A Case Study from the Austroalpine Unit (Eastern Alps)

Total Page:16

File Type:pdf, Size:1020Kb

A Case Study from the Austroalpine Unit (Eastern Alps) International Journal of Earth Sciences (2020) 109:2235–2253 https://doi.org/10.1007/s00531-020-01897-7 ORIGINAL PAPER Organic metamorphism as a key for reconstructing tectonic processes: a case study from the Austroalpine unit (Eastern Alps) Gerd Rantitsch1 · Christoph Iglseder2 · Ralf Schuster2 · Marianne Sophie Hollinetz3 · Benjamin Huet2 · Manuel Werdenich3 Received: 9 March 2020 / Accepted: 12 June 2020 / Published online: 3 July 2020 © The Author(s) 2020 Abstract At the northwestern margin of the Gurktal Alps (Eastern Alps), Eoalpine (Cretaceous) thrusting of carbonaceous material (CM) bearing metasediments formed a very low- to low-grade metamorphic nappe stack above higher-grade metamorphic basement nappes. Sedimentary burial as well as progressive metamorphism transformed the enclosed CM to anthracite, metaanthracite and semigraphite. In a kinematically well-constrained section at the northwestern frontal margin of the nappe stack, this transformation has been investigated by vitrinite refectance measurements and Raman spectroscopy of carbo- naceous materials (RSCM). Automated, interactive ftting of Raman spectra estimates the metamorphic peak temperatures in a complete section through the upper part of the Upper Austroalpine unit. A RSCM trend indicates a temperature profle of ca. 250–600 °C. The top part of the gradient is reconstructed by one-dimensional thermal modeling. The certainty of ca. ± 25 °C at a confdence level of 0.9 resembles the data variability within a sample location. Due to the large calibration range, the method is able to reconstruct a thermal crustal profle in space and time. The study highlights the versatility of RSCM, which characterizes almost 250 Ma of a complex and polyphase tectonic history. RSCM data characterize the Variscan metamorphic grade in nappes now imbricated in the Eoalpine nappe stack. They additionally constrain a numeri- cal model which emphasizes the signifcance of an increased thermal gradient in a continental margin towards the western Neotethyan ocean during Permo-Triassic lithospheric extension. It fnally characterizes the Eoalpine metamorphic gradient during nappe stacking and a signifcant metamorphic jump related to exhumation and normal faulting. Keywords Eastern Alps · Upper Austroalpine Unit · Gurktal Alps · Organic metamorphism · Raman spectroscopy · Geothermometry Introduction are applied on metamorphic rocks formed at deeper crustal levels (e.g. Lanari and Duesterhoeft 2019, and references The metamorphic structure of a nappe pile refects the spa- therein), while diverse low-temperature thermometers (clay tial and temporal evolution of tectonic processes that shaped mineralogy, organic petrography and geochemistry) and its history. To investigate it, petrological methods applying thermochronometers are used to investigate the near-surface equilibrium thermodynamics on coexisting mineral phases parts of a crustal profle (e.g. Dunkl et al. 2011; Ferreiro * Gerd Rantitsch Manuel Werdenich [email protected] [email protected] Christoph Iglseder 1 Montanuniversität Leoben, Lehrstuhl für Geologie und [email protected] Lagerstättenlehre, Peter-Tunner Straße 5, 8700 Leoben, Ralf Schuster Austria [email protected] 2 Geologische Bundesanstalt Wien, Neulinggasse 38, Marianne Sophie Hollinetz 1030 Wien, Austria [email protected] 3 Department für Geodynamik und Sedimentologie, Benjamin Huet Universität Wien, Althanstraße 14, 1090 Wien, Austria [email protected] Vol.:(0123456789)1 3 2236 International Journal of Earth Sciences (2020) 109:2235–2253 Mählmann et al. 2012). Both approaches work best if a technique to analyze Raman spectra of CM. In this contri- single monocyclic tectono-metamorphic event is explored. bution, we provide a case study, demonstrating the benefts Their combination is however hampered by a methodologi- of this approach in the analysis of a regional metamorphic cal gap in the temperature range between 150 °C and 350 °C, temperature pattern, covering very low- to medium- grade bridged by Raman spectroscopy of carbonaceous material metamorphic conditions never explored before by a single (RSCM) thermometry. geothermometric method. Vitrinite reflectance data are a result of temperature For this purpose, the Upper Austroalpine nappe stack through time and cannot directly translated into a specifc in the northwestern part of the