41_13 Methylomicrobium_buryatense.WP_017840060 Nitrincola_sp_A-D6 1 Methylomicrobium_alcaliphilum.WP_014147689 Oceanospirillales Kushneria_aurantia 0.97 0.43 Halomonas_sp_Marseille_P2426.WP_075879875 Halomonas_meridiana Halomonadaceae 0 Ectothiorhodospira_magna.WP_090208327 Halomonas_korlensis 0.34Marinimicrobium_sp_LS_A18.WP_024460095 0.99 Halomonas_urumqiensis 0.32 Desulfurivibrio_alkaliphilus.WP_013163245 Halomonas Halomonas_zincidurans Halomonas_korlensis.WP_089795843 Halomonas_caseinilytica 0 Kushneria_aurantia.WP_019952077 0.47 Halomonas_arcis Thioalkalivibrio.WP_077244722 0.99 Halomonas_subterranea Thioalkalivibrio_sp_ALM2T.WP_019593081 Halomonas 0.56Halomonas_sp_G11.WP_066321819 Halomonas_sp_G11 1 Halomonas_arcis.WP_089704045 Halomonas_sp_Marseille-P2426 Page 2 A B Candidatus_Glomeribacter_gigasporarum.WP_065380764 uncultured_bacterium Diplorickettsia_massiliensis.WP_010598277 Candidatus_Marinimicrobia_bacterium_CG1_02_48_14 uncultured_bacterium.EKD86208 0 Elusimicrobia Elusimicrobia_bacterium_RIFOXYB2_FULL_48_7 CBU_2084 Gammaproteobacteria_bacterium_RIFCSPHIGHO2_12_FULL_38_11.OGT46056 Elusimicrobia_bacterium_RIFOXYB2_FULL_49_7 Leptospira 1 0.54Legionellales_bacterium.PCH56887 Leptospira_licerasiae 0.75 Gammaproteobacteria_bacterium_RIFCSPHIGHO2_12_FULL_38_11.OGT46058 Leptospira_wolffii Nostocales.WP_096579381 Chloroflexi Anaerolineae_bacterium_UTCFX1 0.99 uncultured_bacterium.EKD55326 Bacteria SAR202_cluster_bacterium_Io17-Chloro-G7 0.69Candidatus_Roizmanbacteria_bacterium_CG07_land_8_20_14_0_80_34_15.PIU37122 Nostocales Tolypothrix_campylonemoides 0.77 0.72 Candidatus_Nomurabacteria_bacterium_GW2011_GWD1_44_10.KKT30218 Mastigocladopsis_repens Candidatus_Wildermuthbacteria_bacterium_RIFCSPHIGHO2_02_FULL_45_25.OHA65871 candidate_division_WWE3_bacterium_CG23_combo_of_CG06-09_8_20_14_all_40_14 Candidatus_Woesebacteria_bacterium_GWA1_42_12.OGM04571 Candidatus_Doudnabacteria_bacterium_RIFCSPHIGHO2_02_FULL_49_24 0.38 Candidatus_Komeilibacteria_bacterium_RIFCSPLOWO2_02_FULL_48_11.OGY91417 Candidatus_Peregrinibacteria_bacterium_RIFCSPLOWO2_01_FULL_48_20 Candidatus_Nomurabacteria_bacterium_GW2011_GWA2_40_9.KKR78623 Bacteria 1 0.97 Candidatus_Levybacteria_bacterium_RBG_13_35_9 Candidatus_Daviesbacteria_bacterium_RIFCSPHIGHO2_02_FULL_39_12.OGE26627 Candidatus_Roizmanbacteria_bacterium_CG06_land_8_20_14_3_00_34_14 Candidatus_Daviesbacteria_bacterium_RIFCSPHIGHO2_02_FULL_36_13.OGE30527 0.29 0.98 0.98 Candidatus_Daviesbacteria Candidatus_Daviesbacteria_bacterium_RIFCSPHIGHO2_02_FULL_36_13 Candidatus_Levybacteria_bacterium_RBG_13_35_9.OGH06391 Bacteria 0.61 0.88 Candidatus_Doudnabacteria_bacterium_RIFCSPLOWO2_12_FULL_42_9.OGE98610 Candidatus_Daviesbacteria_bacterium_RIFCSPHIGHO2_02_FULL_39_12 0 Candidatus_Woesebacteria Candidatus_Woesebacteria_bacterium_RIFCSPHIGHO2_01_FULL_38_26b.OGM18969 Candidatus_Woesebacteria_bacterium_GWA1_42_12 0.58 0.94 Candidatus_Amesbacteria_bacterium_GW2011_GWA1_44_24.KKT58069 Candidatus_Woesebacteria_bacterium_RIFCSPHIGHO2_01_FULL_38_26b 1 Candidatus_Amesbacteria_bacterium_RIFOXYB1_FULL_47_13.OGD05051 Candidatus_Amesbacteria Candidatus_Amesbacteria_bacterium_RIFOXYB1_FULL_47_13 Parcubacteria_group_bacterium_GW2011_GWA2_49_9.KKW10734 Bacteria Candidatus_Amesbacteria_bacterium_GW2011_GWA1_44_24 Candidatus_Falkowbacteria_bacterium_GW2011_GWF2_38_1205.KKQ53456 Candidatus_Amesbacteria_bacterium_GW2011_GWA1_47_20 0.79 0.94Candidatus_Kuenenbacteria_bacterium_RIFCSPHIGHO2_02_FULL_39_13.OGG87135 1 Candidatus_Komeilibacteria_bacterium_RIFCSPLOWO2_02_FULL_48_11 0.8 0.37 Candidatus_Kuenenbacteria_bacterium_CG22_combo_CG10_13_8_21_14_all_39_9.PIP75572 Candidatus_Falkowbacteria_bacterium_GW2011_GWC2_38_22
