Functional Analysis of Multiple General Transcription Factors in Sulfolobus

Total Page:16

File Type:pdf, Size:1020Kb

Functional Analysis of Multiple General Transcription Factors in Sulfolobus „Functional analysis of multiple general transcription factors in Sulfolobus acidocaldarius” Dissertation Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften - Dr. rer. nat. - vorgelegt von Bernadette Rauch geboren am 13.07.1984, in Dernbach Biofilm Centre, Molekulare Enzymtechnologie und Biochemie Fachbereich Chemie der Universität Duisburg-Essen 2013 Die vorliegende Arbeit wurde im Zeitraum von November 2009 bis Juli 2013 in der Arbeitsgruppe von Prof. Dr. Bettina Siebers in der Fakultät Chemie, Biofilm Centre, Molekulare Enzymtechnologie und Biochemie der Universität Duisburg-Essen durchgeführt. Tag der Disputation: 04.12.2013 Gutachter: Prof. Dr. Bettina Siebers Prof. Dr. Perihan Nalbant Vorsitzender: Prof. Dr. Ulbricht Table of contents Table of contents 1. Introduction .......................................................................................................................... 1 1.1. Archaea - an overview ................................................................................................. 1 1.2. Chromatin proteins in Eukaryotes and Archaea ........................................................... 2 1.3. Transcription apparatus in Bacteria, Eukaryotes and Archaea .................................... 2 1.4. RNAPs in the three domains of life ............................................................................. 5 1.5. Comparison of promoter structures in the three domains of life ................................. 7 1.6. Structure and function of transcription factors in Archaea and Eukaryotes ................ 8 1.6.1. The TATA-binding protein TBP .......................................................................... 8 1.6.2. Eukaryotic transcription factor TFIIB and its archaeal counterpart TFB ............ 8 1.6.3. Eukaryotic transcription factor TFIIE and its archaeal homolog TFE ................. 9 1.6.4. Multiple general transcription factors in Archaea and Eukaryotes .................... 10 1.7. Transcriptional regulation in Archaea ....................................................................... 11 1.8. Aims of this study ...................................................................................................... 12 2. Material and Methods ........................................................................................................ 13 2.1. Instruments ................................................................................................................. 13 2.2. Chemicals ................................................................................................................... 14 2.3. Plasmids ..................................................................................................................... 14 2.4. Strains and growth conditions .................................................................................... 14 2.5. Preparation of glycerol stocks of S. acidocaldarius .................................................. 16 2.6. Basic molecular biology methods .............................................................................. 16 2.6.1. Preparation of chromosomal DNA from S. acidocaldarius and quantification of DNA ............................................................................................................... 16 2.6.2. Isolation of plasmid DNA from E. coli .............................................................. 16 2.6.3. Agarose gel electrophoresis ............................................................................... 16 2.6.4. Amplification of DNA fragments via PCR ........................................................ 17 2.6.5. Restriction of DNA ............................................................................................ 17 2.6.6. Ligation of vector and insert .............................................................................. 17 2.6.7. Preparation of chemically competent E. coli cells ............................................. 17 2.6.8. Transformation of competent cells by heat-shock ............................................. 18 2.6.9. DNA sequencing ................................................................................................ 18 2.6.10. Sequence analysis ............................................................................................. 18 2.6.11. Gene synthesis .................................................................................................. 18 I Table of contents 2.7. Analysis of genome organization of tfb2 ................................................................... 18 2.7.1. Isolation of total RNA from S. acidocaldarius cells .......................................... 