Linux Security Module Framework
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Have You Driven an Selinux Lately? an Update on the Security Enhanced Linux Project
Have You Driven an SELinux Lately? An Update on the Security Enhanced Linux Project James Morris Red Hat Asia Pacific Pte Ltd [email protected] Abstract All security-relevant accesses between subjects and ob- jects are controlled according to a dynamically loaded Security Enhanced Linux (SELinux) [18] has evolved mandatory security policy. Clean separation of mecha- rapidly over the last few years, with many enhancements nism and policy provides considerable flexibility in the made to both its core technology and higher-level tools. implementation of security goals for the system, while fine granularity of control ensures complete mediation. Following integration into several Linux distributions, SELinux has become the first widely used Mandatory An arbitrary number of different security models may be Access Control (MAC) scheme. It has helped Linux to composed (or “stacked”) by SELinux, with their com- receive the highest security certification likely possible bined effect being fully analyzable under a unified pol- for a mainstream off the shelf operating system. icy scheme. SELinux has also proven its worth for general purpose Currently, the default SELinux implementation com- use in mitigating several serious security flaws. poses the following security models: Type Enforcement (TE) [7], Role Based Access Control (RBAC) [12], While SELinux has a reputation for being difficult to Muilti-level Security (MLS) [29], and Identity Based use, recent developments have helped significantly in Access Control (IBAC). These complement the standard this area, and user adoption is advancing rapidly. Linux Discretionary Access Control (DAC) scheme. This paper provides an informal update on the project, With these models, SELinux provides comprehensive discussing key developments and challenges, with the mandatory enforcement of least privilege, confidential- aim of helping people to better understand current ity, and integrity. -
On Trends in Low-Level Exploitation
On trends in low-level exploitation Christian W. Otterstad Department of Informatics, University of Bergen Abstract Low-level computer exploitation and its mitigation counterpart has accumulated some noteworthy history. Presently, especially in academia, it features a plethora of mitigation techniques and also various possible modes of attack. It has seen numerous developments building upon basic methods for both sides and certain trends have emerged. This paper is primarily an overview paper, focusing especially on x86 GNU/Linux. The basic reasons inherent for allowing low-level exploitability are identified and explained to provide background knowledge. The paper furthermore describes the history, present state of the art and future developments that are topical and appear to be important in the field. Several attack and defense techniques have overlapping notions with not always obvious differences. Herein the notion of the bar being raised for both exploits and mitigation methods is examined and extrapolated upon based on the known relevant present state and history. The difference between academia and the industry is discussed especially where it relates to application of new mitigation techniques. Based on this examination some patterns and trends are identified and a conjecture for the likely future development of both is presented and justified. This paper was presented at the NIK-2016 conference; see http://www.nik.no/. 1 Introduction and earlier related work In 1972 the paper “Computer Security Technology Planning Study” was published [1]. Since then, research surrounding the main ideas in this paper has grown to become a ma- ture and complex field in its own right. There are many different exploitation techniques and mitigation techniques. -
Addressing Challenges in Automotive Connectivity: Mobile Devices, Technologies, and the Connected Car
