"^ Conservation Tillage

Total Page:16

File Type:pdf, Size:1020Kb

/¡^S^ United States Miu) Department of Agriculture "^ Conservation Office of Governmental and Public Affairs Tillage: Agriculture SS Information Bulletin Number 461 Things to Consider Agricultural Information Bulletin No. 461 Conservation United States Department of Agriculture (USDA) Office of Information (01) Tillage: Washington, D.C. 20250 Author: Arnold D. King, Agronomist Things to Consider Soil Conservation Service, (SCS) USDA, Ft. Worth, Texas Co-author: G.B. Holcomb, 01, USDA Credits: Contributors of individual suggestions and material Tifton, Ga.; K.L. Wells, M.J. Bitzer, and Robert L. Blevins, for use in this publication were numerous and included the University of Kentucky, Lexington; W.S. Ball and Howard following: John C. Siemens, University of Illinois, Urbana; M. Olson, North Dakota State University, Fargo; John D. W.M. Edwards of the Ohio Agricultural Research and Walker, Rexburg College, Ricks, Idaho; Charles B. Elkins, Development Center, Wooster; W.C. Moldenhauer, Agricul- ARS, USDA, at the Alabama Agricultural Experiment Sta- tural Research Service (ARS), USDA, National Soil Erosion tion, Auburn; G.R. Tupper, Auburn University, Auburn; Laboratory, Purdue University, West Lafayette, indiana; W.H. Mitchell, Delaware Agricultural Experiment Station Estel H. Hudson, University of Tennessee, Knoxville; and Cooperative Extension Service, University of Dela- Thomas C. McCutchen, Milan (Tennessee) Experiment ware, Newark; Fred W. Westbrook and Fred S. Swader, Station, University of Tennessee; Lee A. Christensen, Extension Service (ES), USDA; Charles Smith, Cooperative Economic Research Service (ERS), USDA, at the Universi- State Research Service (CSRS), USDA; Stephen Rawlins, ty of Georgia, Athens; G. Howard Turner and Robert Rice, ARS, USDA, Beltsville, Md.; John T. Alexander, Indiana American Association for Vocational Instructional Materials, farmer; Keith Kuhn, Iowa farmer; Ed Poe, Nelson Fitton, Athens, Ga.; R. Harold Brown, University of Georgia, Edna Carmichael, and Claude Gifford, 01, USDA, and Athens; Ron Hennings, Coastal Plains Experiment Station, others whose names are mentioned in the text. Mention of a proprietary product in this publication does approval by the Department or by any agency of the U.S. not constitute a guarantee or warranty of the product by Government to the exclusion of other products that also the U.S. Department of Agriculture and does not imply its may be suitable. COVER: Double cropping, i.e., growing two crops the same year in the same field is sometimes practiced in connection with conservation tillage. Shown planting soybeans in small grain stubble is a Maryland farmer in foreground, while a combine in background is harvesting the grain. (Photo by Tim McCabe of SCS.) Contents Page Introduction 1 What Are the Basic Conservation-Tillage Systems 2 No-Till 2 Ridge-Plant 5 Strip-Till 6 Disk/Chisel-Plant 6 Eco-Fallow (Chemical-Fallow) 6 Sod Planting 6 How Much Does Crop Residue Affect Erosion? , 7 How Much Does It Cost To Switch to Conservation Tillage? 9 How Does Conservation Tillage Affect Crop Yields? 13 How Does Crop Residue Management Affect Soil Fertility? 15 How Does Conservation Tillage Work in Various Soils? 15 How Much Does Crop Residue Reduce Pollution from Fields? ... 16 How Does Conservation Tillage Affect Pest Control? 17 Who Is Working To Solve Problems Associated with Conservation Tillage? 18 Cost Sharing 18 Information Sharing , 18 Research Projects 18 Fertilizer 18 Subsoiling 20 Pest Controls 20 Cropping Practices , 21 Machinery 22 Other Problems 22 Should You Try Conservation Tillage on Just a Few Acres Before Switching? 23 Where Can You Get More Information About Conservation Tillage Systems? 23 February 1985 Introduction A lot of residue is involved. The major field crops har- vested in this country (from about 341 million acres) pro- In this bulletin are answers to various questions you may duce about 400 million tons of crop residue each year. have about whether you want to join the thousands of Any of that residue left on the surface shields soil from the farmers who have switched to conservation tillage. Others beating of raindrops. Residue holds soil and water and say they will change when they feel confident enough to reduces sediment and chemical runoff. borrow money for investment in conservation tillage equip- By helping keep soil in the fields, residue also helps pre- ment. Some conservation tillage advocates say that before vent crop yield reduction that occurs on eroded land, you get further into debt, you might be able to test new some researchers point out. systems before buying equipment. Another economic consequence to you as a farmer is If you're trying to save money and reduce sou erosion, the fact that switching to conservation tillage from conven- conservation tillage may be your most logical procedure. It tional tillage