Cathepsin G and Thrombin: Evidence for Two Different Platelet Receptors

Total Page:16

File Type:pdf, Size:1020Kb

Cathepsin G and Thrombin: Evidence for Two Different Platelet Receptors University of New Hampshire University of New Hampshire Scholars' Repository New Hampshire Agricultural Experiment Station Publications New Hampshire Agricultural Experiment Station 1-15-1994 Cathepsin G and thrombin: evidence for two different platelet receptors Mary A. Selak University of New Hampshire - Main Campus Follow this and additional works at: https://scholars.unh.edu/nhaes Part of the Biochemistry Commons Recommended Citation Selak, M.A. Cathepsin G and thrombin: evidence for two different platelet receptors. Biochemical Journal. 1994. V. 297 pp. 269-75 (Printed in Great Britain). This Article is brought to you for free and open access by the New Hampshire Agricultural Experiment Station at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in New Hampshire Agricultural Experiment Station Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Biochem. J. (1994) 297, 269-275 (Printed in Great Britain) 269 Cathepsin G and thrombin: evidence for two different platelet receptors Mary A. SELAK Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824, U.S.A. Neutrophil cathepsin G and thrombin, the only platelet agonists exhibiting an elevation in cytosolic Ca2+ concentration but did that are proteases, exhibit a mandatory requirement for catalytic not respond to cathepsin G; and (c) platelets pretreated with activity to induce platelet aggregation and signal transduction. neutrophil elastase failed to respond to thrombin but responded The thrombin receptor is a G-protein-coupled receptor which when rechallenged by cathepsin G. Thrombin and cathepsin G undergoes proteolysis to generate a tethered ligand that causes exhibit heterologous desensitization that is potentiated by self-activation. Since cathepsin G strongly resembles thrombin in okadaic acid and is attenuated by staurosporine, indicating that its ability to activate platelets, we have attempted to determine phosphorylation of serine/threonine residues is important for whether cathepsin G and thrombin function through the same or desensitization and that protein kinase C may be involved. Since different receptors. Evidence that thrombin and cathepsin G act catalytic activity of cathepsin G is required for platelet stimu- at different receptors was as follows: (a) an antibody directed lation, it is probable that platelet activation by cathepsin G against the thrombin receptor blocked thrombin-induced but not requires receptor proteolysis and that a tethered ligand mech- cathepsin G-induced platelet responses; (b) human fibroblasts anism is involved, suggesting that platelets may possess a family responded to thrombin and to a synthetic thrombin receptor of protease receptors. peptide (comprising residues 42-55 of the thrombin receptor) by INTRODUCTION by cathepsin G requires receptor proteolysis and that a tethered ligand mechanism is involved. While our previous results indicate We have previously demonstrated that neutrophil cathepsin G, that cathepsin G strongly resembles thrombin in its ability to like thrombin, is a strong platelet agonist which exhibits activate platelets [1], data presented here suggest that these two saturable, reversible binding to platelets, characteristic of the agonists function through distinct receptors rather than through involvement of a specific receptor [1,2]. In addition, cathepsin G a single receptor which is differentially cleaved to yield two and thrombin are the only platelet agonists that are proteases, different tethered ligands. Evidence indicating that platelets and most of the biological actions of both cathepsin G and possess different receptors for thrombin and cathepsin G suggests thrombin require the catalytic activity of the enzymes. In that platelets possess a family of protease receptors. particular, aggregation and stimulus-response coupling in plate- lets are abolished when the proteolytic activity