Recommended publications
  • New Opportunities Revealed by Biotechnological Explorations of Extremophiles - Mircea Podar and Anna-Louise Reysenbach
    BIOTECHNOLOGY – Vol .III – New Opportunities Revealed by Biotechnological Explorations of Extremophiles - Mircea Podar and Anna-Louise Reysenbach NEW OPPORTUNITIES REVEALED BY BIOTECHNOLOGICAL EXPLORATIONS OF EXTREMOPHILES Mircea Podar and Anna-Louise Reysenbach Department of Biology, Portland State University, Portland, OR 97201, USA. Keywords: extremophiles, genomics, biotechnology, enzymes, metagenomics. Contents 1. Introduction 2. Extremophiles and Biomolecules 3. Extremophile Genomics Exposing the Biotechnological Potential 4. Tapping into the Hidden Biotechnological Potential through Metagenomics 5. Unexplored Frontiers and Future Prospects Acknowledgements Glossary Bibliography Biographical Sketches Summary Over the past few decades the extremes at which life thrives has continued to challenge our understanding of biochemistry, biology and evolution. As more new extremophiles are brought into laboratory culture, they have provided a multitude of new potential applications for biotechnology. Furthermore, more recently, innovative culturing approaches, environmental genome sequencing and whole genome sequencing have provided new opportunities for biotechnological exploration of extremophiles. 1. Introduction Organisms that live at the extremes of pH (>pH 8.5,< pH 5.0), temperature (>45°C, <15°C), pressure (>500 atm), salinity (>1.0M NaCl) and in high concentrations of recalcitrant substances or heavy metals (extremophiles) represent one of the last frontiers for biotechnological and industrial discovery. As we learn more about the
    [Show full text]
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • Molecular Detection of Tick-Borne Pathogens in Ticks Collected from Hainan Island, China
    Molecular Detection of Tick-Borne Pathogens in Ticks Collected From Hainan Island, China Miao Lu National Institute for Communicable Disease Control and Prevention Guangpeng Tang PHLIC: Centers for Disease Control and Prevention Xiaosong Bai Congjiang CDC Xincheng Qin National Institute for Communicable Disease Control and Prevention Wenping Guo Chengde Medical University Kun Li ( [email protected] ) National Institute for Communicable Disease Control and Prevention Research Keywords: Ticks, Rickettsiales bacteria, Protozoa, Coxiellaceae bacteria, Tick-borne disease, China Posted Date: December 1st, 2020 DOI: https://doi.org/10.21203/rs.3.rs-114641/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/29 Abstract Background Kinds of pathogens such as viruses, bacteria and protozoa are transmitted by ticks as vectors, and they have deeply impact on human and animal health worldwide. Methods To better understand the genetic diversity of bacteria and protozoans carried by ticks in Chengmai county of Hainan province, China, 285 adult hard ticks belonging to two species (Rhipicephalus sanguineus: 183, 64.21% and R. microplus: 102, 35.79%) from dogs, cattle, and goats were colleted. Rickettsiales bacteria, Coxiellaceae bacteria, Babesiidae, and Hepatozoidae were identied in these ticks by amplifying the 18S rRNA, 16S rRNA (rrs), citrate synthase (gltA), and heat shock protein (groEL) genes. Results Our data revealed the presence of four recognized species and two Candidatus spp. of Anaplasmataceae and Coxiellaceae in locality. Conclusions In sum, these data reveal an extensive diversity of Anaplasmataceae bacteria, Coxiellaceae bacteria, Babesiidae, and Hepatozoidae in ticks from Chengmai county, highlighting the need to understand the tick-borne pathogen infection in local animals and humans.