2015-01-0224 Published 04/14/2015 Copyright © 2015 SAE International doi:10.4271/2015-01-0224 saepcelec.saejournals.org Addressing Challenges in Automotive Connectivity: Mobile Devices, Technologies, and the Connected Car Patrick Shelly Mentor Graphics Corp. ABSTRACT With the dramatic mismatch between handheld consumer devices and automobiles, both in terms of product lifespan and the speed at which new features (or versions) are released, vehicle OEMs are faced with a perplexing dilemma. If the connected car is to succeed there has to be a secure and accessible method to update the software in a vehicle's infotainment system - as well as a real or perceived way to graft in new software content. The challenge has become even more evident as the industry transitions from simple analog audio systems which have traditionally served up broadcast content to a new world in which configurable and interactive Internet- based content rules the day. This paper explores the options available for updating and extending the software capability of a vehicle's infotainment system while addressing the lifecycle mismatch between automobiles and consumer mobile devices. Implications to the design and cost of factory installed equipment will be discussed, as will expectations around the appeal of these various strategies to specific target demographics. CITATION: Shelly, P., "Addressing Challenges in Automotive Connectivity: Mobile Devices, Technologies, and the Connected Car," SAE Int. J. Passeng. Cars – Electron. Electr. Syst. 8(1):2015, doi:10.4271/2015-01-0224. INTRODUCTION be carefully taken into account. The use of app stores is expected to grow significantly in the coming years as automotive OEMs begin to Contemporary vehicle infotainment systems face an interesting explore apps not only on IVI systems, but on other components of the challenge. -
(Un)Smashing the Stack
Hello, Interwebs Hi, and thanks for reading this. As I mentioned a number of times during the talk this was one long, hard slog of a topic for me. My intent was not to duplicate existing research (Johnson and Silberman @ BHUS05, others), but to try to make this topic comprehensible for the typical security professional, who (GASP! SHOCK! HORROR!) may not necessarily grasp all the hairy internals of exploit development, but still is tasked with protecting systems. For the other 90% of us out there, our job is not to be leet, but rather not to get owned, something I hope to get a little bit better at every day. Since exploit mitigation is something that might bring us all a little bit closer to that, I wanted to explore the topic. Thanks much to BH for giving me the opportunity to do so, and to all of you for listening. Thanks also to all the amazing people working on these technologies, especially the PaX team and Hiroaki Etoh of IBM. -- shawn P.S. It’s actually Thompson that had the Phil Collins hair, not Ritchie. Sorry, Dennis. 28 75 6e 29 53 6d 61 73 68 69 6e 67 20 74 68 65 20 53 74 61 63 6b 0d 0a (un)Smashing the Stack 4f 76 65 72 66 6c 6f 77 73 2c 20 43 6f 75 6e 74 65 72 6d 65 61 73 75 72 65 73 20 61 6e 64 20 74 68 65 20 52 65 61 6c 20 57 6f 72 6c 64 Overflows, Countermeasures and the Real World Shawn Moyer :: Chief Researcher ---- SpearTip Technologies ---> blackhat [at] cipherpunx [dot] org Hey, who is this guy? ShawnM: InfoSec consultant, (quasi-) developer, husband, father, and raging paranoid with obsessive tendencies Chief Researcher at SpearTip Technologies Security Consultancy in Saint Louis, MO Forensics, Assessment, MSSP, network analysis Weddings, Funerals, Bar Mitzvahs I like unsolvable problems, so I’m mostly interested in defense. -
Detecting Exploit Code Execution in Loadable Kernel Modules
Detecting Exploit Code Execution in Loadable Kernel Modules HaizhiXu WenliangDu SteveJ.Chapin Systems Assurance Institute Syracuse University 3-114 CST, 111 College Place, Syracuse, NY 13210, USA g fhxu02, wedu, chapin @syr.edu Abstract and pointer checks can lead to kernel-level exploits, which can jeopardize the integrity of the running kernel. Inside the In current extensible monolithic operating systems, load- kernel, exploitcode has the privilegeto interceptsystem ser- able kernel modules (LKM) have unrestricted access to vice routines, to modify interrupt handlers, and to overwrite all portions of kernel memory and I/O space. As a result, kernel data. In such cases, the