Expanding the Scope of Metalloprotein Families and Substrate Classes in New-To- Nature Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Expanding the Scope of Metalloprotein Families and Substrate Classes in New-To- Nature Reactions EXPANDING THE SCOPE OF METALLOPROTEIN FAMILIES AND SUBSTRATE CLASSES IN NEW-TO- NATURE REACTIONS Thesis by Anders Matthew Knight In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2020 (Defended June 9, 2020) ii © 2020 Anders Matthew Knight ORCID: 0000-0001-9665-8197 iii ACKNOWLEDGEMENTS I would first like to thank my advisor, Prof. Frances Arnold, for her help and guidance during my thesis work. When I spoke with Frances at my Caltech interview, she told me that if I wanted to learn how to engineer proteins, the Arnold lab was the best place in the world to do it. As usual, Frances was correct. Thank you for challenging me to come up with interesting, novel, and useful research questions, and for giving me the freedom to apply myself in answering those questions. I am thankful to my committee members, Prof. Sarah Reisman, Prof. William Clemons, Prof. Mikhail Shapiro, and Prof. Justin Bois for their insights and guidance on my PhD research. I would also like to thank Justin for his pivotal role in my graduate education, having taught most of the courses I took at Caltech and teaching me most of the programming I know. His skill and enthusiasm for educating junior scientists is immediately apparent. The Arnold laboratory is full of incredibly talented scientists. Dr. Sabine Brinkmann-Chen has been there from the beginning for research, writing, and life advice. I am indebted to Dr. Andrew Buller and Dr. David Romney for mentoring me during my rotation and beyond. Dr. Rusty Lewis, Dr. Stephan Hammer, Dr. Oliver Brandenberg, Dr. Tina Boville, Dr. Nicholas Porter, and Dr. Xiongyi Huang all provided excellent feedback on my new project ideas and helped me decipher data. I would like to thank Dr. Jennifer Kan in particular for her constant mentorship, advice, and support throughout my PhD – my time at Caltech would have been very different without your guidance. I have learned so much from collaborations and discussions with Lucas Schaus, Ruijie Zhang, Patrick Almhjell, Ella Watkins, Bruce Wittmann, Nicholas Porter, and Nat Goldberg. Thank you all for making me a better scientist, and, together with Austin Dulaney and Brad Boville, for making my time outside of work enjoyable. I am richer for having known you, friends. I would not have gotten to Caltech in the first place if it were not for the many role models and advisors on my way. My high-school chemistry teacher, Michael Smits, inspired me to study chemistry and chemical engineering in college. My undergraduate research advisor, Prof. Silvia Cavagnero, took a chance in hiring an enthusiastic but inexperienced freshman with no background on proteins to do research in her group. At the time I thought I would be a “traditional” chemical engineer, but I was quickly hooked on researching proteins. The foundation of both technical skills iv and the research process that I learned in your laboratory have been invaluable. Prof. Randall Goldsmith, on top of being a fantastic teacher, helped me navigate the process of deciding to pursue a PhD and which program to choose. Prof. Uwe Bornscheuer guided me through my first forays into protein engineering and helped lay the groundwork for me to hit the ground running when I started at Caltech. Mental health is a common topic when speaking about graduate school, and I am not alone in my struggles over the last five years. I am grateful to Dr. Lee Coleman for helping me to persevere, and to be kind to myself along the way. I am thankful to have an incredibly supportive family. I know that my parents, Matthew and Carolyn Knight, and sister, Freya Ludeman, are always there for me. I