    [Show full text]
  • DDDC 2019 Organizing Committee
    Conference Sponsors 2 Drug Discovery and Development Colloquium 2018 VI Annual Conference June 13 - 15, 2019 DDDC 2019 Organizing Committee Skylar Connor, Conference Co-chair, SHraddHa THakkar, PH.D., Conference Co-chair, UAMS AAPS Student CHapter President, Student UAMS AAPS Student CHapter Sponsor, Faculty University of Arkansas for Medical Sciences • FDA National Center for Toxicological Research University of Arkansas Little Rock Ujwani Nukala, Organizing Committee, UAMS Cesar M. Compadre, PH.D., Conference Co-chair, AAPS Student CHapter Past-President, Student UAMS AAPS Student CHapter Co-Sponsor, University of Arkansas for Medical Sciences Faculty University of Arkansas Little Rock University of Arkansas for Medical Sciences Ting Lee, Organizing Committee, UAMS AAPS David Mery, Organizing Committee, UAMS Student CHapter Treasurer, Student AAPS Student CHapter CHair Elect, Student University of Arkansas for Medical Sciences. University of Arkansas for Medical Sciences University of Arkansas Little Rock Cord Carter, Organizing Committee, UAMS AAPS Pankaj Patyal, Organizing Committee, UAMS Student CHapter Secretary, Student AAPS Student CHapter Vice President, Student University of Arkansas for Medical Sciences University of Arkansas for Medical Sciences Taylor Connor, Organizing Committee, UAMS Nemu Saumyadip, Organizing Committee, AAPS Student Chapter Member, Student UAMS AAPS Student CHapter Member, Student University of Arkansas for Medical Sciences University of Arkansas for Medical Sciences PHuc Tran, Organizing Committee, UAMS AAPS Edward Selvik, Organizing Committee, UAMS Student CHapter Member, Student AAPS Student CHapter Member, Student University of Arkansas for Medical Sciences University of Arkansas for Medical Sciences University of Arkansas Little Rock Table of Contents DDDC 2019 Agenda 5 List of Poster Presenters 10 Speakers and Organizers Bios 11 Abstracts 23 3 Drug Discovery and Development Colloquium 2019 University of Arkansas for Medical Sciences I.
    [Show full text]
  • General Introduction
    Physiological Characteristics and Genomic Properties of Nitrosomonas mobilis Isolated from Nitrifying Granule of Wastewater Treatment Bioreactor December 2016 Soe Myat Thandar ソー ミャット サンダー Physiological Characteristics and Genomic Properties of Nitrosomonas mobilis Isolated from Nitrifying Granule of Wastewater Treatment Bioreactor December 2016 Waseda University Graduate School of Advanced Science and Engineering Department of Life Science and Medical Bioscience Research on Environmental Biotechnology Soe Myat Thandar ソー ミャット サンダー Contents Abbreviations ................................................................................................................... i Chapter 1-General introduction .................................................................................... 1 1.1. Nitrification and wastewater treatment system .......................................................... 3 1.2. Important of Nitrosomonas mobilis ........................................................................... 8 1.3. Objectives and outlines of this study ....................................................................... 12 1.4. Reference.................................................................................................................. 12 Chapter 2- Physiological characteristics of Nitrosomonas mobilis Ms1 ................... 17 2.1. Introduction .............................................................................................................. 19 2.2. Material and methods ..............................................................................................