18 2.7.2. Removal of genomic DNA by DNaseI treatment .............................................. 19 2.7.3. First strand cDNA synthesis ............................................................................... 19 2.8. Basic biochemical methods ........................................................................................ 20 2.8.1. Protein quantification using Bradford reagent ................................................... 20 2.8.2. BC assay for protein quantification .................................................................... 20 2.8.3. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) .................................... 20 2.9. Heterologous expression of transcription factors in E. coli ....................................... 21 2.9.1. Cloning of GTFs from S. acidocaldarius into overexpression vectors .............. 21 2.9.2. Expression and purification of SaTFB1 ............................................................. 24 2.9.3. Expression and purification of SaTFB2 and SaTFB3 ........................................ 24 2.9.4. Expression and purification of SaTBP ............................................................... 25 2.9.5. Expression and purification of SaTFE ............................................................... 25 2.9.6. Expression and purification of SaRpoG ............................................................. 26 2.10. Homologous expression using S. acidocaldarius MW001 as expression host ........ 26 2.10.1. Preparation of competent S. acidocaldarius MW001 cells .............................. 27 2.10.2. Electroporation of competent S. acidocaldarius MW001 cells ........................ 27 2.11. Purification of Strep-tag proteins ............................................................................. 28 2.12. Western blot and immunodetection ......................................................................... 28 2.12.1. Antibody generation and immunodetection ..................................................... 28 2.12.2. Antibody purification from antiserum using protein-A-agarose ...................... 28 2.12.3. Western blot and immunodetection (His-tag antibody) ................................... 29 2.12.4. Immunodetection using Strep-tag antibody ...................................................... 29 2.12.5. Immunodetection with FLAG-tag antibody ..................................................... 29 2.13. Construction of knock-out strains by homologous recombination and insertion of Sso-pyrEF cassette as genetic marker in S. acidocaldarius ............................... 30 2.13.1. Growth of the tfb3 disruption strain (tfb3::pyrEF) and S. acidocaldarius MW001 after UV-treatment ............................................................................. 33 2.14. Genomic knock-in of His-tag and Strep-FLAG tag ................................................. 33 2.14.1. Genomic tagging of transcription factors and subunit RpoG ........................... 33 2.14.2. Growing conditions of knock-in mutants and purification of transcription factors via genomic tags ................................................................................... 37 2.14.3. Growth of S. acidocaldarius MW001::rpoG-His and purification of the endogenous RNAP from S. acidocaldarius ...................................................... 37 II Table of contents 2.15. Reporter gene assays ................................................................................................ 37 2.15.1. Cloning of promoter regions of transcription factors for β-galactosidase reporter gene assays ......................................................................................... 37 2.15.2. Treatment of cultures for β-galactosidase reporter gene assays ....................... 38 2.15.3. Sample preparation for β-galactosidase reporter gene assays .......................... 38 2.16. Protein-protein interaction studies using the yeast two-hybrid system ................... 39 2.16.1. Construction of yeast two-hybrid vectors ......................................................... 39 2.16.2. Preparation of supercompetent E. coli DH5α cells .......................................... 41 2.16.3. Preparation of competent yeast cells ................................................................ 41 2.16.4. Transformation of yeast cells ........................................................................... 41 2.16.5. Protein-protein interaction studies .................................................................... 42 2.16.6. Testing false positive reactions ........................................................................ 42 2.16.7. Preparation of yeast cell extracts ...................................................................... 42 2.16.8. Urea/SDS-method ............................................................................................