look forward to celebrating in person when we can. Lastly, thank you to my partner, Silken Jones, for being with me through the ups and downs of grad school over the last four years. I cannot wait to start the next chapter of our adventure together. v ABSTRACT Heme proteins, in particular cytochromes P450, have been extensively used in biocatalytic applications due to their high degree of regio-, chemo-, and stereoselectivity in oxene-transfer reactions. In 2013, it was shown for the first time that engineered heme proteins can also catalyze analogous carbene- and nitrene-transfer reactions. Research in this field has since grown dramatically, with emphasis on developing new heme protein variants to increase the scope of biotransformations accessible through these new transfer reactions. This thesis details the expansion of these new-to-nature carbene and nitrene-transfer reactions to include new substrate classes previously unexplored with iron-porphyrin proteins, the use of non-heme metalloproteins for these transformations, and steps toward improving the robustness of the new-to-nature biocatalytic platform. Chapter 1 introduces the steps the field of biocatalysis has taken toward engineering enzymes with new catalytic functions and the process by which these activities are discovered and enhanced. Chapter 2 details the discovery and engineering of heme proteins which catalyze the stereodivergent cyclopropanation of unactivated and electron-deficient alkenes via carbene transfer, expanding the substrate classes beyond styrenyl alkenes. Chapter 3 shows the development of engineered variants of a heme protein (Rhodothermus marinus nitric oxide dioxygenase) for the diastereodivergent synthesis of cyclopropanes functionalized with a pinacolborane moiety, enabling product diversification through standard cross-coupling reactions. In Chapter 4, a collection of non- heme metalloproteins is curated, and a non-heme iron enzyme (Pseudomonas savastanoi ethylene- forming enzyme) is shown to be both amenable to directed evolution and non-native ligand substitution to enhance its nitrene-transfer activity. Chapter 5 describes the expansion of sequence space targeted for screening in the serine-ligated cytochrome P411 from Bacillus megaterium (P411BM3) biocatalytic platform to enhance the mutational robustness of these remarkable enzymes. Overall, this work provides a framework for bringing model new-to-nature reactions to their full potential in synthetic biocatalytic reactions. vi PUBLISHED CONTENT AND CONTRIBUTIONS † denotes equal contribution 1. Hammer, S. C.†; Knight, A. M. † Arnold, F. H. Design and Evolution of Enzymes for Non- Natural Chemistry. Curr. Opin. Green Sustain. Chem. 2017, 7, 23–30. DOI: 10.1016/j.cogsc.2017.06.002. A.M.K wrote the first draft of the Introduction and Non-natural activities are readily accessed from diverse starting points sections and participated in the writing and editing of the current opinion. 2. Knight, A. M.; Kan, S. B. J.; Lewis, R. D.; Brandenberg, O. F.; Chen, K.; Arnold, F. H. Diverse Engineered Heme Proteins Enable Stereodivergent Cyclopropanation of Unactivated Alkenes. ACS Cent. Sci. 2018, 4, 372–377. DOI: 10.1021/acscentsci.7b00548. Previously deposited on ChemRxiv, DOI: 10.26434/chemrxiv.5718076.v1. A.M.K. participated in the conception of the project, discovered initial enzymatic activity, performed the majority of the mutagenesis and screening, synthesized authentic standards, developed analytical methods to determine enantioselectivity, and wrote the manuscript with input from all authors. A.M.K. generated the crystallography constructs, purified, and carried out crystallography experiments. A.M.K. collected data for and refined the tagless RmaNOD Q52V crystal structure. 