ofeither cathepsin MATERIALS AND METHODS G or thrombin is blocked or neutralized [1-4]. The thrombin receptor has been cloned and sequenced and shown to possess Materials seven transmembrane domains characteristic of all members of Monoclonal antibody ATAP138, directed against the SFLLR- the family of G-protein-linked receptors [5]. However, unlike any NPNDKYEPF sequence of the thrombin receptor (Ser42-Phe55), other receptor yet described, proteolysis of the extracellular N- was a gift from Dr. Lawrence Brass (University of Pennsylvania, terminal receptor domain is required for activation. Cleavage of Philadelphia, PA, U.S.A.), and a-thrombin was a generous gift the thrombin receptor at Arg4l exposes a new N-terminus which from Dr. John Fenton (Albany Medical College, Albany, NY, then functions as a tethered ligand to activate cells by binding to U.S.A.). Okadaic acid was obtained from Gibco or from Kamiya a site on the receptor [5,6]. The binding site for thrombin includes Biomedical Company, and staurosporine was purchased from a region of the N-terminus of the receptor distal to the cleavage Kamiya Biomedical Company. TRP42155 was purchased from site which bears a strong resemblance to hirudin and functions to Bacham Bioscience Inc., Philadelphia, PA, U.S.A. bind thrombin via its anion exosite [6-8]. A synthetic peptide composed of receptor residues Ser42-Phe55 (thrombin receptor Preparation and labelling of platelets peptide; TRP42155) has been shown to function as a full platelet agonist [5,9]. However, only the first six amino acids of this 14- Human blood was obtained from healthy volunteers and col- residue peptide are required for activity [10,11]. TRP42155 has also lected into acid-citrate dextose. The platelet-rich plasma, ob- been shown to activate human endothelial cells [12] and hamster tained by centrifugation at 180 g for 20 min at room temperature, fibroblasts [13], suggesting that endothelial cells, fibroblasts and was re-centrifuged at 800 g for 15 min at room temperature to platelets share a structurally similar thrombin receptor. obtain a platelet pellet. The platelet pellet was resuspended in Activation of the thrombin receptor by this novel intra- 10 ml of plasma and the platelets were incubated at 37 °C with molecular rearrangement raises the question of whether a family 3,M fura-2-acetoxymethyl ester for 45 min and with 1 ,uM 5- of similar G-protein-coupled protease receptors might exist. hydroxy[14C]tryptamine and 1 mM aspirin for 30 min (45 min Since the catalytic activity of cathepsin G is mandatory for total incubation time). Fura-2 acetoxymethyl ester and aspirin platelet stimulation, it is highly probable that platelet activation were dissolved in dimethyl sulphoxide and, when added to cells, Abbreviations used: TRP42155, thrombin receptor peptide (residues Ser42-Phe55 of the thrombin receptor); [Ca2+]i, cytosolic free Ca2+ concentration; PC/CK, phosphocreatine/creatine kinase; PAF, platelet-activating factor; GPlb, glycoprotein lb. 270 M. A. Selak the final dimethyl sulphoxide concentration never exceeded Tyrode's buffer containing 10 mM glucose and 5 mM EDTA 0.5 %. Platelets were gel-filtered using Sepharose CL-2B columns was added, and the cells were incubated for 10 min at 37 °C. equilibrated and eluted with calcium-free Tyrode's buffer supple- Cells were harvested mechanically with a cell scraper, dispersed mented with 0.20% fatty acid-free BSA and 1O mM glucose. by trituration, washed once and resuspended in Tyrode's buffer Imipramine (1,M) was added to 5-hydroxy['4C]tryptamine- containing 10 mM glucose and 1 mM CaCl2. Fibroblasts were labelled cells. handled as described above for platelets. Purification of neutrophil cathepsin G and elastase RESULTS Buffy coat leucocytes were used to isolate cathepsin G from Platelet responsiveness to cathepsin G and thrombin was neutrophil granules by the method of Baugh and Travis [14]. examined by measuring the extent of dense granule secretion Granule extracts were subjected to sequential aprotinin- and the amount of