Recommended publications
  • Sulfolobus Acidocaldarius Claus AAGAARD, JACOB Z
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 12285-12289, December 1995 Biochemistry Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron- cells of Sulfolobus acidocaldarius CLAus AAGAARD, JACOB Z. DALGAARD*, AND ROGER A. GARRETr Institute of Molecular Biology, Copenhagen University, S0lvgade 83 H, 1307 Copenhagen K, Denmark Communicated by Carl R. Woese, University of Illinois at Urbana-Champaign, Urbana, IL, August 28, 1995 ABSTRACT Some intron-containing rRNA genes of ar- experiments suggest, but do not establish, that the intron is chaea encode homing-type endonucleases, which facilitate mobile between yeast cells. intron insertion at homologous sites in intron- alleles. These To test whether the archaeal introns constitute mobile archaeal rRNA genes, in contrast to their eukaryotic coun- elements, we electroporated the intron-containing 23S rRNA terparts, are present in single copies per cell, which precludes gene from the archaeal hyperthermophile Desulfurococcus intron homing within one cell. However, given the highly mobilis on nonreplicating bacterial vectors into an intron- conserved nature of the sequences flanking the intron, hom- culture of Sulfolobus acidocaldarius. In the presence of I-Dmo ing may occur in intron- rRNA genes of other archaeal cells. I, the endonuclease encoded by the D. mobilis intron (20), the To test whether this occurs, the intron-containing 23S rRNA intron was shown to home in the chromosomal DNA of intron- gene of the archaeal hyperthermophile Desulfurococcus mobi- cells of S. acidocaldarius. Moreover, using a double drug- lis, carried on nonreplicating bacterial vectors, was electro- resistant mutant (21), it was demonstrated that the intron can porated into an intron- culture of Sulfolobus acidocaldarius.
    [Show full text]
  • The Stability of Lytic Sulfolobus Viruses
    The Stability of Lytic Sulfolobus Viruses A thesis submitted to the Graduate School of the University of Cincinnati In partial fulfillment of The requirements for the degree of Master of Sciences in the Department of Biological Sciences of the College of Arts and Sciences 2017 Khaled S. Gazi B.S. Umm Al-Qura University, 2011 Committee Chair: Dennis W. Grogan, Ph.D. i Abstract Among the three domains of cellular life, archaea are the least understood, and functional information about archaeal viruses is very limited. For example, it is not known whether many of the viruses that infect hyperthermophilic archaea retain infectivity for long periods of time under the extreme conditions of geothermal environments. To investigate the capability of viruses to Infect under the extreme conditions of geothermal environments. A number of plaque- forming viruses related to Sulfolobus islandicus rod-shaped viruses (SIRVs), isolated from Yellowstone National Park in a previous study, were evaluated for stability under different stress conditions including high temperature, drying, and extremes of pH. Screening of 34 isolates revealed a 95-fold range of survival with respect to boiling for two hours and 94-fold range with respect to drying for 24 hours. Comparison of 10 viral strains chosen to represent the extremes of this range showed little correlation of stability with respect to different stresses. For example, three viral strains survived boiling but not drying. On the other hand, five strains that survived the drying stress did not survive the boiling temperature, whereas one strain survived both treatments and the last strain showed low survival of both.
    [Show full text]
  • Resolution of Carbon Metabolism and Sulfur-Oxidation Pathways of Metallosphaera Cuprina Ar-4 Via Comparative Proteomics
    JOURNAL OF PROTEOMICS 109 (2014) 276– 289 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/jprot Resolution of carbon metabolism and sulfur-oxidation pathways of Metallosphaera cuprina Ar-4 via comparative proteomics Cheng-Ying Jianga, Li-Jun Liua, Xu Guoa, Xiao-Yan Youa, Shuang-Jiang Liua,c,⁎, Ansgar Poetschb,⁎⁎ aState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China bPlant Biochemistry, Ruhr University Bochum, Bochum, Germany cEnvrionmental Microbiology and Biotechnology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China ARTICLE INFO ABSTRACT Article history: Metallosphaera cuprina is able to grow either heterotrophically on organics or autotrophically Received 16 March 2014 on CO2 with reduced sulfur compounds as electron donor. These traits endowed the species Accepted 6 July 2014 desirable for application in biomining. In order to obtain a global overview of physiological Available online 14 July 2014 adaptations on the proteome level, proteomes of cytoplasmic and membrane fractions from cells grown autotrophically on CO2 plus sulfur or heterotrophically on yeast extract Keywords: were compared. 169 proteins were found to change their abundance depending on growth Quantitative proteomics condition. The proteins with increased abundance under autotrophic growth displayed Bioleaching candidate enzymes/proteins of M. cuprina for fixing CO2 through the previously identified Autotrophy 3-hydroxypropionate/4-hydroxybutyrate cycle and for oxidizing elemental sulfur as energy Heterotrophy source. The main enzymes/proteins involved in semi- and non-phosphorylating Entner– Industrial microbiology Doudoroff (ED) pathway and TCA cycle were less abundant under autotrophic growth. Also Extremophile some transporter proteins and proteins of amino acid metabolism changed their abundances, suggesting pivotal roles for growth under the respective conditions.