Gurktal Alps was selected temperature. In contrast, RSCM thermometry (Beyssac et al. (Fig. 1). This nappe stack consists of rocks showing a very 2002b) estimates low grade metamorphic peak temperatures. wide range of metamorphic conditions, from diagenesis to This method is now routinely used for characterizing the amphibolite-facies (Hoinkes et al. 1999; Oberhänsli et al. thermal structure of orogens and sedimentary basins (e.g. 2004) formed during the Eoalpine (Cretaceous) collision Angiboust et al. 2009; Souche et al. 2012; Scharf et al. 2013; within the Adriatic microcontinent (Stüwe and Schuster Fauconnier et al. 2014; Vacherat et al. 2014). However, if a 2010). It records a long history with pre-, syn- and post- RSCM thermometer is not accurately calibrated (see Lüns- Eoalpine features (Neubauer 1987; Hoinkes et al. 1999; dorf et al. 2014) or if the efects of strain (Barzoi 2015) Koroknai et al. 1999; Schuster and Frank 1999; Thöni 1999; are underestimated, major problems arise. This was claimed Huet 2015). Any attempt to understand the Eoalpine tecton- by Ferreiro Mählmann and Le Bayon (2016) to explain the ics requires knowledge of the metamorphic grade and the controversial metamorphic map patterns of the Swiss Gla- timing of metamorphism in the individual tectonic units. rus Alps, where vitrinite refectance discontinuities are not This is however complicated by the polycyclic history. mirrored by RSCM data (see also Ferreiro Mählmann et al. The application of classical petrological geothermomet- 2012). To avoid major methodological problems of RSCM ric methods provided major constraints for reconstructing thermometry (Lünsdorf et al. 2014), Lünsdorf et al. (2017) the upper greenschist- to ultrahigh-pressure eclogite-facies proposed the use of the IFORS (“Interactive ftting of Raman metamorphic zonation in the metamorphic core zone of spectra”) software (Lünsdorf and Lünsdorf 2016) as a new an orogen, here represented by the Eoalpine high-pressure Fig. 1 Simplifed geological map of the study area modifed from Iglseder (2019). The nappe system nomenclature follows Schmid et al. (2004) and Froitzheim et al. (2008). The political borders of Austria are given as a geographic reference (Coordinate system: UTM 33 N, EPSG 32633) 1 3 International Journal of Earth Sciences (2020) 109:2235–2253 2237 belt (Janák et al. 2015), which derived from the tectonic Koroknai et al. 1999; Huet 2015). During this extensional lower plate and traces the Cretaceous suture (Schmid et al. event, Gosau Basins (middle Late Cretaceous to Eocene) 2004). Major units of the tectonically overlying upper-plate formed as collapse basins synchronously with the exhuma- segment, widely exposed in the study area, are however tion of formerly deeply buried basement rocks (Neubauer composed of very low-grade to lower greenschist-facies et al. 1995; Fügenschuh et al. 2000; Rantitsch et al. 2005; metamorphosed Paleozoic sediments (Hoinkes et al. 1999; Krenn et al. 2008). Oberhänsli et al. 2004). Due to the methodological gap, their The investigated individual nappes are composed of dif- peak temperatures have not been accurately constrained ferent types of basement and characterized by diferent strati- until now. The investigated section covers the nappe stack graphic ranges of their post-Variscan cover (Fig. 1). Major above the eclogite bearing units (Schmid et al. 2004). As parts of the basement record a polyphase history including carbonaceous material (CM) is present in all implicated Ordovician, Carboniferous (Variscan), Permo-Triassic and/ structural units, organic metamorphism is investigated in or Cretaceous (Eoalpine) tectono-metamorphic imprints an initially ca. 35 km thick (corresponding to peak pressure (Neubauer 1987; Hoinkes et al. 1999; Koroknai et al. 1999; of 10 kbar, Koroknai et al. 1999; Schuster and Frank 1999) Schuster and Frank 1999; Thöni 1999; Huet 2015). For this profle, bridging the methodological gap between petrologi- reason constraining the Eoalpine metamorphic conditions is cal geothermometers, applied in the deeper crust, and kinetic sometimes complicated. The post-Variscan cover deposited models of organic maturation, applied near to the surface. in three sedimentary cycles. The oldest cycle is represented The study data thus provide new evidence to understand the by Pennsylvanian (Stangnock Formation) to Cisuralian complex tectonic history of the Upper Austroalpine nappe (Werchzirm Formation) molasse type sediments deposited stack. within an intramontane basin (Krainer 1993). The next one RSCM data are used to cover the full temperature range comprises upper Permian to Lower Triassic siliciclastic of the rocks, verifed by phase equilibrium modeling, and transgressional series (e.g. Alpine Verrucano, Lantschfeld vitrinite refectance data constrain the Permo-Mesozoic ther- quartzite), overlain by Anisian to Jurassic successions mal evolution of the nappe stack. The study data also evalu- dominated by carbonaceous platform sediments (Pistotnik ate the limits of organic maturity data (vitrinite refectance) 1973/1974). During the Eoalpine event, sediments