3. Brandenberg, O. F.; Prier, C. K.; Chen, K.; Knight, A. M.; Wu, Z.; Arnold, F. H. Stereoselective Enzymatic Synthesis of Heteroatom-Substituted Cyclopropanes. ACS Catal. 2018, 8, 2629–2634. DOI: 10.1021/acscatal.7b04423. A.M.K. participated in preparation of P411BM3 variants for enhanced stereoselectivity on substrate scope targets and participated in characterizing the stereoselectivity of enzymatic products. A.M.K. participated in editing the manuscript. 4. Wittmann, B. J. †; Knight, A. M. †; Hofstra, J. L.; Reisman, S. E.; Kan, S. B. J.; Arnold, F. H. Diversity-Oriented Synthesis of Cyclopropane Building Blocks. ACS Catal. 2020, 10, 7112–7116. DOI: 10.1021/acscatal.0c01888. A.M.K. and S.B.J.K. conceived the project. A.M.K. prepared compilation plates for the initial activity screen and determined enzymes with initial activity. A.M.K. designed, constructed, and screened the libraries for the cis-selective lineage. A.M.K. ran multi-gram scale enzymatic reactions. A.M.K. developed the column-free purification procedure via trifluoroboration methods. A.M.K. and B.J.W wrote the manuscript with input from all authors. 5. Goldberg, N. W. †; Knight, A. M. †; Zhang, R. K.; Arnold, F. H. Nitrene Transfer Catalyzed by a Non-Heme Iron Enzyme and Enhanced by Non-Native Small-Molecule Ligands. J. Am. vii Chem. Soc. 2019, 141, 19585–19588. DOI: 10.1021/jacs.9b11608. Previously deposited on ChemRxiv, DOI: 10.26434/chemrxiv.10062044.v1. A.M.K. and N.W.G. ran controls to confirm the activity to be enzymatic. A.M.K. carried out alternative ligand experiments. A.M.K. designed site-saturation mutagenesis libraries. A.M.K. and N.W.G. constructed the libraries, A.M.K. screened and analyzed the libraries, and N.W.G. performed shake-flask validation of potentially improved variants. A.M.K. ran alternative ligand screens, thermostability assays, and time courses for evolved variants. A. M. K. and N. W. G. wrote the manuscript with input from all authors. viii TABLE OF CONTENTS Acknowledgements ................................................................................................................
Recommended publications
  • Spectroscopy of Porphyrins
    BORIS F. KIM and JOSEPH BOHANDY SPECTROSCOPY OF PORPHYRINS Porphyrins are an important class of compounds that are of interest in molecular biology because of the important roles they play in vital biochemical systems such as biochemical energy conversion in animals, oxygen transport in blood, and photosynthetic energy conversion in plants. We are studying the physical properties of the energy states of porphyrins using the techniques of ex­ perimental and theoretical spectroscopy with the aim of contributing to a basic understanding of their biochemical behavior. INTRODUCTION Metalloporphin Porphyrins are a class of complex organic chemical compounds found in such diverse places as crude oil, plants, and human beings. They are, in most cases, tailored to carry out vital chemical transformations in intricate biochemical or biophysical systems. They are the key constituents of chlorophyll in plants and of hemoglobin in animals. Without them, life would y be impossible. t Free base porphin These molecules display a wide range of chemical and physical properties that depend on the structural details of the particular porphyrin molecule. All por­ ~x phyrins are vividly colored and absorb light in the visible and ultraviolet regions of the spectrum. Some exhibit luminescence, paramagnetism, photoconduc­ tion, or semiconduction. Spme are photosensitizers Wavelength (nanometers) or catalysts. Scientists from several disciplines have been interested in unraveling the principles that cause Fig. 1-The chemical structures for the two forms of por· this diversity of properties. phin are shown on the left. A carbon atom and a hydrogen The simplest compound of all porphyrins is por­ atom are understood to be at each apex not attached to a nitrogen atom.