    [Show full text]
  • Sulfolobus As a Model Organism for the Study of Diverse
    SULFOLOBUS AS A MODEL ORGANISM FOR THE STUDY OF DIVERSE BIOLOGICAL INTERESTS; FORAYS INTO THERMAL VIROLOGY AND OXIDATIVE STRESS by Blake Alan Wiedenheft A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Microbiology MONTANA STATE UNIVERSITY Bozeman, Montana November 2006 © COPYRIGHT by Blake Alan Wiedenheft 2006 All Rights Reserved ii APPROVAL of a dissertation submitted by Blake Alan Wiedenheft This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education. Dr. Mark Young and Dr. Trevor Douglas Approved for the Department of Microbiology Dr.Tim Ford Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this dissertation in partial fulfillment of the requirements for a doctoral degree at Montana State University – Bozeman, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this dissertation should be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted “the exclusive right to reproduce and distribute my dissertation in and from microfilm along with the non-exclusive right to reproduce and distribute my abstract in any format in whole or in part.” Blake Alan Wiedenheft November, 2006 iv DEDICATION This work was funded in part through grants from the National Aeronautics and Space Administration Program (NAG5-8807) in support of Montana State University’s Center for Life in Extreme Environments (MCB-0132156), and the National Institutes of Health (R01 EB00432 and DK57776).
    [Show full text]
  • Post-Genomic Characterization of Metabolic Pathways in Sulfolobus Solfataricus
    Post-Genomic Characterization of Metabolic Pathways in Sulfolobus solfataricus Jasper Walther Thesis committee Thesis supervisors Prof. dr. J. van der Oost Personal chair at the laboratory of Microbiology Wageningen University Prof. dr. W. M. de Vos Professor of Microbiology Wageningen University Other members Prof. dr. W.J.H. van Berkel Wageningen University Prof. dr. V.A.F. Martins dos Santos Wageningen University Dr. T.J.G. Ettema Uppsala University, Sweden Dr. S.V. Albers Max Planck Institute for Terrestrial Microbiology, Marburg, Germany This research was conducted under the auspices of the Graduate School VLAG Post-Genomic Characterization of Metabolic Pathways in Sulfolobus solfataricus Jasper Walther Thesis Submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 23 January 2012 at 11 a.m. in the Aula. Jasper Walther Post-Genomic Characterization of Metabolic Pathways in Sulfolobus solfataricus, 164 pages. Thesis, Wageningen University, Wageningen, NL (2012) With references, with summaries in Dutch and English ISBN 978-94-6173-203-3 Table of contents Chapter 1 Introduction 1 Chapter 2 Hot Transcriptomics 17 Chapter 3 Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis 45 Chapter 4 Identification of the Missing
    [Show full text]
  • Calditol-Linked Membrane Lipids Are Required for Acid Tolerance in Sulfolobus Acidocaldarius
    Calditol-linked membrane lipids are required for acid tolerance in Sulfolobus acidocaldarius Zhirui Zenga,1, Xiao-Lei Liub,1, Jeremy H. Weia, Roger E. Summonsc, and Paula V. Welandera,2 aDepartment of Earth System Science, Stanford University, Stanford, CA 94305; bDepartment of Geology and Geophysics, University of Oklahoma, Norman, OK 73019; and cDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Katherine H. Freeman, Pennsylvania State University, University Park, PA, and approved November 7, 2018 (received for review August 14, 2018) Archaea have many unique physiological features of which the lipid and sea-surface temperatures in the Mesozoic and early Cenozoic, composition of their cellular membranes is the most striking. and the geologic history of archaea in ancient sediments (13, 14). Archaeal ether-linked isoprenoidal membranes can occur as bilayers However, deciphering the evolutionary implications of archaeal or monolayers, possess diverse polar head groups, and a multiplicity lipid biosynthesis, as well as being able to properly interpret ar- of ring structures in the isoprenoidal cores. These lipid structures chaeal lipid biomarkers, requires a full understanding of the are proposed to provide protection from the extreme temperature, biosynthetic pathways and the physiological roles of these various pH, salinity, and nutrient-starved conditions that many archaea structures in extant archaea. inhabit. However, many questions remain regarding the synthesis Studies of archaeal membrane lipid synthesis have revealed and physiological role of some of the more complex archaeal lipids. distinct proteins and biochemical reactions, but several open In this study, we identify a radical S-adenosylmethionine (SAM) questions remain (4, 15).