behavior of the entire sys- kernel-module exploitation can jeopardize the integrity of tem may become suspect. the entire system. In this paper, we analyze the threat that Kernel-level protection is different from user space pro- comes from the implicit trust relationship between the oper- tection. Not every application-level protection mechanism ating system kernel and loadable kernel modules. We then can be applied directly to kernel code, because privileges present a specification-directed access monitoring tool— of the kernel environment is different from that of the user HECK, that detects kernel modules for malicious code ex- space. For example, non-executableuser page [21] and non- ecution. Inside the module, HECK prevents code execution executable user stack [29] use virtual memory mapping sup- on the kernel stack and the data sections; on the bound- port for pages and segments, but inside the kernel, a page ary, HECK restricts the module’s access to only those kernel or segment fault can lead to kernel panic. -
Demystifying Internet of Things Security Successful Iot Device/Edge and Platform Security Deployment — Sunil Cheruvu Anil Kumar Ned Smith David M
Demystifying Internet of Things Security Successful IoT Device/Edge and Platform Security Deployment — Sunil Cheruvu Anil Kumar Ned Smith David M. Wheeler Demystifying Internet of Things Security Successful IoT Device/Edge and Platform Security Deployment Sunil Cheruvu Anil Kumar Ned Smith David M. Wheeler Demystifying Internet of Things Security: Successful IoT Device/Edge and Platform Security Deployment Sunil Cheruvu Anil Kumar Chandler, AZ, USA Chandler, AZ, USA Ned Smith David M. Wheeler Beaverton, OR, USA Gilbert, AZ, USA ISBN-13 (pbk): 978-1-4842-2895-1 ISBN-13 (electronic): 978-1-4842-2896-8 https://doi.org/10.1007/978-1-4842-2896-8 Copyright © 2020 by The Editor(s) (if applicable) and The Author(s) This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. -
Debian \ Amber \ Arco-Debian \ Arc-Live \ Aslinux \ Beatrix
Debian \ Amber \ Arco-Debian \ Arc-Live \ ASLinux \ BeatriX \ BlackRhino \ BlankON \ Bluewall \ BOSS \ Canaima \ Clonezilla Live \ Conducit \ Corel \ Xandros \ DeadCD \ Olive \ DeMuDi \ \ 64Studio (64 Studio) \ DoudouLinux \ DRBL \ Elive \ Epidemic \ Estrella Roja \ Euronode \ GALPon MiniNo \ Gibraltar \ GNUGuitarINUX \ gnuLiNex \ \ Lihuen \ grml \ Guadalinex \ Impi \ Inquisitor \ Linux Mint Debian \ LliureX \ K-DEMar \ kademar \ Knoppix \ \ B2D \ \ Bioknoppix \ \ Damn Small Linux \ \ \ Hikarunix \ \ \ DSL-N \ \ \ Damn Vulnerable Linux \ \ Danix \ \ Feather \ \ INSERT \ \ Joatha \ \ Kaella \ \ Kanotix \ \ \ Auditor Security Linux \ \ \ Backtrack \ \ \ Parsix \ \ Kurumin \ \ \ Dizinha \ \ \ \ NeoDizinha \ \ \ \ Patinho Faminto \ \ \ Kalango \ \ \ Poseidon \ \ MAX \ \ Medialinux \ \ Mediainlinux \ \ ArtistX \ \ Morphix \ \ \ Aquamorph \ \ \ Dreamlinux \ \ \ Hiwix \ \ \ Hiweed \ \ \ \ Deepin \ \ \ ZoneCD \ \ Musix \ \ ParallelKnoppix \ \ Quantian \ \ Shabdix \ \ Symphony OS \ \ Whoppix \ \ WHAX \ LEAF \ Libranet \ Librassoc \ Lindows \ Linspire \ \ Freespire \ Liquid Lemur \ Matriux \ MEPIS \ SimplyMEPIS \ \ antiX \ \ \ Swift \ Metamorphose \ miniwoody \ Bonzai \ MoLinux \ \ Tirwal \ NepaLinux \ Nova \ Omoikane (Arma) \ OpenMediaVault \ OS2005 \ Maemo \ Meego Harmattan \ PelicanHPC \ Progeny \ Progress \ Proxmox \ PureOS \ Red Ribbon \ Resulinux \ Rxart \ SalineOS \ Semplice \ sidux \ aptosid \ \ siduction \ Skolelinux \ Snowlinux \ srvRX live \ Storm \ Tails \ ThinClientOS \ Trisquel \ Tuquito \ Ubuntu \ \ A/V \ \ AV \ \ Airinux \ \ Arabian -
A Framework for Prototyping and Testing Data-Only Rootkit Attacks