calcium discharged from internal stores, as Sepharose and CM-Sephadex chromatographies [15]. Protein estimated from the size of calcium transients in fura-2- and 5- concentration was determined using the BCA protein assay hydroxy[14C]tryptamine-loaded cells. To exclude the involvement (Pierce) with BSA as standard, as well as by absorbance at of endoperoxides/thromboxane A2 and ADP, all measurements 280 nm. The purity of cathepsin G and elastase was assessed by were performed using aspirinated platelets incubated in the specific substrate hydrolysis and by both SDS and non- presence of phosphocreatine/creatine kinase (PC/CK). Controls denaturing acid gel electrophoresis as described previously [1]. verified that the cells were unresponsive to ADP and arachidonic Based on these criteria, cathepsin G was totally devoid of acid. Platelet calcium and secretion responses were routinely neutrophil elastase and vice versa. Cathepsin G and elastase measured in the presence of EGTA to eliminate repletion of enzymic activities were measured spectrophotometrically at 37 °C internal pools due to agonist-induced calcium influx through the using N-succinyl-(Ala)2-Pro-Phe-p-nitroanilide and methoxy- plasma membrane. Though not always shown, ionomycin was succinyl-(Ala)2-Pro-Val-p-nitroanilide respectively as substrates, added to each sample to verify that depletion of intracellular according to the method of Nakajima et al. [16]. calcium was not responsible
Recommended publications
  • 1 Evidence for Gliadin Antibodies As Causative Agents in Schizophrenia
    1 Evidence for gliadin antibodies as causative agents in schizophrenia. C.J.Carter PolygenicPathways, 20 Upper Maze Hill, Saint-Leonard’s on Sea, East Sussex, TN37 0LG [email protected] Tel: 0044 (0)1424 422201 I have no fax Abstract Antibodies to gliadin, a component of gluten, have frequently been reported in schizophrenia patients, and in some cases remission has been noted following the instigation of a gluten free diet. Gliadin is a highly immunogenic protein, and B cell epitopes along its entire immunogenic length are homologous to the products of numerous proteins relevant to schizophrenia (p = 0.012 to 3e-25). These include members of the DISC1 interactome, of glutamate, dopamine and neuregulin signalling networks, and of pathways involved in plasticity, dendritic growth or myelination. Antibodies to gliadin are likely to cross react with these key proteins, as has already been observed with synapsin 1 and calreticulin. Gliadin may thus be a causative agent in schizophrenia, under certain genetic and immunological conditions, producing its effects via antibody mediated knockdown of multiple proteins relevant to the disease process. Because of such homology, an autoimmune response may be sustained by the human antigens that resemble gliadin itself, a scenario supported by many reports of immune activation both in the brain and in lymphocytes in schizophrenia. Gluten free diets and removal of such antibodies may be of therapeutic benefit in certain cases of schizophrenia. 2 Introduction A number of studies from China, Norway, and the USA have reported the presence of gliadin antibodies in schizophrenia 1-5. Gliadin is a component of gluten, intolerance to which is implicated in coeliac disease 6.
    [Show full text]
  • Diagnosing Platelet Secretion Disorders: Examples Cases
    Diagnosing platelet secretion disorders: examples cases Martina Daly Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Disclosures for Martina Daly In compliance with COI policy, ISTH requires the following disclosures to the session audience: Research Support/P.I. No relevant conflicts of interest to declare Employee No relevant conflicts of interest to declare Consultant No relevant conflicts of interest to declare Major Stockholder No relevant conflicts of interest to declare Speakers Bureau No relevant conflicts of interest to declare Honoraria No relevant conflicts of interest to declare Scientific Advisory No relevant conflicts of interest to declare Board Platelet