can cut fuel and labor costs in certain row- can help keep erosion from lowering the yield potential of crop and forage farming by 30 to 90 percent. By cutting your soil and polluting water resources. It can keep more your field operations, you might also be able to cut your soil on your farm than conventional tillage can. equipment inventory. These are factors important to all To emphasize the national need for érosion control, a sizes of farm operations—for both full- and part-time recent publication of USDA's Economic Research Service operators. (ERS),i quoted an author as stating that Phase 1 of the The wide variation in savings depends on how much Natural Resources lnventory2 conducted by US DA "shows crop residue stays on the surface and on other related a national 1977 average annual loss from sheet and rill matters discussed in this publication. erosion in excess of 4 billion tons. If it were all concen- If current trends continue, most U.S. farmers—regard- trated in one area, 4 billion tons of soil loss would mean less of crops farmed or size of operation—will be using the removal of all the topsoil (6 inches) from 4 million some types of conservation tillage techniques by the end acres. With that kind of loss each year, it would take only of the century. Almost one-fourth—about 100 million 100 years to wash away every single acre of cropland in acres—of U.S. cropland is currently being farmed by con- the United States." servation tillage, as indicated in figure 1. ses also has estimated that wind erosion in 1977 took The trend toward conservation tillage began in the early away another 4,460,000,000 tons of soil from the nation's 1970's. SCS specialists have projected acreage estimates cropland, pastureiand, forest land, and rangeland. to the year 2010, as shown in figure 1. USDA experts ex- On U.S. cropland in 1977, according to Soil Conserva- pect the past dramatic increase—by more than 300 per- tion Service (SCS) estimates, sheet and rill erosion on cent in a decade—will continue. U.S. cropland in 1977 was 1,926,000,000 tons, while the Conservation tillage is one of several soil and water sav- total such erosion by water on pastureiand was 346 ing measures emphasized in USDA's national conservation million, on forest land 435 million, and on rangeland, 1,155 program. Other measures include terracing, contour farm- million. Those figures total 3,862,000,000 tons. ing, contour stripcropping, and the building of grass water- More recently, SCS estimates that cropland (about 413 ways and headlands. million acres) erodes at the rate of about 2.8 billion tons of While deciding whether to try or adopt conservation till- soil yearly. That averages about 6.8 tons per acre. SCS age, you also need to determine whether other conserva- calculations show that 10 percent of that cropland loses tion practices should be retained or adopted for a more more than 10 tons an acre annually to sheet and rill complete conservation system for your farm. If your fields erosion—the kind that occurs before the water has cut slope only slightly, for example, you may find that a com- deep enough to form gullies. bination of conservation tillage and contour farming may USDA's Agricultural Research Service (ARS) has said be enough to retain most of your soil. that the rate of soil loss on some cropland is as much as SCS conservationists can answer your questions about 10 times greater than the natural rate of replacement. ARS evaluating the economics and effectiveness of one or more said a third of the U.S. corn acreage, 44 percent of soy- conservation practices. Using the Universal Soil Loss bean, 34 percent of cotton, and 39 percent of all sorghum Equation (USLE)—which also is described on page 7 acreage suffers from such loss. they can help you calculate probable erosion-preventing Conservation tillage systems reduce erosion and mois- effects of conservation tillage alone or in combination with ture loss by leaving crop residue on the surface until new other practices in your farm's conservation program. They crops are planted. Such systems mark a striking evolution also may have data pinpointing the economics of conser- in farming practices when compared with traditional, con- vation tillage in your county. ventional tillage. The latter refers to previously favored County SCS officials have a booklet. Assistance tillage systems using implements that buried or otherwise Available from the Soil Conservation Service, Agriculture In- mixed surface residue into the soil. formation Bulletin 345, which explains SCS help in detail. A copy is available to farmers at no charge. SCS staff members will try to help you resolve any tillage or other conservation related problem. M Comparison of Tillage Systems for Reducing Soil Erosion and Water Pollution, by Lee A. Christensen and Patricia E. Morris, ERS, USD A, USDA's Extension Service (ES), working in cooperation Agricultural Economic Report No.