    [Show full text]
  • Lipids of Sulfolobus Spp. | Encyclopedia
    Lipids of Sulfolobus spp. Subjects: Biophysics | Biotechnology Contributors: Kerstin Rastaedter , David J. Wurm Submitted by: Kerstin Rastaedter Definition Archaea, and thereby, Sulfolobus spp. exhibit a unique lipid composition of ether lipids, which are altered in regard to the ratio of diether to tetraether lipids, number of cyclopentane rings and type of head groups, as a coping mechanism against environmental changes. Sulfolobales mainly consist of C40-40 tetraether lipids (caldarchaeol) and partly of C20-20 diether lipids (archaeol). A variant of caldarchaeol called glycerol dialkylnonitol tetraether (GDNT) has only been found in Sulfolobus and other members of the Creanarchaeota phylum so far. Altering the numbers of incorporated cyclopentane rings or the the diether to tetraether ratio results in more tightly packed membranes or vice versa. 1. The Cell Membrane and Lipids of Sulfolobus spp. The thermoacidophilic genus Sulfolobus belongs to the phylum Crenarchaeota and is a promising player for biotechnology [1], since it harbors a couple of valuable products, such as extremozymes[ 2], trehalose [3], archaeocins [4] and lipids for producing archaeosomes [5]. Genetic tools for this genus have rapidly advanced in recent years[ 6], generating new possibilities in basic science and for biotechnological applications alike. The cultivation conditions are preferably at around 80 °C and pH 3 [7]. Sulfolobus species are able to grow aerobically and can be readily cultivated on a laboratory scale. These organisms became a model organism for Crenarchaeota and for adaption processes to extreme environments [8][9][10][11][12][13]. Sulfolobus species were found in solfataric fields all over the world[ 14]. A major drawback of cultivating this organism was the lack of a defined cultivation medium.
    [Show full text]
  • Life in Extreme Environments
    insight review articles Life in extreme environments Lynn J. Rothschild & Rocco L. Mancinelli NASA Ames Research Center, Moffett Field, California 94035-1000, USA (e-mail: [email protected]; [email protected]) Each recent report of liquid water existing elsewhere in the Solar System has reverberated through the international press and excited the imagination of humankind. Why? Because in the past few decades we have come to realize that where there is liquid water on Earth, virtually no matter what the physical conditions, there is life. What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harbouring ‘extremophiles’. This realization, coupled with new data on the survival of microbes in the space environment and modelling of the potential for transfer of life between celestial bodies, suggests that life could be more common than previously thought. Here we examine critically what it means to be an extremophile, and the implications of this for evolution, biotechnology and especially the search for life in the Universe. ormal is passé; extreme is chic. While thriving in biological extremes (for example, nutritional Aristotle cautioned “everything in extremes, and extremes of population density, parasites, moderation”, the Romans, known for their prey, and so on). excesses, coined the word ‘extremus’, the ‘Extremophile’ conjures up images of prokaryotes, yet the superlative of exter (‘being on the outside’). taxonomic range spans all three domains. Although all NBy the fifteenth century ‘extreme’ had arrived, via Middle hyperthermophiles are members of the Archaea and French, to English. At the dawning of the twenty-first Bacteria, eukaryotes are common among the psychrophiles, century we know that the Solar System, and even Earth, acidophiles, alkaliphiles, piezophiles, xerophiles and contain environmental extremes unimaginable to the halophiles (which respectively thrive at low temperatures, low ‘ancients’ of the nineteenth century.