Recommended publications
  • Thin-Skinned Versus Thick-Skinned Tectonics in the Friuli Alps (NE Italy) in Relation to the Alpine-Dinaridic Orogenic System
    Department of Earth Sciences UNIVERSITEIT UTRECHT Thin-skinned versus thick-skinned tectonics in the Friuli Alps (NE Italy) in relation to the Alpine-Dinaridic orogenic system MSc Thesis Dominique Engelen February 2016 Supervisors 1st Dr. Ernst Willingshofer 2nd Drs. Inge van Gelder 3rd Dr. Liviu Matenco In collaboration with Anissa Smits Abstract The Friuli Alps, located in the easternmost part of the eastern Southern Alps in north-eastern Italy, represent the interference area of the Dinaric and Alpine mountain chains. There is a wide agreement on the general evolution of the eastern Southern Alps, which would consist of a poly-phase compressional evolution involving three main thrust systems. However, the amount and initiation of the total amount of shortening is still poorly constraint. In this study we investigate the kinematic evolution by means of structural fieldwork and by the balancing and reconstruction of a N-S cross-section by use of MOVE software for 2D modeling. Interpretation of the data led to the definition of five deformation phases (D1- D5), in which a clear distinction could be made between thin- and a thick-skinned phases of deformation. Prior to the compressional phases is the D1 NW-SE extensional phase, which is expressed by NNW-SSE oriented normal faults, related to the NE-SW separation of the Friuli platform during the Early-Jurassic. The D2 NE-SW to E-W directed Dinaric shortening started during the Eocene and is expressed by SW to W-vergent thrusting and folding. Dinaric deformation is largely overprinted by three Alpine phases; D3 – N-S thin-skinned Alpine shortening (Middle- to Late-Miocene), characterized by large scale S-vergent thrusting along flat-ramp-flat trajectories, which resulted in great amounts of transport of the Upper-Triassic and Jurassic platform formations along four main décollements (the Bellerophon, Raibl and Biancone Formation, and the Eocene flysch) and ultimately to tripling and folding of the sedimentary cover.
    [Show full text]
  • Scanned Document
    Hugo ORTNER and Franz REITER KINEMATIC HISTORY OF THE TRIASSIC SOUTH OF THE INN VALLEY (NORTHERN CALCAREOUS ALPS, AUSTRIA) - EVIDENCE FOR JURASSIC AND LATE CRETACEOUS LARGE SCALE NORMAL FAULTING 3rd Workshop on Alpine Geological Studies Biella - Oropa, September 29th - October 1st 1997 Guido GOSSO, Flavio JADOUL, Mattia SELLA and Maria Iole SPALLA (Editors) 1999 from Mem. Sci. Geol. v. 51 / 1 pp. 129-140 16 figs Padova 1999 ISSN 0391-8602 Editrice Societa Cooperativa Tipografica PADOVA 1999 Kinematic history of the Triassic South of the Inn Valley (Northern Calcareous Alps, Austria) - Evidence for Jurassic and Late Cretaceous large scale normal faulting Hugo ORTNER and Franz REITER lnstitut for Geologie und Palaontologie, Universitiit Innsbruck, Innrain 52, A-6020 Innsbruck, Osterreich ABSTRACT - The geometry of slices at the southern margin of the Northern Calcareous Alps not only calls for thick­ ening of the nappe stack by compression, but also thinning of the sedimentary column by extension. The deforma­ tional history of the Triassic south of the Inn Valley is characterised by six stages: (1) Thinning by top SE extension during Jurassic continental breakup, (2) stacking of thinned slices by top NW thrusting during the time of peak tem­ perature metamorphism at 140 Ma (Early Cretaceous), (3) postmetamorphic top SE extension (Late Cretaceous) con­ temporaneously with Gosau sedimentation on top of the nappe pile of the Northern Calcareous Alps and (4) a long period of N-S compression (Eocene), resulting in northvergent thrusting and folding with development of a foliation , southvergent thrusting and, finally, overturning of the strata In the western part of the investigated area.
