STRUCTURAL STABILITY on TWO-DIMENSIONAL MANIFOLDS J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 2 Structural Stability
Chapter 2 Structural stability 2.1 Denitions and one-dimensional examples A very important notion, both from a theoretical point of view and for applications, is that of stability: the qualitative behavior should not change under small perturbations. Denition 2.1.1: A Cr map f is Cm structurally stable (with 1 m r ∞) if there exists a neighbour- hood U of f in the Cm topology such that every g ∈ U is topologically conjugated to f. Remark 2.1.1. The reason that for structural stability we just ask the existence of a topological conju- gacy with close maps is because we are interested only in the qualitative properties of the dynamics. For 1 1 R instance, the maps f(x)= 2xand g(x)= 3xhave the same qualitative dynamics over (and indeed are topologically conjugated; see below) but they cannot be C1-conjugated. Indeed, assume there is a C1- dieomorphism h: R → R such that h g = f h. Then we must have h(0) = 0 (because the origin is the unique xed point of both f and g) and 1 1 h0(0) = h0 g(0) g0(0)=(hg)0(0)=(fh)0(0) = f 0 h(0) h0(0) = h0(0); 3 2 but this implies h0(0) = 0, which is impossible. Let us begin with examples of non-structurally stable maps. 2 Example 2.1.1. For ε ∈ R let Fε: R → R given by Fε(x)=xx +ε. We have kFε F0kr = |ε| for r all r 0, and hence Fε → F0 in the C topology. -
Writing the History of Dynamical Systems and Chaos
Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as -
The Defocusing NLS Equation and Its Normal Form, by B. Grébert and T
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 53, Number 2, April 2016, Pages 337–342 http://dx.doi.org/10.1090/bull/1522 Article electronically published on October 8, 2015 The defocusing NLS equation and its normal form,byB.Gr´ebert and T. Kappeler, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Z¨urich, 2014, x+166 pp., ISBN 978-3-03719-131-6, US$38.00 Until the end of the nineteenth century one of the major goals of differential equa- tions theory and mechanics was solving equations of motion, i.e., finding formulae that describe the time dependence of the mechanical configuration. Surprisingly enough, this has been successfully achieved in many interesting cases, such as a planet under the action of gravitation (Kepler problem, two-body problem), the motion of a free rigid body, or the motion of a symmetric rigid body under the action of gravitation (Lagrange top). All these systems are now known to belong to the general class of integrable Hamiltonian systems, for which an explicit procedure of integration of the equations was found by Liouville. Starting from the celebrated paper by Kruskal and Zabusky [ZK65], who dis- covered existence of solitons in the Kortweg–de Vries equation (KdV), mathemati- cians recognized that there are some partial differential equations that are infinite- dimensional analogs of the classical integrable systems. During the last fifty years, the techniques developed for the integration of classical finite-dimensional systems and for the study of their perturbations have been largely adapted to the case of partial differential equations (PDEs). -
Universal Circles for Quasigeodesic Flows 1 Introduction
Geometry & Topology 10 (2006) 2271–2298 2271 arXiv version: fonts, pagination and layout may vary from GT published version Universal circles for quasigeodesic flows DANNY CALEGARI We show that if M is a hyperbolic 3–manifold which admits a quasigeodesic flow, then π1(M) acts faithfully on a universal circle by homeomorphisms, and preserves a pair of invariant laminations of this circle. As a corollary, we show that the Thurston norm can be characterized by quasigeodesic flows, thereby generalizing a theorem of Mosher, and we give the first example of a closed hyperbolic 3–manifold without a quasigeodesic flow, answering a long-standing question of Thurston. 57R30; 37C10, 37D40, 53C23, 57M50 1 Introduction 1.1 Motivation and background Hyperbolic 3–manifolds can be studied from many different perspectives. A very fruitful perspective is to think of such manifolds as dynamical objects. For example, a very important class of hyperbolic 3–manifolds are those arising as mapping tori of pseudo-Anosov automorphisms of surfaces (Thurston [24]). Such mapping tori naturally come with a flow, the suspension flow of the automorphism. In the seminal paper [4], Cannon and Thurston showed that this suspension flow can be chosen to be quasigeodesic and pseudo-Anosov. Informally, a flow on a hyperbolic 3–manifold is quasigeodesic if the lifted flowlines in the universal cover are quasi-geodesics in H3 , and a flow is pseudo-Anosov if it looks locally like a semi-branched cover of an Anosov flow. Of course, such a flow need not be transverse to a foliation by surfaces. See Thurston [24] and Fenley [6] for background and definitions. -