1 A Framework for Prototyping and Testing Data-Only Rootkit Attacks Ryan Riley [email protected] Qatar University Doha, Qatar Version 1.0 This is a preprint of the paper accepted in Elsevier Computers & Security Abstract—Kernel rootkits—attacks which modify a running of 25 rootkit attacks to test with, but end up stating, “Of operating system kernel in order to hide an attacker’s presence— the 25 that we acquired, we were able to install 18 in our are significant threats. Recent advances in rootkit defense tech- virtual test infrastructure. The remainder either did not support nology will force rootkit threats to rely on only modifying kernel data structures without injecting and executing any new our test kernel version or would not install in a virtualized code; however these data-only kernel rootkit attacks are still environment.” In [2], the authors test with 16 Linux rootkits, both realistic and powerful. In this work we present DORF, a but only 12 of them overlap with [1]. In [3], the authors give framework for prototyping and testing data-only rootkit attacks. no results that involved testing with rootkit attacks. DORF is an object-oriented framework that allows researchers to As another example, in our own work involving kernel construct attacks that can be easily ported between various Linux distributions and versions. The current implementation of DORF rootkit defense [2], [4], [5], [6] we found ourselves locked in contains a group of existing and new data-only attacks, and the to an older version of Linux due to the rootkits we planned to portability of DORF is demonstrated by porting it to 6 different test with. -
Linux Kernel Debugging and Security (Lfd440)
Contact Us [email protected] HOME > COURSE CATALOG > LINUX FOUNDATION > SECURITY > LINUX KERNEL DEBUGGING AND SECURITY (LFD440) Linux Kernel Debugging and Security (LFD440) DURATION 4 Days COURSE LNX-LFD440 AVAILABLE FORMATS Classroom Training, Online Training Course Description Overview Learn the methods and internal infrastructure of the Linux kernel. This course focuses on the important tools used for debugging and monitoring the kernel, and how security features are implemented and controlled. Objectives This four day course includes extensive hands-on exercises and demonstrations designed to give you the necessary tools to develop and debug Linux kernel code. Students will walk away from this course with a solid understanding of Linux kernel. debugging techniques and tools. Audience 9/27/2021 1 of 11 1:47:42 PM This course is for experienced developers who need to understand the methods and internal infrastructure of the Linux kernel. Prerequisites To make the most of this course, you should: Be proficient in the C programming language; Be familiar with basic Linux (UNIX) utilities such as ls, grep and tar; Be comfortable using any of the available text editors (e.g. emacs, vi, etc.); Experience with any major Linux distribution is helpful but not strictly required; Have experience equivalent to having taken : Linux Kernel Internals and Development. Topics Introduction Objectives Who You Are The Linux Foundation Linux Foundation Training Certification Programs and Digital Badging Linux Distributions Platforms Preparing Your System -
Securing Debian HOWTO
Securing Debian HOWTO Javier Fernández-Sanguino Peña <[email protected]> v1.92 6 noviembre 2001Tue Oct 23 00:59:57 CEST 2001 Abstract This document describes the process of securing and hardening the default Debian installation. It covers some of the common taks to setup a secure network environment using Debian GNU/Linux. Copyright Notice Copyright c 2001 Alexander Reelsen, Javier Fernández-Sanguino Peña Copyright c 2000 Alexander Reelsen however it is distributed under the terms of the GNU free documentation license. This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. i Contents 1 Introduction 1 1.1 Download the HOWTO ................................... 1 1.2 Organizational Notes/Feedback ............................... 2 1.3 Prior knowledge ....................................... 2 1.4 Things that need to be written (TODO) ........................... 2 1.5 Changelog .......................................... 4 1.5.1 Version 1.92 .................................... 4 1.5.2 Version 1.91 .................................... 4 1.5.3 Version 1.9 ..................................... 4 1.5.4 Version 1.8 ..................................... 5 1.5.5 Version 1.7 ..................................... 5 1.5.6 Version 1.6 ..................................... 5 1.5.7 Version 1.5 ..................................... 6 1.5.8 Version 1.4 ..................................... 6 1.5.9 Version 1.3 ..................................... 6 1.5.10 Version 1.2 ..................................... 6 1.5.11 Version 1.1 ..................................... 6 1.5.12 Version 1.0 ..................................... 6 1.6 Credits ............................................ 7 2 Before you begin 9 2.1 What do you want this system for? ............................. 9 2.2 Be aware of general security problems ........................... 9 2.3 How does Debian handle security? ............................. 11 CONTENTS ii 3 Before and during the installation 13 3.1 Choose a BIOS password ................................. -