Recommended publications
  • Conservation Tillage and Organic Farming Reduce Soil Erosion
    Conservation tillage and organic farming reduce soil erosion Steffen Seitz, Philipp Goebes, Viviana Loaiza Puerta, Engil Isadora Pujol Pereira, Raphaël Wittwer, Johan Six, Marcel G. A. van der Heijden, Thomas Scholten To cite this version: Steffen Seitz, Philipp Goebes, Viviana Loaiza Puerta, Engil Isadora Pujol Pereira, Raphaël Wittwer, et al.. Conservation tillage and organic farming reduce soil erosion. Agronomy for Sustainable De- velopment, Springer Verlag/EDP Sciences/INRA, 2019, 39 (1), pp.4. 10.1007/s13593-018-0545-z. hal-02422719 HAL Id: hal-02422719 https://hal.archives-ouvertes.fr/hal-02422719 Submitted on 23 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agronomy for Sustainable Development (2019) 39: 4 https://doi.org/10.1007/s13593-018-0545-z RESEARCH ARTICLE Conservation tillage and organic farming reduce soil erosion Steffen Seitz1 & Philipp Goebes1 & Viviana Loaiza Puerta2 & Engil Isadora Pujol Pereira3 & Raphaël Wittwer4 & Johan Six2 & Marcel G. A. van der Heijden4,5 & Thomas Scholten1 Accepted: 12 November 2018 /Published online: 18 December 2018 # INRA and Springer-Verlag France SAS, part of Springer Nature 2018 Abstract The impact of different arable farming practices on soil erosion is only partly resolved, and the effect of conservation tillage practices in organic agriculture on sediment loss has rarely been tested in the field.
    [Show full text]
  • SB661 a Glossary of Agriculture, Environment, and Sustainable
    This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. A Glossary of Agriculture, Environment, and Sustainable Development Bulletin 661 Agricultural Experiment Station, Kansas State University Marc Johnson, Director This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. A GLOSSARY OF AGRICULTURE, ENVIRONMENT, AND SUSTAINABLE DEVELOPMENT1 R. Scott Frey2 ABSTRACT This glossary contains general definitions of over 500 terms related to agricultural production, the environment, and sustainable develop- ment. Terms were chosen to increase awareness of major issues for the nonspecialist and were drawn from various social and natural science disciplines, including ecology, biology, epidemiology, chemistry, sociol- ogy, economics, anthropology, philosophy, and public health. 1 Contribution 96-262-B from the Kansas Agricultural Experiment Station. 2 Professor of Sociology, Department of Sociology, Anthropology, and Social Work, Kansas State University, Manhattan, KS 66506-4003. 1 This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. PREFACE Agricultural production has increased dramatically in the United States and elsewhere in the past 50 years as agricultural practices have evolved. But this success has been costly: water pollution, soil depletion, and a host of human (and nonhuman) health and safety problems have emerged as impor- tant side effects associated with modern agricultural practices. Because of increased concern with these costs, an alternative view of agricultural production has arisen that has come to be known as sustain- able agriculture.