    [Show full text]
  • Geological Excursion BASE-Line Earth
    Geological Excursion BASE-LiNE Earth (Graz Paleozoic, Geopark Karavanke, Austria) 7.6. – 9.6. 2016 Route: 1. Day: Graz Paleozoic in the vicinity of Graz. Devonian Limestone with brachiopods. Bus transfer to Bad Eisenkappel. 2. Day: Visit of Geopark Center in Bad Eisenkappel. Walk on Hochobir (2.139 m) – Triassic carbonates. 3. Day: Bus transfer to Mezica (Slo) – visit of lead and zinc mine (Triassic carbonates). Transfer back to Graz. CONTENT Route: ................................................................................................................................... 1 Graz Paleozoic ...................................................................................................................... 2 Mesozoic of Northern Karavanke .......................................................................................... 6 Linking geology between the Geoparks Carnic and Karavanke Alps across the Periadriatic Line ....................................................................................................................................... 9 I: Introduction ..................................................................................................................... 9 II. Tectonic subdivision and correlation .............................................................................10 Geodynamic evolution ...................................................................................................16 Alpine history in eight steps ...........................................................................................17
    [Show full text]
  • Hummocky Karren Lukas Plan1, Christa Renetzeder2, Rudolf Pavuza3, and Wilfred Körner4
    International Journal of Speleology 41 (1) 75-81 Tampa, FL (USA) January 2012 Available online at scholarcommons.usf.edu/ijs/ & www.ijs.speleo.it International Journal of Speleology Official Journal of Union Internationale de Spéléologie A new karren feature: hummocky karren Lukas Plan1, Christa Renetzeder2, Rudolf Pavuza3, and Wilfred Körner4 Abstract: Plan L., Renetzeder C., Pavuza R. and Körner W. 2012. A new karren feature: hummocky karren. International Journal of Speleology, 41(1), 75-81. Tampa, FL (USA). ISSN 0392-6672. http://dx.doi.org/10.5083/1827-806X.41.1.8. Karren are small-scale landforms on karst surfaces and many types have been described so far. Here we present an apparently new feature which was found on the Hochschwab karst massive in the Northern Calcareous Alps of Austria. So far only few outcrops each having less than 1 m² within a very restricted area have been found. Morphometric analysis reveals that the karren consist of a randomly distributed, dispersed assemblage of small hummocks and depressions in between. The mean distance between neighbouring hummocks is 4 to 5 cm and the mean height is 0.85 cm. Longitudinal sections are gently sinuous. The occurrences are delimited by thin soil cover with grassy vegetation and the karren continue below that vegetation cover. Therefore, it is clear that the features have formed subcutaneously. Corroded fissures where water could infiltrate into the epikarst are absent. The bedrock lithology is Middle Triassic limestone of the Wetterstein Formation in lagoonal facies. Geological structures do not govern the feature. The surface is not a bedding plane and small joints and fractures do not govern the arrangement of the hummocks.