On the Quality of Exploit Code
On the Quality of Exploit Code An Evaluation of Publicly Available Exploit Code, Hackers & Threats II, February 17, 2:00 PM, San Francisco, CA Ivan Arce, Core Security Technologies OUTLINE • Prologue: Context and definitions • Why exploit code? • Quality metrics • Examples • Epilogue: Future work PROLOGUE VULNERABILITIES & EXPLOITS Lets start by defining a common language • Vulnerability (noun) — “A flaw in a system that, if leveraged by an attacker, can potentially impact the security of said system” — Also: security bug, security flaw, security hole • Exploit (verb) — “To use or manipulate to one’s advantage” (Webster) — “A security hole or an instance of taking advantage of a security hole” EXPLOIT CODE Exploit code is not just “proof of concept” • Proof of Concept exploit - PoC (noun) — A software program or tool that exploits a vulnerability with the sole purpose of proving its existence. • Exploit Code (noun) — A software program or tool developed to exploit a vulnerability in order to accomplish a specific goal. — Possible goals: denial of service, arbitrary execution of code, etc An emerging role in the information security practice WHY TALK ABOUT EXPLOIT CODE? ANATOMY OF A REAL WORLD ATTACK The classic attack uses exploit code... ATTACKER Base Camp A target server is attacked and compromised The acquired server is used as vantage point to penetrate the corporate net Further attacks are performed as an internal user EXPLOIT CODE FUNCTIONALITY Exploit code becomes more sophisticated • Add a simple “listen shell” echo "ingreslock stream tcp nowait root /bin/sh sh -i" >>/tmp/bob ; /usr/sbin/inetd -s /tmp/bob &" • Add an account to the compromised system: echo "sys3:x:0:103::/:/bin/sh" >> /etc/passwd; echo "sys3:1WXmkX74Ws8fX/MFI3.j5HKahNqIQ0:12311:0:99999:7:::" >> /etc/shadow • Execute a “bind-shell” • Execute a “reverse shell” • Deploy and execute a multi-purpose agent Command shell, FTP, TFTP, IRC, “zombies”, snifers, rootkits.. -
Seth Arnold SARNOLD(7)
SARNOLD(7) Seth Arnold SARNOLD(7) NAME Seth Arnold - sarnold(7) - +1-503-577-3453 - [email protected] SYNOPSIS I am versatile, able to quickly adapt to and excel in complex systems, especially those with subtle security and reliability problems. I enjoy talking with customers and users; my most recent supervisor noted I have a very good sense of the customer's voice. I support co-workers with enthusiasm, improving a team's productivity and morale. OPTIONS · 15 years experience developing software for Linux (Ubuntu, Debian, SuSE, Red Hat, Slackware, Caldera). · 6 years experience using OpenBSD, WinNT 4.0 / Win2K. · 4 years experience using NetWare 3.11, SCO 3.2.4.2, and SCO OpenServer 5.0. · Programming Languages: C, Ruby, Perl, Python, Java, Unix shell, SQL, HTML, LaTeX · Source code control systems: Git, Subversion, CVS, BitKeeper · Native English speaker; learning German I have expertise with Linux kernel internals, cryptography, security issues, software development and mainte- nance, and the TCP/IP family of protocols. I am familiar with the constraints and freedoms of open source licenses. I give confident, credible, and effective presentations about complex subjects. I participate in Free Software and Open Source communities. I have been part of the Open and Free Technology Community's NOC and a staff member on Freenode. HISTORY May 2005 { October 2007 Novell, Inc. / SuSE GmbH; Portland, OR, USA I joined the SuSE Labs research and development team when Novell acquired Immunix. My responsibilities at Novell / SuSE included: Software development Primary developer of AppArmor Mandatory Access Control policies for the SuSE Linux family of distribu- tions.