    [Show full text]
  • Tillage Implements Are Broadly Categorized Into Several Groups Depending on the Purpose for Which They Are Use: Primary Tillage Implements
    Tillage implements are broadly categorized into several groups depending on the purpose for which they are use: Primary Tillage implements Implements used for opening and loosening of the soil are known as ploughs. Ploughs are used for primary tillage. Ploughs are of three types: wooden ploughs, iron or inversion ploughs and special purpose ploughs. Wooden plough or Indigenous plough Indigenous plough is an implement which is made of wood with an iron share point. It consists of body, shaft pole, share and handle. It is drawn with bullocks. It cuts a V shaped furrow and opens the soil but there is no inversion. Ploughing operation is also not perfect because some unploughed strip is always left between furrows. This is reduced by cross ploughing, but even then small squares remain unploughed. Soil Turning Ploughs Soil turning ploughs are made of iron and drawn by a pair of bullocks or two depending on the type of soil. These are also drawn by tractors. Mouldboard Plough The parts of mouldboard plough are frog or body, mouldboard or wing, share, landside, connecting, rod, bracket and handle. This type of plough leaves no unploughed land as the furrow slices are cut clean and inverted to one side resulting in better pulverisation. The animal drawn mouldboard plough is small, ploughs to a depth of 15 cm, while two mouldboard ploughs which are bigger in size are attached to the tractor and ploughed to a depth of 25 to 30 cm. Mouldboard ploughs are used where soil inversion is necessary. Victory plough is an animal drawn mouldboard plough with a short shaft.
    [Show full text]
  • The Relationship Between Soil Properties and No-Tillage Agriculture" (1991)
    University of Kentucky UKnowledge Soil Science News and Views Plant and Soil Sciences 1991 The Relationship Between Soil Properties and No- Tillage Agriculture Robert L. Blevins University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/pss_views Part of the Soil Science Commons Repository Citation Blevins, Robert L., "The Relationship Between Soil Properties and No-Tillage Agriculture" (1991). Soil Science News and Views. 38. https://uknowledge.uky.edu/pss_views/38 This Report is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Soil Science News and Views by an authorized administrator of UKnowledge. For more information, please contact [email protected]. UNIVERSITY OF KENTUCKY COLLEGE OF AGRICULTURE COOPERATIVE EXTENSION SERVICE Lexington, Kentucky 40546 Department of Agronomy ii i s Vol. 12, No. 2, 1991 The Relationship Between Soil Properties and No-Tillage Agricultural by Robert L. Blevins I am highly honored to be invited to present the 3rd annual S.H. Phillips Distinguished Lecture on No-Tillage Agriculture. My interest and subsequent research efforts in the area of no­ tillage agriculture began in 1969. Shirley Phillips encouraged my efforts through his interest and enthusiasm for this rather radical and new approach to farming without the use of tillage equipment. At that time, Harry Young, a western Kentucky farmer and pioneer of no-tillage agriculture along with Shirley, Jim Herron, Charlie Slack and other co-workers were excited about the potential of this new, innovative farming system and what it could do for the farmers of Kentucky.
    [Show full text]
  • Seedbed and Planter Preparation
    SoybeaniGrow BEST MANAGEMENT PRACTICES Chapter 11: Seedbed and Planter Preparation C. Gregg Carlson ([email protected]) Kurt Reitsma Obtaining a excellent soybean stand is a necessary step to successful soybean production. Preparing your land and planter for seeding is one of first steps required to optimize soybean yields (Fig. 11.1). Prior to seeding the field, planter maintenance should be completed and during planting the planter and seed placement should be routinely checked. We recommend that soybeans be planted at a depth of from 1 to 1.5 inches. In South Dakota soybean production, the soil temperature is critical and in South Dakota in the early spring, deeper is colder. Soybeans require a warmer soil (54°F) to germinate than corn (50°F). Colder means slower growth and less nutrient uptake. Soybeans are more sensitive to seeding depth than is corn. Studies in Northern climates have consistently shown that seeding soybeans below 2 to 2.5 inches typically results in a seedling population reduction of 20% or more from the number of seeds planted. The goal of this chapter is to provide guidance on seedbed and planter preparation. Seedbed and planter preparation requires planning and should be conducted at various times during the year. Figure 11.1. A John Deere DB120 Crop Planter. (Source: http://photo.machinestogo.net/main.php/v/user/equipment/john-deere-db120-crop-planter.jpg.html) 11-89 extension.sdstate.edu | © 2019, South Dakota Board of Regents Chilling injury Germination of soybean and corn seeds can be reduced by chilling injury. Chilling injury results from the seed uptaking cold water during germination.