    [Show full text]
  • A New Evaluation of Fluid Inclusion Data Based on Thermal Basin Modeling for the Drau Range, Eastern Alps
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Austrian Journal of Earth Sciences Jahr/Year: 2000 Band/Volume: 93 Autor(en)/Author(s): Rantitsch Gerd Artikel/Article: A new evaluation of fluid inclusion data based on thermal basin modeling for the Drau Range, Eastern Alps. 77-85 © Österreichische Geologische Gesellschaft/Austria; download unter www.geol-ges.at/ und www.biologiezentrum.at Mitt. Osterr. Geol. Ges. ISSN 0251-7493 93(2000) 77-85 Wien, Juni 2003 Eastern Alps Drau Range Fluid inclusions Basin modeling A new evaluation of fluid inclusion data based on thermal basin modeling for the Drau Range, Eastern Alps GERD RANTITSCH1 3 Figures and 1 Table Content Abstract 77 Zusammenfassung 77 1. Introduction 79 2. Geological setting 79 3. Fluid inclusion data 79 4. Isochore calculation 82 5. Discussion 82 6. Conclusions 84 7. Acknowledgement 84 References 84 Abstract Published microthermometrical data of fluid inclusions, which were trapped near or subsequent to the time of maximum subsidence of the Drau Range (Eastern Alps) have been used to evaluate the relationship between fluid flow and heat transfer. The evaluation is based on a numerical 1-D heat flow model, calibrated with vitrinite reflectance values. Aqueous fluid inclusions in quartz fissures crosscutting Permo-Scythian sediments and in fluorites hosted by Carnian carbonates give evidence for conductive heat transfer during fluid flow in the Late Cretaceous/Neogene. This implies that trapping temperatures of these fluids (125 °C to 220 °C in quartz, 115 °C to 180 °C in fluorite) can be used to approximate the burial temperatures (190 °C in the Permo-Scythian, 130 °C to 150 °C in the Carnian).
    [Show full text]
  • 75 the Upper Triassic Events Recorded in Platform and Basin of the Austrian Alps. the Triassic/Jurassic GSSP and Norian/Rhaetian
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt (ISSN 1017-8880), Band 111, Wien 2015 STRATI 2015 The Upper Triassic events recorded in platform and basin of the Austrian Alps. The Triassic/Jurassic GSSP and Norian/Rhaetian GSSP candidate Sylvain Richoz & Leopold Krystyn 47 figures Sylvain Richoz - Institute of Earth Sciences, Graz University, Heinrichstraße 26, 8010 Graz, Austria, [email protected] Leopold Krystyn - Department for Palaeontology, Vienna University, Geozentrum, Althansstr. 9, A-1090 Vienna, Austria; [email protected] Contents Abstract 1. Topics and area of the Field Trip 2. Introduction 2.1. The Northern Calcareous Alps 2.2. Principles of the structural evolution 2.3. Triassic depositional realms 2.3.1. General features 2.3.2. The Dachstein Mountains 2.3.3. The Zlambach facies – the deep shelf environment 2.3.4. The Hallstatt facies – the condensed deep shelf environment 2.3.5. The Eiberg Basin 3. The Field Trip 3.1. Shelf margin (Day 1) 3.1.1. Route 3.1.2. Locality 1 – Pötschenhöhe Quarry 3.1.3. Locality 2 – Großer Zlambach 3.1.4. Locality 3 – Steinbergkogel: Proposed Norian/Rhaetian GSSP section 3.1.5. Locality 4 – Gosausee: The Dachstein margin at Gosaukamm 3.2 Lagoon, fringing reef and Eiberg Basin (Day 2) 3.2.1. Route 3.2.2. Locality 5 – Pass Lueg: The classical Lofer cycle 3.2.3. Locality 6 – Adnet 3.2.4. Locality 7 – Steinplatte 3.2.5. Locality 8 – Eiberg 3.3. The Triassic/Jurassic GSSP (Day 3) 3.3.1.