    [Show full text]
  • Electronic Spectroscopy of Free Base Porphyrins and Metalloporphyrins
    Absorption and Fluorescence Spectroscopy of Tetraphenylporphyrin§ and Metallo-Tetraphenylporphyrin Introduction The word porphyrin is derived from the Greek porphura meaning purple, and all porphyrins are intensely coloured1. Porphyrins comprise an important class of molecules that serve nature in a variety of ways. The Metalloporphyrin ring is found in a variety of important biological system where it is the active component of the system or in some ways intimately connected with the activity of the system. Many of these porphyrins synthesized are the basic structure of biological porphyrins which are the active sites of numerous proteins, whose functions range from oxygen transfer and storage (hemoglobin and myoglobin) to electron transfer (cytochrome c, cytochrome oxidase) to energy conversion (chlorophyll). They also have been proven to be efficient sensitizers and catalyst in a number of chemical and photochemical processes especially photodynamic therapy (PDT). The diversity of their functions is due in part to the variety of metals that bind in the “pocket” of the porphyrin ring system (Fig. 1). Figure 1. Metallated Tetraphenylporphyrin Upon metalation the porphyrin ring system deprotonates, forming a dianionic ligand (Fig. 2). The metal ions behave as Lewis acids, accepting lone pairs of electrons ________________________________ § We all need to thank Jay Stephens for synthesizing the H2TPP 2 from the dianionic porphyrin ligand. Unlike most transition metal complexes, their color is due to absorption(s) within the porphyrin ligand involving the excitation of electrons from π to π* porphyrin ring orbitals. Figure 2. Synthesis of Zn(TPP) The electronic absorption spectrum of a typical porphyrin consists of a strong transition to the second excited state (S0 S2) at about 400 nm (the Soret or B band) and a weak transition to the first excited state (S0 S1) at about 550 nm (the Q band).
    [Show full text]
  • Synthesis of Small Molecule and Polymeric Systems for the Controlled Release of Sulfur Signaling Molecules
    Synthesis of Small Molecule and Polymeric Systems for the Controlled Release of Sulfur Signaling Molecules Chadwick R. Powell Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemistry John B. Matson, Chair Webster L. Santos Harry W. Gibson Judy S. Riffle April 25th, 2019 Blacksburg, VA Keywords: hydrogen sulfide (H2S), carbonyl sulfide (COS), persulfide, 1,6-benzyl elimination, ring-opening Copyright 2019 Synthesis of Small Molecule and Polymeric Systems for the Controlled Release of Sulfur Signaling Molecules Chadwick R. Powell ABSTRACT Hydrogen sulfide (H2S) was recognized as a critical signaling molecule in mammals nearly two decades ago. Since this discovery biologists and chemists have worked in concert to demonstrate the physiological roles of H2S as well as the therapeutic benefit of exogenous H2S delivery. As the understanding of H2S physiology has increased, the role(s) of other sulfur-containing molecules as potential players in cellular signaling and redox homeostasis has begun to emerge. This creates new and exciting challenges for chemists to synthesize compounds that release a signaling compound in response to specific, biologically relevant stimuli. Preparation of these signaling compound donor molecules will facilitate further elucidation of the complex chemical interplay within mammalian cells. To this end we report on two systems for the sustained release of H2S, as well as other sulfur signaling molecules. The first system discussed is based on the N- thiocarboxyanhydride (NTA) motif. NTAs were demonstrated to release carbonyl sulfide (COS), a potential sulfur signaling molecule, in response to biologically available nucleophiles.
    [Show full text]
  • Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses
    life Review Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses Inseok Choi , Hyewon Son and Jea-Hyun Baek * School of Life Science, Handong Global University, Pohang, Gyeongbuk 37554, Korea; [email protected] (I.C.); [email protected] (H.S.) * Correspondence: [email protected]; Tel.: +82-54-260-1347 Abstract: The tricarboxylic acid cycle (TCA) is a series of chemical reactions used in aerobic organisms to generate energy via the oxidation of acetylcoenzyme A (CoA) derived from carbohydrates, fatty acids and proteins. In the eukaryotic system, the TCA cycle occurs completely in mitochondria, while the intermediates of the TCA cycle are retained inside mitochondria due to their polarity and hydrophilicity. Under cell stress conditions, mitochondria can become disrupted and release their contents, which act as danger signals in the cytosol. Of note, the TCA cycle intermediates may also leak from dysfunctioning mitochondria and regulate cellular processes. Increasing evidence shows that the metabolites of the TCA cycle are substantially involved in the regulation of immune responses. In this review, we aimed to provide a comprehensive systematic overview of the molecular mechanisms of each TCA cycle intermediate that may play key roles in regulating cellular immunity in cell stress and discuss its implication for immune activation and suppression. Keywords: Krebs cycle; tricarboxylic acid cycle; cellular immunity; immunometabolism 1. Introduction The tricarboxylic acid cycle (TCA, also known as the Krebs cycle or the citric acid Citation: Choi, I.; Son, H.; Baek, J.-H. Tricarboxylic Acid (TCA) Cycle cycle) is a series of chemical reactions used in aerobic organisms (pro- and eukaryotes) to Intermediates: Regulators of Immune generate energy via the oxidation of acetyl-coenzyme A (CoA) derived from carbohydrates, Responses.