    [Show full text]
  • Surface and Subsurface Tillage Effects on Mine Soil Properties and Vegetative Response
    Stephen F. Austin State University SFA ScholarWorks Faculty Publications Forestry 2018 Surface and Subsurface Tillage Effects on Mine Soil Properties and Vegetative Response H. Z. Angel Arthur Temple College of Forestry and Agriculture, Stephen F Austin State University Jeremy Stovall Arthur Temple College of Forestry and Agriculture, Stephen F Austin State University, [email protected] Hans Michael Williams Arthur Temple College of Forestry and Agriculture Division of Stephen F. Austin State University, [email protected] Kenneth W. Farrish Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, [email protected] Brian P. Oswald Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, [email protected] SeeFollow next this page and for additional additional works authors at: https:/ /scholarworks.sfasu.edu/forestry Part of the Agronomy and Crop Sciences Commons, Ecology and Evolutionary Biology Commons, and the Forest Sciences Commons Tell us how this article helped you. Repository Citation Angel, H. Z.; Stovall, Jeremy; Williams, Hans Michael; Farrish, Kenneth W.; Oswald, Brian P.; and Young, J. L., "Surface and Subsurface Tillage Effects on Mine Soil Properties and Vegetative Response" (2018). Faculty Publications. 499. https://scholarworks.sfasu.edu/forestry/499 This Article is brought to you for free and open access by the Forestry at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. Authors H. Z. Angel, Jeremy Stovall, Hans Michael Williams, Kenneth W. Farrish, Brian P. Oswald, and J. L. Young This article is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/forestry/499 Published March 8, 2018 Forest, Range & Wildland Soils Surface and Subsurface Tillage Effects on Mine Soil Properties and Vegetative Response Soil compaction is an important concern for surface mine operations that H.
    [Show full text]
  • Dryland Farming in the Northwestern United States: a Nontechnical Overview
    MISC0162E DRYLAND FARMING IN THE NORTHWESTERN UNITED STATES A Nontechnical Overview Proper citation: Granatstein, David. 1992. Dryland Farming in the Northwestern United States: A Nontechnical Overview. MISC0162, Washington State University Cooperative Extension, Pullman. 31 pp. About the Author and Project David Granatstein is Project Coordinator for the Northwest Dryland Cereal/Legume Cropping Systems Project, based in the Department of Crop and Soil Sciences, Wash- ington State University, Pullman, Washington. Work for this publication was conduct- ed there with cooperators from Oregon, Idaho, Montana, Wyoming, and Utah, under project numbers 3481 and 4481. This material is based on work supported by the Cooperative State Research Service, U.S. Department of Agriculture, under Agreement No. 88-COOP-1-3525, with funding from the Western Region Sustainable Agriculture Research and Education Program. Any opinions, findings, conclusions, or recommendations expressed in this publica- tion are those of the author and do not necessarily reflect the view of the U.S. Depart- ment of Agriculture or Washington State University Extension. Permission to reprint Figure 1 granted by the American Society of Agronomy, Madison, WI. All photos except the cover were provided by David Granatstein. Cover photo: An artistic display of wheat sheaves at an agricultural exposition in the early 1900s. Photo courtesy of Historical Photograph Collections, WSU Libraries. Contents Introduction . 1 What Is Dryland Farming? . 2 What Is Sustainable Agriculture? . 3 History of Dryland Farming in the Northwestern States . 5 The Columbia River Country. 5 The Oregon Trail and Northern Plains. 8 Dryland Farming: Principles and Practices. 11 The Semiarid Environment in the Northwest. 11 Cropping Systems of the Region .