granule release Agonists (FIIa, Collagen, ADP) Signals Activation Shape change Membrane fusion Release of granule contents Platelet storage organelles lysosomes a granules Enzymes including cathepsins Adhesive proteins acid hydrolases Clotting factors and their inhibitors Fibrinolytic factors and their inhibitors Proteases and antiproteases Growth and mitogenic factors Chemokines, cytokines Anti-microbial proteins Membrane glycoproteins dense (d) granules ADP/ATP Serotonin histamine inorganic polyphosphate Platelet a-granule contents Type Prominent components Membrane glycoproteins GPIb, aIIbb3, GPVI Clotting factors VWF, FV, FXI, FII, Fibrinogen, HMWK, FXIII? Clotting inhibitors TFPI, protein S, protease nexin-2 Fibrinolysis components PAI-1, TAFI, a2-antiplasmin, plasminogen, uPA Other protease inhibitors a1-antitrypsin, a2-macroglobulin
    [Show full text]
  • Alterations in Platelet Alpha-Granule Secretion and Adhesion on Collagen Under Flow in Mice Lacking the Atypical Rho Gtpase Rhobtb3
    cells Article Alterations in Platelet Alpha-Granule Secretion and Adhesion on Collagen under Flow in Mice Lacking the Atypical Rho GTPase RhoBTB3 Martin Berger 1,2, David R. J. Riley 1, Julia Lutz 1, Jawad S. Khalil 1, Ahmed Aburima 1, Khalid M. Naseem 3 and Francisco Rivero 1,* 1 Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, HU6 7RX Hull, UK; [email protected] (M.B.); [email protected] (D.R.J.R.); [email protected] (J.L.); [email protected] (J.S.K.); [email protected] (A.A.) 2 Department of Internal Medicine 1, University Hospital, RWTH Aachen, 52074 Aachen, Germany 3 Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, LS2 9NL Leeds, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1482-466433 Received: 8 January 2019; Accepted: 7 February 2019; Published: 11 February 2019 Abstract: Typical Rho GTPases, such as Rac1, Cdc42, and RhoA, act as molecular switches regulating various aspects of platelet cytoskeleton reorganization. The loss of these enzymes results in reduced platelet functionality. Atypical Rho GTPases of the RhoBTB subfamily are characterized by divergent domain architecture. One family member, RhoBTB3, is expressed in platelets, but its function is unclear. In the present study we examined the role of RhoBTB3 in platelet function using a knockout mouse model. We found the platelet count, size, numbers of both alpha and dense granules, and surface receptor profile in these mice were comparable to wild-type mice.
    [Show full text]
  • Nihms124287.Pdf (2.042Mb)
    Intragranular Vesiculotubular Compartments are Involved in Piecemeal Degranulation by Activated Human Eosinophils The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Melo, Rossana C.N., Sandra A.C. Perez, Lisa A. Spencer, Ann M. Dvorak, and Peter F. Weller. 2005. “Intragranular Vesiculotubular Compartments Are Involved in Piecemeal Degranulation by Activated Human Eosinophils.” Traffic 6 (10) (July 28): 866–879. doi:10.1111/j.1600-0854.2005.00322.x. Published Version doi:10.1111/j.1600-0854.2005.00322.x Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:28714144 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Traffic. Author manuscript; available in PMC 2009 July 24. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Traffic. 2005 October ; 6(10): 866±879. doi:10.1111/j.1600-0854.2005.00322.x. Intragranular Vesiculotubular Compartments are Involved in Piecemeal Degranulation by Activated Human Eosinophils Rossana C.N. Melo1,2, Sandra A.C. Perez2, Lisa A. Spencer2, Ann M. Dvorak3, and Peter F. Weller2,* 1Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, MG, Brazil 2Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA 3Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA Abstract Eosinophils, leukocytes involved in allergic, inflammatory and immunoregulatory responses, have a distinct capacity to rapidly secrete preformed granule-stored proteins through piecemeal degranulation (PMD), a secretion process based on vesicular transport of proteins from within granules for extracellular release.