    [Show full text]
  • Extremophiles-Basic Concepts
    CONTENTS CONTENTS EXTREMOPHILES Extremophiles - Volume 1 No. of Pages: 396 ISBN: 978-1-905839-93-3 (eBook) ISBN: 978-1-84826-993-4 (Print Volume) Extremophiles - Volume 2 No. of Pages: 392 ISBN: 978-1-905839-94-0 (eBook) ISBN: 978-1-84826-994-1 (Print Volume) Extremophiles - Volume 3 No. of Pages: 364 ISBN: 978-1-905839-95-7 (eBook) ISBN: 978-1-84826-995-8 (Print Volume) For more information of e-book and Print Volume(s) order, please click here Or contact : [email protected] ©Encyclopedia of Life Support Systems (EOLSS) EXTREMOPHILES CONTENTS VOLUME I Extremophiles: Basic Concepts 1 Charles Gerday, Laboratory of Biochemistry, University of Liège, Belgium 1. Introduction 2. Effects of Extreme Conditions on Cellular Components 2.1. Membrane Structure 2.2. Nucleic Acids 2.2.1. Introduction 2.2.2. Desoxyribonucleic Acids 2.2.3. Ribonucleic Acids 2.3. Proteins 2.3.1. Introduction 2.3.2. Thermophilic Proteins 2.3.2.1. Enthalpically Driven Stabilization Factors: 2.3.2.2. Entropically Driven Stabilization Factors: 2.3.3. Psychrophilic Proteins 2.3.4. Halophilic Proteins 2.3.5. Piezophilic Proteins 2.3.5.1. Interaction with Other Proteins and Ligands: 2.3.5.2. Substrate Binding and Catalytic Efficiency: 2.3.6. Alkaliphilic Proteins 2.3.7. Acidophilic Proteins 3. Conclusions Extremophiles: Overview of the Biotopes 43 Michael Gross, University of London, London, UK 1. Introduction 2. Extreme Temperatures 2.1. Terrestrial Hot Springs 2.2. Hot Springs on the Ocean Floor and Black Smokers 2.3. Life at Low Temperatures 3. High Pressure 3.1.
    [Show full text]
  • Methanocaldococcus Jannaschii Mja Methanococci Methanococcales
    Table S2 List of the archaeal species used for evaluation of physiological and metabolic potential by MAPLE system Species Species ID Class Order [Euryarchaeota: 53 species] Methanocaldococcus jannaschii mja Methanococci Methanococcales Methanotorris igneus mig Methanococci Methanococcales Methanococcus vannielii mvn Methanococci Methanococcales Methanothermococcus okinawensis mok Methanococci Methanococcales Methanosarcina barkeri mba Methanomicrobia Methanosarcinales Methanococcoides burtonii mbu Methanomicrobia Methanosarcinales Methanohalophilus mahii mmh Methanomicrobia Methanosarcinales Methanohalobium evestigatum mev Methanomicrobia Methanosarcinales Methanosalsum zhilinae mzh Methanomicrobia Methanosarcinales Methanolobus psychrophilus mpy Methanomicrobia Methanosarcinales Methanomethylovorans hollandica mhz Methanomicrobia Methanosarcinales Methanosaeta concilii mcj Methanomicrobia Methanosarcinales Methanospirillum hungatei mhu Methanomicrobia Methanomicrobiales Methanocorpusculum labreanum mla Methanomicrobia Methanomicrobiales Methanoculleus bourgensis mbg Methanomicrobia Methanomicrobiales Methanoplanus petrolearius mpi Methanomicrobia Methanomicrobiales Methanoregula boonei mbn Methanomicrobia Methanomicrobiales Candidatus Methanosphaerula palustris mpl Methanomicrobia Methanomicrobiales Methanocella paludicola mpd Methanomicrobia Methanocellales Methanomassiliicoccus sp. Mx1-Issoire mer Methanomicrobia Unclassified Methanothermobacter thermautotrophicus mth Methanobacteria Methanobacteriales Methanosphaera stadtmanae mst
    [Show full text]
  • Host-Dependent Differences in Replication Strategy of The