    [Show full text]
  • Citric Acid Cycle
    CHEM464 / Medh, J.D. The Citric Acid Cycle Citric Acid Cycle: Central Role in Catabolism • Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylCoA • In aerobic organisms, citric acid cycle makes up the final stage of catabolism when acetyl CoA is completely oxidized to CO2. • Also called Krebs cycle or tricarboxylic acid (TCA) cycle. • It is a central integrative pathway that harvests chemical energy from biological fuel in the form of electrons in NADH and FADH2 (oxidation is loss of electrons). • NADH and FADH2 transfer electrons via the electron transport chain to final electron acceptor, O2, to form H2O. Entry of Pyruvate into the TCA cycle • Pyruvate is formed in the cytosol as a product of glycolysis • For entry into the TCA cycle, it has to be converted to Acetyl CoA. • Oxidation of pyruvate to acetyl CoA is catalyzed by the pyruvate dehydrogenase complex in the mitochondria • Mitochondria consist of inner and outer membranes and the matrix • Enzymes of the PDH complex and the TCA cycle (except succinate dehydrogenase) are in the matrix • Pyruvate translocase is an antiporter present in the inner mitochondrial membrane that allows entry of a molecule of pyruvate in exchange for a hydroxide ion. 1 CHEM464 / Medh, J.D. The Citric Acid Cycle The Pyruvate Dehydrogenase (PDH) complex • The PDH complex consists of 3 enzymes. They are: pyruvate dehydrogenase (E1), Dihydrolipoyl transacetylase (E2) and dihydrolipoyl dehydrogenase (E3). • It has 5 cofactors: CoASH, NAD+, lipoamide, TPP and FAD. CoASH and NAD+ participate stoichiometrically in the reaction, the other 3 cofactors have catalytic functions.
    [Show full text]
  • UNDERSTANDING SULFUR BASED REDOX BIOLOGY THROUGH ADVANCEMENTS in CHEMICAL BIOLOGY by THOMAS POOLE a Dissertation Submitted to T
    UNDERSTANDING SULFUR BASED REDOX BIOLOGY THROUGH ADVANCEMENTS IN CHEMICAL BIOLOGY BY THOMAS POOLE A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Chemistry May 2017 Winston-Salem, North Carolina Approved By: S. Bruce King, Ph.D., Advisor Leslie B. Poole, Ph.D., Chair Patricia C. Dos Santos, Ph.D. Paul B. Jones, Ph.D. Mark E. Welker, Ph.D. ACKNOWLEDGEMENTS First and foremost I would like to thank professor S. Bruce King. His approach to science makes him an excellent role model that I strive to emulate. He is uniquely masterful at parsing science into important pieces and identifying the gaps and opportunities that others have missed. I thank him for the continued patience and invaluable insight as I’ve progressed through my graduate studies. This work would not have been possible without his insight and guiding suggestions. I would like to thank our collaborators who have proven invaluable in their support. Cristina Furdui has provided the knowledge, context, and biochemical support that allowed our work to be published in esteemed journals. Leslie Poole has provided the insight into redox biology and guidance towards appropriate experiments. I thank my committee members, Mark Welker and Patricia Dos Santos who have guided my graduate work from the beginning. Professor Dos Santos provided the biological perspective to evaluate my redox biology work. In addition, she helped guide the biochemical understanding required to legitimize my independent proposal. Professor Welker provided the scrutinizing eye for my early computational work and suggested validating the computational work with experimental data.