To Be Identified. Then the Flow Line at the Origin Under the ODE System Is
4.2. LINEAR FLOWS ON THE TORUS 89 to be identified. Then the flow line at the origin under the ODE system is a straight line of slope γ emanating from the origin and meeting the right edge of the unit square at the point (1; γ). But by the identification, we can restart the graph of the line at the same height on the left side of the square (at the point (0; γ). Continuing to do this, we will eventually reach the top of the square. But by the identification again, we will drop to the bottom point and continue the line as before. See Figure 6 In essence, we are graphing the flow line as it would appear on the unit square. When we pull this square out of the plane and bend it to create our torus T, the flow line will come with it. Suppose γ ∈~ Q. What can we say about the positive flow line? Figure 6. Wrapping the flow onto T, the unit square with oppo- site sides identified. Proposition 4.16. if γ !2 is irrational, then the flow is minimal. If γ , = !1 ∈ Q then every orbit is closed. Proof. Choose a point x = (x1; x2) and let Sx be a Poincare section (a first- return map for the flow.) Then, along Sx, the Poincare map is precisely Rγ (see the left side of Figure 7). Since γ ∈~ Q, Ox ∩ Sx is dense in Sx. 2 So let y be some arbitrary point in T . We claim that arbitrarily close to y is a point in Ox. -
Structural Stability of Piecewise Smooth Systems
STRUCTURAL STABILITY OF PIECEWISE SMOOTH SYSTEMS MIREILLE E. BROUCKE, CHARLES C. PUGH, AND SLOBODAN N. SIMIC´ † Abstract A.F. Filippov has developed a theory of dynamical systems that are governed by piecewise smooth vector fields [2]. It is mainly a local theory. In this article we concentrate on some of its global and generic aspects. We establish a generic structural stability theorem for Filip- pov systems on surfaces, which is a natural generalization of Mauricio Peixoto’s classic result [12]. We show that the generic Filippov system can be obtained from a smooth system by a process called pinching. Lastly, we give examples. Our work has precursors in an announcement by V.S. Kozlova [6] about structural stability for the case of planar Fil- ippov systems, and also the papers of Jorge Sotomayor and Jaume Llibre [8] and Marco Antonio Teixiera [17], [18]. Partially supported by NASA grant NAG-2-1039 and EPRI grant EPRI-35352- 6089.† STRUCTURAL STABILITY OF PIECEWISE SMOOTH SYSTEMS 1 1. Introduction Imagine two independently defined smooth vector fields on the 2- sphere, say X+ and X−. While a point p is in the Northern hemisphere let it move under the influence of X+, and while it is in the Southern hemisphere, let it move under the influence of X−. At the equator, make some intelligent decision about the motion of p. See Figure 1. This will give an orbit portrait on the sphere. What can it look like? Figure 1. A piecewise smooth vector field on the 2-sphere. How do perturbations affect it? How does it differ from the standard vector field case in which X+ = X−? These topics will be put in proper context and addressed in Sections 2-7. -
Stability and Explanatory Significance of Some Simple Evolutionary Models
Stability and Explanatory Significance of Some Simple Evolutionary Models Brian Skyrms University of California, Irvine 1. Introduction. The explanatory value of equilibrium depends on the underlying dynamics. First there are questions of dynamical stability of the equilibrium that are internal to the dynamical system in question. Is the equilibrium locally stable, so that states near to it stay near to it, or better, asymptotically stable, so that states near to it are carried to it by the dynamics? If not, we should not expect to see this equilibrium. But even if an equilibrium is asymptotically stable, that is no guarantee that the system will reach that equilibrium unless we know that the system's initial state is sufficiently close to the equilibrium. Global stability of an equilibrium, when we have it, gives the equilibrium a much more