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.30.017236; this version posted April 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Host-dependent differences in replication strategy of the Sulfolobus 2 Spindle-shaped Virus strain SSV9 (a.k.a., SSVK1): Lytic replication in hosts 3 of the family SulfoloBaceae 4 5 Ruben Michael Ceballos1,2,3*, Coyne Drummond5, Carson Len Stacy3, 6 Elizabeth Padilla Crespo4, and Kenneth Stedman5 7 8 1The University of Arkansas, Department of Biological Sciences (Fayetteville, AR) 9 2Arkansas Center for Space and Planetary Sciences (Fayetteville, AR) 10 3The University of Arkansas, Cell and Molecular Biology Program 11 4La Universidad Interamericana, Departmento de Ciencias y Tecnología (Aguadilla, PR) 12 5Portland State University, Department of Biology, Center for Life in Extreme 13 Environments (Portland, OR) 14 15 ABSTRACT 16 17 The Sulfolobus Spindle-shaped Virus (SSV) system has become a model for studying 18 thermophilic virus biology, including archaeal host-virus interactions and biogeography. 19 Several factors make the SSV system amenable to studying archaeal genetic mechanisms 20 (e.g., CRISPRs) as well as virus-host interactions in high temperature acidic environments. 21 First, it has been shown that endemic populations of Sulfolobus, the reported SSV host, 22 exhibit biogeographic structure. Second, the acidic (pH<4.5) high temperature (65-88°C) 23 SSV habitats have low biodiversity, thus, diminishing opportunities for host switching. 24 Third, SSVs and their hosts are readily cultured in liquid media and on gellan gum plates.
    [Show full text]
  • The Cell Membrane of Sulfolobus Spp.—Homeoviscous Adaption and Biotechnological Applications
    International Journal of Molecular Sciences Review The Cell Membrane of Sulfolobus spp.—Homeoviscous Adaption and Biotechnological Applications Kerstin Rastädter, David J. Wurm, Oliver Spadiut and Julian Quehenberger * Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria; [email protected] (K.R.); [email protected] (D.J.W.); [email protected] (O.S.) * Correspondence: [email protected] Received: 30 April 2020; Accepted: 29 May 2020; Published: 30 May 2020 Abstract: The microbial cell membrane is affected by physicochemical parameters, such as temperature and pH, but also by the specific growth rate of the host organism. Homeoviscous adaption describes the process of maintaining membrane fluidity and permeability throughout these environmental changes. Archaea, and thereby, Sulfolobus spp. exhibit a unique lipid composition of ether lipids, which are altered in regard to the ratio of diether to tetraether lipids, number of cyclopentane rings and type of head groups, as a coping mechanism against environmental changes. The main biotechnological application of the membrane lipids of Sulfolobus spp. are so called archaeosomes. Archaeosomes are liposomes which are fully or partly generated from archaeal lipids and harbor the potential to be used as drug delivery systems for vaccines, proteins, peptides and nucleic acids. This review summarizes the influence of environmental parameters on the cell membrane of Sulfolobus spp. and the biotechnological applications of their membrane lipids. Keywords: archaea; Sulfolobus; homeoviscous adaption; membrane; tetraether; diether; lipids; biotechnological application 1. Introduction Membranes are an important barrier between the cell and extracellular space and thus act as a physical barrier as well as a gatekeeper.
    [Show full text]