    [Show full text]
  • Mechanisms Governing Anaphylaxis: Inflammatory Cells, Mediators
    International Journal of Molecular Sciences Review Mechanisms Governing Anaphylaxis: Inflammatory Cells, Mediators, Endothelial Gap Junctions and Beyond Samantha Minh Thy Nguyen 1, Chase Preston Rupprecht 2, Aaisha Haque 3, Debendra Pattanaik 4, Joseph Yusin 5 and Guha Krishnaswamy 1,3,* 1 Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27106, USA; [email protected] 2 The Rowan School of Osteopathic Medicine, Stratford, NJ 08084, USA; [email protected] 3 The Bill Hefner VA Medical Center, Salisbury, NC 27106, USA; [email protected] 4 Division of Allergy and Immunology, UT Memphis College of Medicine, Memphis, TN 38103, USA; [email protected] 5 The Division of Allergy and Immunology, Greater Los Angeles VA Medical Center, Los Angeles, CA 90011, USA; [email protected] * Correspondence: [email protected] Abstract: Anaphylaxis is a severe, acute, life-threatening multisystem allergic reaction resulting from the release of a plethora of mediators from mast cells culminating in serious respiratory, cardiovascular and mucocutaneous manifestations that can be fatal. Medications, foods, latex, exercise, hormones (progesterone), and clonal mast cell disorders may be responsible. More recently, novel syndromes such as delayed reactions to red meat and hereditary alpha tryptasemia have been described. Anaphylaxis manifests as sudden onset urticaria, pruritus, flushing, erythema, Citation: Nguyen, S.M.T.; Rupprecht, angioedema (lips, tongue, airways, periphery), myocardial dysfunction (hypovolemia, distributive
    [Show full text]
  • The Endogenous Antimicrobial Cathelicidin LL37 Induces Platelet Activation and Augments Thrombus Formation
    The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation Article Published Version Salamah, M. F., Ravishankar, D., Kodji, X., Moraes, L. A., Williams, H. F., Vallance, T. M., Albadawi, D. A., Vaiyapuri, R., Watson, K., Gibbins, J. M., Brain, S. D., Perretti, M. and Vaiyapuri, S. (2018) The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation. Blood Advances, 2 (21). pp. 2973-2985. ISSN 2473-9529 doi: https://doi.org/10.1182/bloodadvances.2018021758 Available at http://centaur.reading.ac.uk/79972/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1182/bloodadvances.2018021758 Publisher: American Society of Hematology All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online REGULAR ARTICLE The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation Maryam F. Salamah,1 Divyashree Ravishankar,1,* Xenia Kodji,2,* Leonardo A. Moraes,3,* Harry F. Williams,1 Thomas M. Vallance,1 Dina A. Albadawi,1 Rajendran Vaiyapuri,4 Kim Watson,5 Jonathan M. Gibbins,5 Susan D. Brain,2 Mauro Perretti,6
    [Show full text]
  • Host-Parasite Interaction of Atlantic Salmon (Salmo Salar) and the Ectoparasite Neoparamoeba Perurans in Amoebic Gill Disease
    ORIGINAL RESEARCH published: 31 May 2021 doi: 10.3389/fimmu.2021.672700 Host-Parasite Interaction of Atlantic salmon (Salmo salar) and the Ectoparasite Neoparamoeba perurans in Amoebic Gill Disease † Natasha A. Botwright 1*, Amin R. Mohamed 1 , Joel Slinger 2, Paula C. Lima 1 and James W. Wynne 3 1 Livestock and Aquaculture, CSIRO Agriculture and Food, St Lucia, QLD, Australia, 2 Livestock and Aquaculture, CSIRO Agriculture and Food, Woorim, QLD, Australia, 3 Livestock and Aquaculture, CSIRO Agriculture and Food, Hobart, TAS, Australia Marine farmed Atlantic salmon (Salmo salar) are susceptible to recurrent amoebic gill disease Edited by: (AGD) caused by the ectoparasite Neoparamoeba perurans over the growout production Samuel A. M. Martin, University of Aberdeen, cycle. The parasite elicits a highly localized response within the gill epithelium resulting in United Kingdom multifocal mucoid patches at the site of parasite attachment. This host-parasite response Reviewed by: drives a complex immune reaction, which remains poorly understood. To generate a model Diego Robledo, for host-parasite interaction during pathogenesis of AGD in Atlantic salmon the local (gill) and University of Edinburgh, United Kingdom systemic transcriptomic response in the host, and the parasite during AGD pathogenesis was Maria K. Dahle, explored. A dual RNA-seq approach together with differential gene expression and system- Norwegian Veterinary Institute (NVI), Norway wide statistical analyses of gene and transcription factor networks was employed. A multi- *Correspondence: tissue transcriptomic data set was generated from the gill (including both lesioned and non- Natasha A. Botwright lesioned tissue), head kidney and spleen tissues naïve and AGD-affected Atlantic salmon [email protected] sourced from an in vivo AGD challenge trial.