powerful explanatory role. An equilibrium is globally asymptotically stable if the dynamics carries every possible initial state in the interior of the state space to that equilibrium. If an equilibrium is globally stable, it can have explanatory value even when we are completely uncertain about the initial state of the system. Once questions of dynamical stability are answered with respect to the dynamical system in question, there is the further question of structural stability of that system itself. That is to say, are dynamical systems close to the one in question (in a sense to be made 1 precise) topologically equivalent to that system? If not, a slight mispecification of the model may make predictions that are drastically wrong. Structural stability is defined in terms of small changes in the model. -
Stability and Bifurcation of Dynamical Systems
STABILITY AND BIFURCATION OF DYNAMICAL SYSTEMS Scope: • To remind basic notions of Dynamical Systems and Stability Theory; • To introduce fundaments of Bifurcation Theory, and establish a link with Stability Theory; • To give an outline of the Center Manifold Method and Normal Form theory. 1 Outline: 1. General definitions 2. Fundaments of Stability Theory 3. Fundaments of Bifurcation Theory 4. Multiple bifurcations from a known path 5. The Center Manifold Method (CMM) 6. The Normal Form Theory (NFT) 2 1. GENERAL DEFINITIONS We give general definitions for a N-dimensional autonomous systems. ••• Equations of motion: x(t )= Fx ( ( t )), x ∈ »N where x are state-variables , { x} the state-space , and F the vector field . ••• Orbits: Let xS (t ) be the solution to equations which satisfies prescribed initial conditions: x S(t )= F ( x S ( t )) 0 xS (0) = x The set of all the values assumed by xS (t ) for t > 0is called an orbit of the dynamical system. Geometrically, an orbit is a curve in the phase-space, originating from x0. The set of all orbits is the phase-portrait or phase-flow . 3 ••• Classifications of orbits: Orbits are classified according to their time-behavior. Equilibrium (or fixed -) point : it is an orbit xS (t ) =: xE independent of time (represented by a point in the phase-space); Periodic orbit : it is an orbit xS (t ) =:xP (t ) such that xP(t+ T ) = x P () t , with T the period (it is a closed curve, called cycle ); Quasi-periodic orbit : it is an orbit xS (t ) =:xQ (t ) such that, given an arbitrary small ε > 0 , there exists a time τ for which xQ(t+τ ) − x Q () t ≤ ε holds for any t; (it is a curve that densely fills a ‘tubular’ space); Non-periodic orbit : orbit xS (t ) with no special properties. -
Lie Groups, Algebraic Groups and Lattices
Lie groups, algebraic groups and lattices Alexander Gorodnik Abstract This is a brief introduction to the theories of Lie groups, algebraic groups and their discrete subgroups, which is based on a lecture series given during the Summer School held in the Banach Centre in Poland in Summer 2011. Contents 1 Lie groups and Lie algebras 2 2 Invariant measures 13 3 Finite-dimensional representations 18 4 Algebraic groups 22 5 Lattices { geometric constructions 29 6 Lattices { arithmetic constructions 34 7 Borel density theorem 41 8 Suggestions for further reading 42 This exposition is an expanded version of the 10-hour course given during the first week of the Summer School \Modern dynamics and interactions with analysis, geometry and number theory" that was held in the Bedlewo Banach Centre in Summer 2011. The aim of this course was to cover background material regarding Lie groups, algebraic groups and their discrete subgroups that would be useful in the subsequent advanced courses. The presentation is 1 intended to be accessible for beginning PhD students, and we tried to make most emphasise on ideas and techniques that play fundamental role in the theory of dynamical systems. Of course, the notes would only provide one of the first steps towards mastering these topics, and in x8 we offer some suggestions for further reading. In x1 we develop the theory of (matrix) Lie groups. In particular, we introduce the notion of Lie algebra, discuss relation between Lie-group ho- momorphisms and the corresponding Lie-algebra homomorphisms, show that every Lie group has a structure of an analytic manifold, and prove that every continuous homomorphism between Lie groups is analytic. -
Dynamical System: an Overview Srikanth Nuthanapati* Department of Aeronautics, IIT Madras, Chennai, India