    [Show full text]
  • Age and Evolution of the Wetterstein Carbonate Platform in SW Serbia (Zlatibor Mountain)
    Further research is necessary to understand the relationship between the gold-bearing mineralizations and their settings. Age and evolution of the Wetterstein Carbonate Platform in SW Serbia (Zlatibor Mountain) Missoni S.1, Sudar M.N.2, Gawlick H.-J.1, Jovanović D.3 and Lein R.4 1University of Leoben, Department for Applied Geosciences and Geophysics, Prospection and Applied Sedimentology, Peter-Tunner-Strasse 5, 8700 Leoben, Austria, [email protected]; [email protected] 2University of Belgrade, Faculty of Mining and Geology, Department of Palaeontology, Đušina 7, P.O. Box 62, 11000 Belgrade, Serbia, [email protected] 3Geological Institute of Serbia, Rovinjska 12, 11000 Belgrade, Serbia, [email protected] 4University of Vienna, Centre for Earth Sciences, Althanstrasse 14, 1090 Vienna, Austria, [email protected] Triassic shallow- and deep-water carbonates occur together with Triassic radiolarites widespread as olistoliths and slides in the Middle to early Late Jurassic mélange of the Dinaridic Ophiolite Belt in the Zlatibor Mountain. These slides occur tectonically on top of the Drina-Ivanjica Palaeozoic and the late Middle to early Late Jurassic ophiolitic mélange respectively the ophiolites and not below as interpreted before. These slides were interpreted to derive from the Drina-Ivanjica Unit, where they should have formed the original sedimentary cover, disintegrated in the Late Jurassic. According to our investigations the slides of this carbonate-clastic mélange differ in age, facies and palaeogeographic origin. The carbonate rocks are originated from a relatively broad shelf in the Triassic facing the Neotethys Ocean to the east, maybe also from the adjacent Drina-Ivanjica Unit and from further east.
    [Show full text]
  • PLANT FOSSILS in the CASSIAN BEDS and OTHER CARNIAN FORMATIONS of the SOUTHERN ALPS (ITALY) Evelyn Kustatscher1, Fabrizio Bizzar
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Geo.Alp Jahr/Year: 2011 Band/Volume: 008 Autor(en)/Author(s): Kustatscher Evelyn, Bizzarini Fabrizio, Roghi Guido Artikel/Article: Plant fossils in the Cassian Beds and other carnian formations of the southern Alps (Italy). 146-155 download unter www.biologiezentrum.at Geo.Alp, Vol. 8, S. 146–155, 2011 PLANT FOSSILS IN THE CASSIAN BEDS AND OTHER CARNIAN FORMATIONS OF THE SOUTHERN ALPS (ITALY) Evelyn Kustatscher1, Fabrizio Bizzarrini2 & Guido Roghi3 Mit 16 Abbildungen und 3 Tabellen 1 Naturmuseum Südtirol, Bindergasse 1, 39100 Bozen, Italy 2 C/o Museo Civico di Rovereto, Borgo S. Caterina 41, I-38068 Rovereto 3 Istituto di Geoscienze e Georisorse-CNR-Sezione di Padova, c/o Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy. Introduction Triassic macrofloras in the Southern Alps are rare, and the majority of literature data is devoted to Ladinian plants. The first plant remain from the Southern Alps, a not better defined “fern fragment”, has been illustrated by Wissmann and Münster (1841). Later, several authors mentioned and figured plant fossils from the so-called “Buchensteiner Schichten”, “Wengener Schichten” and “alpiner Muschelkalk” of the Dolomites (e.g., Mojsisovics, 1879; Ogilvie Gor- don, 1927, 1934; Leonardi, 1953; for an overview see Wachtler & van Konijnenburg-van Cittert, 2000). Only Koken (1913) indicated badly preserved plant remains from the Heiligkreuz Schichten without describing or figuring them. Outside the Dolomites, only two more localities rich in Triassic plant remains were known: the Anisian flora of Re- coaro (e.g., De Zigno, 1862; Schenk, 1868) and the Carnian flora of Raibl/Cave del Predil (e.g., Bronn, 1858; Schenk, 1866-7, Stur, 1868, 1885).