    [Show full text]
  • APP201895 APP201895__Appli
    APPLICATION FORM DETERMINATION Determine if an organism is a new organism under the Hazardous Substances and New Organisms Act 1996 Send by post to: Environmental Protection Authority, Private Bag 63002, Wellington 6140 OR email to: [email protected] Application number APP201895 Applicant Neil Pritchard Key contact NPN Ltd www.epa.govt.nz 2 Application to determine if an organism is a new organism Important This application form is used to determine if an organism is a new organism. If you need help to complete this form, please look at our website (www.epa.govt.nz) or email us at [email protected]. This application form will be made publicly available so any confidential information must be collated in a separate labelled appendix. The fee for this application can be found on our website at www.epa.govt.nz. This form was approved on 1 May 2012. May 2012 EPA0159 3 Application to determine if an organism is a new organism 1. Information about the new organism What is the name of the new organism? Briefly describe the biology of the organism. Is it a genetically modified organism? Pseudomonas monteilii Kingdom: Bacteria Phylum: Proteobacteria Class: Gamma Proteobacteria Order: Pseudomonadales Family: Pseudomonadaceae Genus: Pseudomonas Species: Pseudomonas monteilii Elomari et al., 1997 Binomial name: Pseudomonas monteilii Elomari et al., 1997. Pseudomonas monteilii is a Gram-negative, rod- shaped, motile bacterium isolated from human bronchial aspirate (Elomari et al 1997). They are incapable of liquefing gelatin. They grow at 10°C but not at 41°C, produce fluorescent pigments, catalase, and cytochrome oxidase, and possesse the arginine dihydrolase system.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Differential Depth Distribution of Microbial Function and Putative Symbionts Through Sediment-Hosted Aquifers in the Deep Terrestrial Subsurface
    ARTICLES https://doi.org/10.1038/s41564-017-0098-y Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface Alexander J. Probst1,5,7, Bethany Ladd2,7, Jessica K. Jarett3, David E. Geller-McGrath1, Christian M. K. Sieber1,3, Joanne B. Emerson1,6, Karthik Anantharaman1, Brian C. Thomas1, Rex R. Malmstrom3, Michaela Stieglmeier4, Andreas Klingl4, Tanja Woyke 3, M. Cathryn Ryan 2* and Jillian F. Banfield 1* An enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO2-driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Genome- resolved metagenomics, single-cell genomics and geochemical analyses confirmed this hypothesis and linked microorganisms to groundwater compositions from different depths. Autotrophic Candidatus “Altiarchaeum sp.” and phylogenetically deep- branching nanoarchaea dominate the deepest groundwater. A nanoarchaeon with limited metabolic capacity is inferred to be a potential symbiont of the Ca. “Altiarchaeum”. Candidate Phyla Radiation bacteria are also present in the deepest groundwater and they are relatively abundant in water from intermediate depths. During the recovery phase of the geyser, microaerophilic Fe- and S-oxidizers have high in situ genome replication rates. Autotrophic Sulfurimonas sustained by aerobic sulfide oxidation and with the capacity for N2 fixation dominate the shallow aquifer. Overall, 104 different phylum-level lineages are present in water from these subsurface environments, with uncultivated archaea and bacteria partitioned to the deeper subsurface.
    [Show full text]
  • The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment
    life Article The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment Sierra R. Athen, Shivangi Dubey and John A. Kyndt * College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA; [email protected] (S.R.A.); [email protected] (S.D.) * Correspondence: [email protected] Abstract: The Eastern Nebraska Salt Marshes contain a unique, alkaline, and saline wetland area that is a remnant of prehistoric oceans that once covered this area. The microbial composition of these salt marshes, identified by metagenomic sequencing, appears to be different from well-studied coastal salt marshes as it contains bacterial genera that have only been found in cold-adapted, alkaline, saline environments. For example, Rubribacterium was only isolated before from an Eastern Siberian soda lake, but appears to be one of the most abundant bacteria present at the time of sampling of the Eastern Nebraska Salt Marshes. Further enrichment, followed by genome sequencing and metagenomic binning, revealed the presence of several halophilic, alkalophilic bacteria that play important roles in sulfur and carbon cycling, as well as in nitrogen fixation within this ecosystem. Photosynthetic sulfur bacteria, belonging to Prosthecochloris and Marichromatium, and chemotrophic sulfur bacteria of the genera Sulfurimonas, Arcobacter, and Thiomicrospira produce valuable oxidized sulfur compounds for algal and plant growth, while alkaliphilic, sulfur-reducing bacteria belonging to Sulfurospirillum help balance the sulfur cycle. This metagenome-based study provides a baseline to understand the complex, but balanced, syntrophic microbial interactions that occur in this unique Citation: Athen, S.R.; Dubey, S.; inland salt marsh environment.