    [Show full text]
  • How Do Bacterial Cells Ensure That Metalloproteins Get the Correct Metal?
    REVIEWS How do bacterial cells ensure that metalloproteins get the correct metal? Kevin J. Waldron and Nigel J. Robinson Abstract | Protein metal-coordination sites are richly varied and exquisitely attuned to their inorganic partners, yet many metalloproteins still select the wrong metals when presented with mixtures of elements. Cells have evolved elaborate mechanisms to scavenge for sufficient metal atoms to meet their needs and to adjust their needs to match supply. Metal sensors, transporters and stores have often been discovered as metal-resistance determinants, but it is emerging that they perform a broader role in microbial physiology: they allow cells to overcome inadequate protein metal affinities to populate large numbers of metalloproteins with the right metals. It has been estimated that one-quarter to one-third of all Both monovalent (cuprous) copper, which is expected proteins require metals, although the exploitation of ele- to predominate in a reducing cytosol, and trivalent ments varies from cell to cell and has probably altered over (ferric) iron, which is expected to predominate in an the aeons to match geochemistry1–3 (BOX 1). The propor- oxidizing periplasm, are also highly competitive, as are tions have been inferred from the numbers of homologues several non-essential metals, such as cadmium, mercury of known metalloproteins, and other deduced metal- and silver6 (BOX 2). How can a cell simultaneously contain binding motifs, encoded within sequenced genomes. A some proteins that require copper or zinc and others that large experimental estimate was generated using native require uncompetitive metals, such as magnesium or polyacrylamide-gel electrophoresis of extracts from iron- manganese? In a most simplistic model in which pro- rich Ferroplasma acidiphilum followed by the detection of teins pick elements from a cytosol in which all divalent metal in protein spots using inductively coupled plasma metals are present and abundant, all proteins would bind mass spectrometry4.
    [Show full text]
  • Characterization of Triggerable Quinones for the Development Of
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Characterization of Triggerable Quinones for the Development of Enzyme-Responsive Liposomes Maria Fabiana Mendoza Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Mendoza, Maria Fabiana, "Characterization of Triggerable Quinones for the Development of Enzyme-Responsive Liposomes" (2011). LSU Doctoral Dissertations. 1173. https://digitalcommons.lsu.edu/gradschool_dissertations/1173 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CHARACTERIZATION OF TRIGGERABLE QUINONES FOR THE DEVELOPMENT OF ENZYME-RESPONSIVE LIPOSOMES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the Requirements for the degree of Doctor of Philosophy In The Department of Chemistry by Maria Fabiana Mendoza B.S., Missouri Baptist University, 2005 May 2012 DEDICATION This dissertation is dedicated to my loving grandmother: Mabel Cerri Burgantis de Mendoza And to My Mom, Ibis Elizabeth Paris Bargas My Dad, Hector Eduardo Mendoza Cerri My Brother, Facundo Horacio Jesus Mendoza Paris My Brother, Jose Hector Mendoza Paris My Partner, Dayna Tatiana Pastorino Martinez ii ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Robin L. McCarley, for his extraordinarily guidance and support through all these years in graduate school. I still remember my visit to LSU and how from the moment I interacted with his graduate students and met him I knew that I would like to be a part of his group.