    [Show full text]
  • The CXCR4 Antagonist AMD3100 Impairs Survival of Human AML Cells and Induces Their Differentiation
    Leukemia (2008) 22, 2151–2158 & 2008 Macmillan Publishers Limited All rights reserved 0887-6924/08 $32.00 www.nature.com/leu ORIGINAL ARTICLE The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation S Tavor1, M Eisenbach1, J Jacob-Hirsch2, T Golan1, I Petit1, K BenZion1, S Kay1, S Baron1, N Amariglio2, V Deutsch1, E Naparstek1 and G Rechavi2 1Institute of Hematology and Bone Marrow Transplantation, Sourasky Medical Center, Tel Aviv, Israel and 2Cancer Research Center, Sheba Medical Center, Tel-Hashomer, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel The chemokine stromal cell-derived factor-1 (SDF-1) and its NOD/SCID mice, homing and subsequent engraftment of human receptor, CXCR4, participate in the retention of acute myelo- normal or AML stem cells are dependent on the expression of cell blastic leukemia (AML) cells within the bone marrow micro- 9–12 environment and their release into the circulation. AML cells surface CXCR4 and SDF-1 produced within the murine. In also constitutively express SDF-1-dependent elastase, which addition to controlling cell motility, SDF-1 regulates cell regulates their migration and proliferation. To study the proliferation, induces cell cycle progression and acts as a survival molecular events and genes regulated by the SDF-1/CXCR4 factor for normal human stem cells and AML cells.13–16 axis and elastase in AML cells, we examined gene expression CXCR4 blockage in AML cells, using the polypeptide profiles of the AML cell line, U937, under treatment with a RCP168, enhanced chemotherapy-induced apoptosis in vitro.17 neutralizing anti-CXCR4 antibody or elastase inhibitor, as compared with non-treated cells, using DNA microarray Most importantly, high CXCR4 expression level in leukemic technology.
    [Show full text]
  • Elastase-Induced Pulmonary Emphysema: Insights from Experimental Models
    “main” — 2011/10/13 — 23:40 — page 1385 — #1 Anais da Academia Brasileira de Ciências (2011) 83(4): 1385-1395 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Elastase-induced pulmonary emphysema: insights from experimental models MARIANA A. ANTUNES and PATRICIA R.M. ROCCO Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas Filho, s/n, Cidade Universitária, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brasil Manuscript received on November 8, 2010; accepted for publication on May 19, 2011 ABSTRACT Several distinct stimuli can be used to reproduce histological and functional features of human emphysema, a lead- ing cause of disability and death. Since cigarette smoke is the main cause of emphysema in humans, experimental researches have attempted to reproduce this situation. However, this is an expensive and cumbersome method of em- physema induction, and simpler, more efficacious alternatives have been sought. Among these approaches, elastolytic enzymes have been widely used to reproduce some characteristics of human cigarette smoke-induced disease, such as: augmentation of airspaces, inflammatory cell influx into the lungs, and systemic inflammation. Nevertheless, theuse of elastase-induced emphysema models is still controversial, since the disease pathways involved in elastase induction may differ from those occurring in smoke-induced emphysema. This indicates that the choice of an emphysema model may impact the results of new therapies or drugs being tested. The aim of this review is to compare the mechanisms of disease induction in smoke and elastase emphysema models, to describe the differences among various elastase models, and to establish the advantages and disadvantages of elastase-induced emphysema models.