    [Show full text]
  • Evolution and Design Governing Signal Precision and Amplification
    Evolution and Design Governing Signal Precision and Amplification in a Bacterial Chemosensory Pathway Mathilde Guzzo, Rym Agrebi, Leon Espinosa, Gregory Baronian, Virginie Molle, Emilia M. F. Mauriello, Céline Brochier-Armanet, Tam Mignot To cite this version: Mathilde Guzzo, Rym Agrebi, Leon Espinosa, Gregory Baronian, Virginie Molle, et al.. Evolution and Design Governing Signal Precision and Amplification in a Bacterial Chemosensory Pathway. PLoS Genetics, Public Library of Science, 2015, 11 (8), pp.e1005460. 10.1371/journal.pgen.1005460. hal- 01452074 HAL Id: hal-01452074 https://hal.archives-ouvertes.fr/hal-01452074 Submitted on 27 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCH ARTICLE Evolution and Design Governing Signal Precision and Amplification in a Bacterial Chemosensory Pathway Mathilde Guzzo1☯, Rym Agrebi1☯¤, Leon Espinosa1, Grégory Baronian2, Virginie Molle2, Emilia M. F. Mauriello1, Céline Brochier-Armanet3, Tâm Mignot1* 1 Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France, 2 Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS Universités de Montpellier II et I, UMR 5235, case 107, Montpellier, France, 3 Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France ☯ These authors contributed equally to this work.
    [Show full text]
  • Revealing the Full Biosphere Structure and Versatile Metabolic Functions In
    Chen et al. Genome Biology (2021) 22:207 https://doi.org/10.1186/s13059-021-02408-w RESEARCH Open Access Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep Ping Chen1†, Hui Zhou1,2†, Yanyan Huang3,4†, Zhe Xie5†, Mengjie Zhang1,2†, Yuli Wei5, Jia Li1,2, Yuewei Ma3, Min Luo5, Wenmian Ding3, Junwei Cao5, Tao Jiang1,2, Peng Nan3*, Jiasong Fang5* and Xuan Li1,2* * Correspondence: nanpeng@fudan. edu.cn; [email protected]; lixuan@ Abstract sippe.ac.cn †Ping Chen, Hui Zhou, Yanyan Background: The full biosphere structure and functional exploration of the microbial Huang, Zhe Xie and Mengjie Zhang communities of the Challenger Deep of the Mariana Trench, the deepest known contributed equally to this work. hadal zone on Earth, lag far behind that of other marine realms. 3Ministry of Education Key Laboratory for Biodiversity Science Results: We adopt a deep metagenomics approach to investigate the microbiome and Ecological Engineering, School in the sediment of Challenger Deep, Mariana Trench. We construct 178 of Life Sciences, Fudan University, Shanghai, China metagenome-assembled genomes (MAGs) representing 26 phyla, 16 of which are 5Shanghai Engineering Research reported from hadal sediment for the first time. Based on the MAGs, we find the Center of Hadal Science and microbial community functions are marked by enrichment and prevalence of Technology, College of Marine Sciences, Shanghai Ocean mixotrophy and facultative anaerobic metabolism. The microeukaryotic community is University, Shanghai, China found to be dominated by six fungal groups that are characterized for the first time 1CAS-Key Laboratory of Synthetic in hadal sediment to possess the assimilatory and dissimilatory nitrate/sulfate Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute reduction, and hydrogen sulfide oxidation pathways.
    [Show full text]
  • Thermophilic Carboxydotrophs and Their Applications in Biotechnology Springerbriefs in Microbiology
    SPRINGER BRIEFS IN MICROBIOLOGY EXTREMOPHILIC BACTERIA Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology SpringerBriefs in Microbiology Extremophilic Bacteria Series editors Sonia M. Tiquia-Arashiro, Dearborn, MI, USA Melanie Mormile, Rolla, MO, USA More information about this series at http://www.springer.com/series/11917 Sonia M. Tiquia-Arashiro Thermophilic Carboxydotrophs and their Applications in Biotechnology 123 Sonia M. Tiquia-Arashiro Department of Natural Sciences University of Michigan Dearborn, MI USA ISSN 2191-5385 ISSN 2191-5393 (electronic) ISBN 978-3-319-11872-7 ISBN 978-3-319-11873-4 (eBook) DOI 10.1007/978-3-319-11873-4 Library of Congress Control Number: 2014951696 Springer Cham Heidelberg New York Dordrecht London © The Author(s) 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]