    [Show full text]
  • AUSTRIAN JOURNAL of EARTH SCIENCES Volume 98 2005
    AUSTRIAN JOURNAL of EARTH SCIENCES [MITTEILUNGEN der ÖSTERREICHISCHEN GEOLOGISCHEN GESELLSCHAFT] an INTERNATIONAL JOURNAL of the AUSTRIAN GEOLOGICAL SOCIETY volume 98 2005 Gerd RANTITSCH & Barbara RUSSEGGER: Organic maturation within the Central Northern Calcareous Alps (Eastern Alps)________________________________ www.univie.ac.at/ajes EDITING: Grasemann Bernhard, Wagreich Michael PUBLISCHER: Österreichische Geologische Gesellschaft Rasumofskygasse 23, A-1031 Wien TYPESETTER: Irnberger Norbert, www.irnberger.net Copy-Shop Urban, Bahnstraße 26a, 2130 Mistelbach PRINTER: Holzhausen Druck & Medien GmbH Holzhausenplatz 1, 1140 Wien ISSN 0251-7493 Austrian Journal of Earth Sciences Volume 98 Vienna 2005 Organic maturation within the Central Northern Calca- reous Alps (Eastern Alps) Gerd RANTITSCH1) & Barbara RUSSEGGER2) KEYWORDS very low-grade metamorphism Northern Calcareous Alps 1) Department of Applied Geosciences and Geophysics, Montanuniversität Leoben, vitrinite reflectance Austria, A-8700 Leoben, Austria, Email: [email protected] thermal modeling Jurassic orogeny 2) Library of the University of Graz, A-8010 Graz, Austria Eastern Alps Abstract Organic maturation within the central Northern Calcareous Alps (Eastern Alps) has been investigated using vitrinite reflectance data from Upper Permian to Upper Cretaceous strata of the Stauffen-Höllengebirge Nappe, Dachstein Nappe, Tennengebirge Block and Lammer Unit. Within the Lammer Unit a metamorphic break is observed between the Strubberg Formation and the tectonically overlying
    [Show full text]
  • Role of High-Angle Faults During Heteroaxial Contraction, Inntal Thrust Sheet, Northern Calcareous Alps, Western Austria
    Festschrift zum 60. Geburtstag von Helfried Mostler Geol. Paläont. Mitt. Innsbruck, ISSN 0378-6870, Bd. 20, S. 389^06 ROLE OF HIGH-ANGLE FAULTS DURING HETEROAXIAL CONTRACTION, INNTAL THRUST SHEET, NORTHERN CALCAREOUS ALPS, WESTERN AUSTRIA Gerhard Eisbacher & Rainer Brandner With 7 figures Abstract: During Late Cretaceous/two-stage contraction of sedimentary strata within the Austroalpine accretionary wedge initial fold-thrust detachment and subsequent heteroaxial shortening were controlled by low-strength stratigraphie heterogen- eities and by the propagation of transverse high-angle faults. For the Inntal thrust sheet of the Northern Calcareous Alps (NC A) about 20 km of NW-directed thrust movement was accompanied by internal shortening and by distributed dextral displacement along NW-striking transfer faults by about 15 to 20 km. Thrust sheet segmentation along high- angle transfer faults led to significant relief between stratal panels of variable vergence and accounts for local depositi- on in and patchy preservation of Upper Cretaceous syndeformational clastic basins. One of the authors (R.B.) inter- prets orogen-parallel striking normal faults with Upper Cretaceous scarp breccias as an indication of today's NW-SE extension of the early alpine nappe edifice. Superimposed NNE-SSW-oriented heteroaxial contraction in latest Cretaceous-Paleogene time by about 10 km reac- tivated initial transfer faults as high-angle reverse faults, with a new set of NE-striking high-angle sinistrai faults pro- pagating from the footwall into the frontal Inntal hangingwall. This increased the plunge of pre-existing folds and pro- duced a new set of plunging folds within fault-bounded panels. High-angle faults thus accommodated polyphase shor- tening of the NCA-wedge and superimposed basins that formed along transverse zones with major structural relief.