OPEN ACCESS Freely available online s & Aero tic sp au a n c o e r e E n A g f i n Journal of o e l a e n r i r n u g o J Aeronautics & Aerospace Engineering ISSN: 2168-9792 Perspective Dynamical System: An Overview Srikanth Nuthanapati* Department of Aeronautics, IIT Madras, Chennai, India PERSPECTIVE that involved a large number of people. Knowing the trajectory is often sufficient for simple dynamical systems, but most dynamical The idea of a dynamical system emerges from Newtonian mechanics. systems are too complicated to be understood in terms of individual There, as in other natural sciences and engineering disciplines, the trajectories. The problems arise because: evolution rule of dynamical systems is an implicit relation that gives the system’s state only for a short time in the future. Finding an (a) The studied systems may only be known approximately—the orbit required sophisticated mathematical techniques and could system’s parameters may not be known precisely, or terms only be accomplished for a small class of dynamical systems prior may be missing from the equations. The approximations to the advent of computers. The task of determining the orbits of a used call the validity or relevance of numerical solutions dynamical system has been simplified thanks to numerical methods into question. To address these issues, several notions of implemented on electronic computing machines. A dynamical stability, such as Lyapunov stability or structural stability, system is a mathematical system in which a function describes the have been introduced into the study of dynamical systems. -
Structural STABILITY MORPHOGENESIS
1 • IMtlM" Hco_ E=~t:~'!. .. "'...-.",·Yv_ /sTRUCTURAL STABILITY and MORPHOGENESIS An Outline of a General Theory of Models Tranllated from the French edition, as updated by the author, by D. H. FOWlER U....... ".04 w ....... + Witt. 0 ForOJWOfd by C. H. WADDINGTON 197.5 (!) W. A. BENJAMIN, INC. ,,""once;;! &ook Program Reading, Mauochvsetfs I: 'I) _,...... O""MiIo .O,~c;;.,· 5,..,. lolyo J r If ! "• f• Q f iffi Enlll'" £d,,;on. 1m Orilon,l", pubh5l1ed in 19'12. • 5tdN1i1. Itruclut. t1 r'IMIfphas~oe b~ d'uroe Ihlone ghw!:,,1e des modiO'le!o bv W. A. IIMlalnln, 11><:., ',,;h.-naQ Book Pros.,m, Lib ...., or Cell lr"' Cltiliollinl! In Publication Data Them , Ren ~. 1923 - Structural stablll ty and morphogensis . 1. Btology--Mathematlcal. lIIOdels . 2 . Morphogenesis- Mathematical. models. 3. Topology-. I . Title. QH323 .5.T4813 574 .4'01'514 74-8829 ISBN 0-8053 -~76 -9 ISBN 0-8053 - S~?77 - 7 (pbk.) American M.,hftT1.,IQI Society (MOS) Subje<l Oassifoc"ion SdI~....., (1970); 'J2o\101Si'A2!l Copy.lllht elW5 by W. A. 1IM~IT"n . Inc. Published 1,"",1",,_sly'" CMid• • AllIt_l "JlHsned res,1t! , .... ed. mN... , I • , permIssion~::'~~:t.:~ oft""" ';:;~~~~~~~pYbllsl!e. , ~~~~~ BooIt Pros •• m, RNdinl. ~nKhuseltJ ()'867. U.S.A. END PAPERS; The hyperbolic: umbillc In hydrody... mIa : Waves . t Plum ItJllnd, M8Uachvselts. f't1oto courtesy 01 J. GLH;klnheirner. CONTENTS , FOREWORD by C. 1-1 . Waddington • • . • • • • • • • FOREWORD to the angmal French edItIO-n. by C. II . Waddington . • • • • • • • PREFACE(tran,lated from the French edition) · . xx iii TRANSLATOR'S NOTE . ... C HA PTER I. -
A PROOF of the C1 STABILITY CONJECTURE by RICARDO MAN£
PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S. RICARDO MAÑÉ A proof of theC1 stability conjecture Publications mathématiques de l’I.H.É.S., tome 66 (1987), p. 161-210 <http://www.numdam.org/item?id=PMIHES_1987__66__161_0> © Publications mathématiques de l’I.H.É.S., 1987, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ A PROOF OF THE C1 STABILITY CONJECTURE by RICARDO MAN£ INTRODUCTION Two continuous maps, f^:X^ and f^:X^ are topologically equivalent if there exists a homeomorphism h: X^ -> X^ such that h~lf^h ==f^. A G1' diffeomorphism/ of a closed manifold M is C*" structurally stable if it has a G*" neighborhood ^ such that every g e W is topologically equivalent to /. This concept was introduced in the thirties by Andronov and Pontrjagin [I], in the limited (when compared with its present range) framework of flows on the two dimensional disk. The turning point of its development that connected it with much richer possibilities, came in the early sixties, through the work of Smale who, as a consequence of his improved version of a classical result of Birkhoff about homoclinic points, showed that structural stability can coexist with highly developed forms of recurrence [24].