    [Show full text]
  • How Relevant Are Bone Marrow-Derived Mast Cells (Bmmcs) As Models for Tissue Mast Cells? a Comparative Transcriptome Analysis of Bmmcs and Peritoneal Mast Cells
    cells Article How Relevant Are Bone Marrow-Derived Mast Cells (BMMCs) as Models for Tissue Mast Cells? A Comparative Transcriptome Analysis of BMMCs and Peritoneal Mast Cells 1, 2, 1 1 2,3 Srinivas Akula y , Aida Paivandy y, Zhirong Fu , Michael Thorpe , Gunnar Pejler and Lars Hellman 1,* 1 Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; [email protected] (S.A.); [email protected] (Z.F.); [email protected] (M.T.) 2 Department of Medical Biochemistry and Microbiology, Uppsala University, The Biomedical Center, Box 589, SE-751 23 Uppsala, Sweden; [email protected] (A.P.); [email protected] (G.P.) 3 Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-75007 Uppsala, Sweden * Correspondence: [email protected]; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862 These authors contributed equally to this work. y Received: 29 July 2020; Accepted: 16 September 2020; Published: 17 September 2020 Abstract: Bone marrow-derived mast cells (BMMCs) are often used as a model system for studies of the role of MCs in health and disease. These cells are relatively easy to obtain from total bone marrow cells by culturing under the influence of IL-3 or stem cell factor (SCF). After 3 to 4 weeks in culture, a nearly homogenous cell population of toluidine blue-positive cells are often obtained. However, the question is how relevant equivalents these cells are to normal tissue MCs. By comparing the total transcriptome of purified peritoneal MCs with BMMCs, here we obtained a comparative view of these cells.
    [Show full text]
  • Reelin Signaling Promotes Radial Glia Maturation and Neurogenesis
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 Reelin Signaling Promotes Radial Glia Maturation and Neurogenesis Serene Keilani University of Central Florida Part of the Microbiology Commons, and the Molecular Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Keilani, Serene, "Reelin Signaling Promotes Radial Glia Maturation and Neurogenesis" (2009). Electronic Theses and Dissertations, 2004-2019. 6143. https://stars.library.ucf.edu/etd/6143 REELIN SIGNALING PROMOTES RADIAL GLIA MATURATION AND NEUROGENESIS by SERENE KEILANI B.S. University of Jordan, 2004 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Spring Term 2009 Major Professor: Kiminobu Sugaya © 2009 Serene Keilani ii ABSTRACT The end of neurogenesis in the human brain is marked by the transformation of the neural progenitors, the radial glial cells, into astrocytes. This event coincides with the reduction of Reelin expression, a glycoprotein that regulates neuronal migration in the cerebral cortex and cerebellum. A recent study showed that the dentate gyrus of the adult reeler mice, with homozygous mutation in the RELIN gene, have reduced neurogenesis relative to the wild type.
    [Show full text]
  • IL-33 Is Processed Into Mature Bioactive Forms by Neutrophil Elastase and Cathepsin G
    IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G Emma Lefrançais, Stephane Roga, Violette Gautier, Anne Gonzalez-de-Peredo, Bernard Monsarrat, Jean-Philippe Girard1,2, and Corinne Cayrol1,2 Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France Edited* by Charles A. Dinarello, University of Colorado Denver, Aurora, CO, and approved December 19, 2011 (received for review October 3, 2011) Interleukin-33 (IL-33) (NF-HEV) is a chromatin-associated nuclear activity (4). However, we (23) and others (24–26) demonstrated cytokine from the IL-1 family, which has been linked to important that full-length IL-33 is biologically active and that processing of diseases, including asthma, rheumatoid arthritis, ulcerative colitis, IL-33 by caspases results in its inactivation, rather than its activa- and cardiovascular diseases. IL-33 signals through the ST2 receptor tion. Further analyses revealed that IL-33 is constitutively and drives cytokine production in type 2 innate lymphoid cells (ILCs) expressed to high levels in the nuclei of endothelial and epithelial (natural helper cells, nuocytes), T-helper (Th)2 lymphocytes, mast cells in vivo (27) and that it can be released in the extracellular cells, basophils, eosinophils, invariant natural killer T (iNKT), and space after cellular damage (23, 24). IL-33 was, thus, proposed (23, natural killer (NK) cells. We and others recently reported that, unlike 24, 27) to function as an endogenous danger signal or alarmin, IL-1β and IL-18, full-length IL-33 is biologically active independently similar to IL-1α and high-mobility group box 1 protein (HMGB1) of caspase-1 cleavage and that processing by caspases results in IL-33 (28–32), to alert cells of the innate immune system of tissue inactivation.
    [Show full text]