    [Show full text]
  • Dasycladaceen-Assoziationen Aus Triadischen Seichtwasserkarbonaten Des Ostabschnittes Der Nördlichen Kalkalpen
    Jubiläumsschrift 20 Jahre Geologische Zusammenarbeit A 20 eves magyar-osztrak Österreich - Ungarn földtaniegyüttmüködesjubileumi kötete Redaktion: Harald Lobitzer, GezaCsäszär& Albert Daurer Szerkesztette: Lobitzer Harald, Csäszär Geza & Daurer Albert Teil 2 S. 343-362 Wien, November 1994 2. resz pp.343-362 Bees, 1994. november ISBN 3-900312-92-3 Dasycladaceen-Assoziationen aus triadischen Seichtwasserkarbonaten des Ostabschnittes der Nördlichen Kalkalpen Von OLGA PIROS, GERHARD W. MANDL, RICHARD LEIN, WOLFGANG PAVLIK, ANIKÖ BERCZI-MAKK, MILOS SIBLIK & HARALD LOBITZER*) Mit 4 Abbildungen und 3 Tafeln Österreich Steiermark Niederösterreich Nördliche Kalkalpen Trias Seichtwasserkarbonate Steinalmkalk Wettersteinkalk Waxeneckkalk Dachsteinkalk Dasycladaceen Foraminiferen Brachiopoden Österreichische Karte 1:50.000 Mürzalpendecke Blätter 74, 75, 76, 103, 104, 105 Schneebergdecke Inhalt Zusammenfassung 344 Összefoglaläs 344 Abstract 344 1. Einleitung 344 2. Steinalmkalk (Anis) 345 2.1. Türnitzer Kalkvoralpen 345 2.2. Östliche Kalkhochalpen 345 2.2.1. HoherStudent 345 2.2.2. Fallensteingruppe-Lärchsteinwand 347 2.2.3. Gösing- Dachenstein 348 3. Wetterstein kalk (Ladin bis Unterkam) 348 3.1. Kalkhochalpine Fazies mit Teutloporella herculea 349 3.1.1. Derstratigraphische Rahmen des Rax-und Schneeberggebietes 349 3.1.2. Faziesgliederung und Organismenverteilung der Plattformkarbonate 351 3.1.2.1. Dasycladaceen 351 3.1.2.2. Foraminiferen 351 3.1.2.3. Brachiopoden 352 4. Waxeneckkalk (Kam) 352 5. Dachsteinkalk (Nor-Rhät) 352 Dank 353 Tafeln 1-3 354 Literatur 360 Anschriften der Verfasser: Dr. OLGA PIROS, Ungarische Geologische Landesanstalt, Stefänia üt 14, H-1442 Budapest; Dr. GERHARD W. MANDL, Dr. WOLFGANG PAVLIK, Dr. HARALD LOBITZER, Geologische Bundesanstalt, Rasumofskyg. 23, A-1031 Wien; Univ.-Doz.Dr. RICHARD LEIN, Universität Wien, Geologisches Institut, Universitätsstraße 7/III, A-1010 Wien; Dr.
    [Show full text]
  • Field Trip B2: Triassic to Early Cretaceous Geodynamic History of the Central Northern Calcareous Alps (Northwestern Tethyan Realm)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte der Geologischen Bundesanstalt Jahr/Year: 2013 Band/Volume: 99 Autor(en)/Author(s): Gawlick Hans-Jürgen, Missoni Sigrid Artikel/Article: Field Trip B2: Triassic to Early Cretaceous geodynamic history of the central Northern Calcareous Alps (Northwestern Tethyan realm). 216-270 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Field Trip B2: Triassic to Early Cretaceous geodynamic history of the central Northern Calcareous Alps (Northwestern Tethyan realm) Hans-Jürgen Gawlick & Sigrid Missoni University of Leoben, Department of Applied Geosciences and Geophysics, Petroleum Geology, Peter-Tunner-Strasse 5, 8700 Leoben, Austria Content Abstract 1 Introduction 2 Overall geodynamic and sedimentary evolution 3 Palaeogeography, sedimentary successions and stratigraphy 3.1 Hauptdolomit facies zone 3.2 Dachstein Limestone facies zone 3.3 Hallstatt facies zone (preserved in the reworked Jurassic Hallstatt Mélange) 4 The Field Trip 4.1 The Late Triassic Dachstein/Hauptdolomit Carbonate Platform 4.1.1 Hauptdolomit (Mörtlbach road) 4.1.2 Lagoonal Dachstein Limestone: The classical Lofer cycle (Pass Lueg) 4.1.3 The Kössen Basin (Pass Lueg and Mörtlbach road) 4.2 Jurassic evolution 4.2.1 Hettangian to Aalenian 4.2.2 Bajocian to Tithonian 4.3 Early Cretaceous References Abstract The topic of this field trip is to get to know and understand the sedimentation of Austria’s Northern Calcareous Alps and its tectonic circumstances from Triassic rifting/drifting to Jurassic collision/accretion, and the Early Cretaceous “post-tectonic” sedimentary history.
    [Show full text]