    [Show full text]
  • Electron Transfer Precedes ATP Hydrolysis During Nitrogenase Catalysis
    Electron transfer precedes ATP hydrolysis during nitrogenase catalysis Simon Duvala,1, Karamatullah Danyala,1, Sudipta Shawa, Anna K. Lytlea, Dennis R. Deanb, Brian M. Hoffmanc, Edwin Antonya,2, and Lance C. Seefeldta,2 aDepartment of Chemistry and Biochemistry, Utah State University, Logan, UT 84322; bDepartment of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; and cDepartment of Chemistry, Northwestern University, Evanston, IL 60208 Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved August 28, 2013 (received for review June 12, 2013) 2+ The biological reduction of N2 to NH3 catalyzed by Mo-dependent an oxidized [4Fe–4S] cluster in the Fe protein (12). This second − nitrogenase requires at least eight rounds of a complex cycle of step is fast, having a rate constant greater than 1,700 s 1 (12). events associated with ATP-driven electron transfer (ET) from the Transfer of one electron from the Fe protein to an αβ-unit of Fe protein to the catalytic MoFe protein, with each ET coupled to MoFe protein is known to be coupled to the hydrolysis of the the hydrolysis of two ATP molecules. Although steps within this two ATP molecules bound to the Fe protein, yielding two ADP cycle have been studied for decades, the nature of the coupling and two Pi (2). Following the hydrolysis reaction, the two between ATP hydrolysis and ET, in particular the order of ET and phosphates (Pi) are released from the protein complex with −1 ATP hydrolysis, has been elusive. Here, we have measured first- a first-order rate constant (kPi)of22s at 23 °C (13).
    [Show full text]
  • WO 2017/062311 Al 13 April 2017 (13.04.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/062311 Al 13 April 2017 (13.04.2017) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61P 39/00 (2006.01) A23L 33/175 (2016.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A23L 33/13 (201 6.01) A61K 36/48 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/US20 16/055 173 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 3 October 2016 (03. 10.2016) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/238,338 7 October 201 5 (07. 10.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (72) Inventor; and TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant : HUIZENGA, Joel [US/US]; 354 Gravilla DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Street, La Jolla, California 92037 (US).
    [Show full text]
  • 1 Characterization of Metalloproteins by High-Throughput X-Ray
    Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Characterization of Metalloproteins by High-Throughput X-ray Absorption Spectroscopy Wuxian Shi1,*, Marco Punta2, Jen Bohon1, J. Michael Sauder3, Rhijuta D’Mello1, Mike Sullivan1, John Toomey1, Don Abel1, Marco Lippi4, Andrea Passerini5, Paolo Frasconi4, Stephen K. Burley3, Burkhard Rost2,6 and Mark R. Chance1 1 New York SGX Research Center for Structural Genomics (NYSGXRC), Case Western Reserve University, Center for Proteomics and Bioinformatics, Case Center for Synchrotron Biosciences, Upton, NY 11973 USA. 2 TUM Munich, Informatik, Bioinformatik, Institute for Advanced Studies, Germany. 3 New York SGX Research Center for Structural Genomics (NYSGXRC), Eli Lilly and Company, Lilly Biotechnology Center, 10300 Campus Point Drive, Suite 200, San Diego, CA 92121 USA. 4 Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze, Italy 5 Dipartimento di Ingegneria e Scienza dell’Informazione, Università degli Studi di Trento, Italy. 6 New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. *Corresponding author: Professor Wuxian Shi, contact [email protected] Key words: metalloproteomics, structural genomics, metalloprotein, homology modeling, metal binding site, transition metal. Running title: Characterization of Metalloproteins by HT-XAS 1 Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract: High-Throughput X-ray Absorption Spectroscopy was used to measure transition metal content based on quantitative detection of X-ray fluorescence signals for 3879 purified proteins from several hundred different protein families generated by the New York SGX Research Center for Structural Genomics.
    [Show full text]
  • University of Groningen Exploring the Cofactor-Binding and Biocatalytic
    University of Groningen Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes Kopacz, Malgorzata IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Kopacz, M. (2014). Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 29-09-2021 Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes Małgorzata M. Kopacz The research described in this thesis was carried out in the research group Molecular Enzymology of the Groningen Biomolecular Sciences and Biotechnology Institute (GBB), according to the requirements of the Graduate School of Science, Faculty of Mathematics and Natural Sciences.
    [Show full text]