    [Show full text]
  • Building the Perfect Seedbed
    Unverferth® Unverferth® Seedbed Tillage Perfecta® Field Cultivator Specifications Specifications Folding Perfecta Models 10, 12 and 14 Perfecta sizes for Bedded Crops Cat. 2 Std. and Quick, Cat. 3 Std. and Quick, Cat. 3 Narrow Quick 10'–28' Cat. 2 Std. and Quick, Cat. 3 Std. and Quick, Cat. 3 Narrow Quick; 7' accepts Cat. 1 Std. and Opt. Quick Hitch (optional adapter pins required) 18' Base with Folding Wings — Single Basket S-Tines Shovels BUILDING THE Bed Rolling Approx. Weight Number of Description Overall Working Transport Transport Number of Rollers, Width Number Approx. Width Baskets (lbs.) Leveling Bar Qty. Size Qty. Size Width S-Tine Width Width Height* S-Tines Weight (lbs.) 4' 5' 6' Teeth 6 30" Adj. 6 10" 40' 39'6" 18'4" 12'2" 79 — 2 5 81 7,060 66" 28' for 5 - 66" Beds — Folding 20 19.5" 20 2.75" 5 - 4 ft. 2,745 PERFECT SEEDBED 39' 37'6" 18'4" 11'4" 75 — 4 3 78 6,615 40 16" 40 1" 37' 35'6" 18'4" 10'7" 71 2 2 3 73 6,250 6 30" Adj. 6 10" 60" 25' for 5 - 60" Beds — Folding 20 19.5" 20 2.75" 5 - 4 ft. 3,365 15' Base with Folding Wings — Single Basket 40 16" 40 1" 34' 33'6" 15'7" 11'3" 67 1 6 — 68 6,250 4 30" Adj. 4 10" 84" 22' for 3 - 84" Beds — Folding 6 19.5" 6 2.75" 3 - 6 ft. 2,720 32' 31'6" 15'7" 10'5" 63 3 4 — 64 5,960 30 16" 30 1" 30' 29'6" 15'7" 9'8" 59 5 2 — 60 5,570 4 30" Adj.
    [Show full text]
  • Real Time Contingency Planning : Initial Experiences from AICRPDA
    Real Time Contingency Planning: Initial Experiences from AICRPDA Ch Srinivasarao G Ravindra Chary PK Mishra R Nagarjuna Kumar GR Maruthi Sankar B Venkateswarlu AK Sikka 1985 National Initiative on Climate Resilient Agriculture All India Coordinated Research Project for Dryland Agriculture Central Research Institute for Dryland Agriculture Hyderabad - 500 059, India Citation: Srinivasarao Ch, Ravindra Chary G, Mishra PK, Nagarjuna Kumar R, Maruthi Sankar GR, Venkateswarlu B and Sikka AK. 2013. Real Time Contingency Planning: Initial Experiences from AICRPDA. All India Coordinated Research Project for Dryland Agriculture (AICRPDA),Central Research Institute for Dryland Agrciulture (CRIDA), ICAR, Hyderabad - 500 059, India. 63 p. 2013 Number of copies: 1000 Published by: Central Research Institute for Dryland Agriculture Santoshnagar, Hyderabad – 500059 Phone: +91 – 40 – 24530177, 24531063 Fax: +91 – 40 – 24531802 Website: http://www.crida.in or http:// crida.in Technical Assistance A Girija L Sriramulu Pradeepkumar Srivastava N Rani Manuscript Processing N. Lakshmi Narasu Front Cover Clockwise : (1) Sowing with Roto till dirll (S.K. Nagar, Gujarat); (2) Better Pigeonpea crop with mid season correction (Faizabad Dist. U.P.); (3) Saving horticulture plants through Pitcher system (Biswanath Chariali, Assam); (4) Supplemental irrigation from in farm pond through drip system to Sweet corn (Indore, M.P.) Back Cover Clockwise : (1) Agro advisory service though message on blackboard in NICRA village and SMS in mobile phones (Jamnagar Dist.Gujarat); (2) Mulching with groundnut shells in Cotton (Rajkot, Gujarat); (3) Compartment bunding for in situ moisture conservation in NICRA village (Solapur Dist. Maharashtra); (4) VCRMC Meeting in progress in NICRA village (Lakhimpur Dist. Assam); Printed at : Balaji Scan Pvt.
    [Show full text]
  • No-Till: the Quiet Revolution
    AGRICULTURE No-Till: the Quiet Revolution The age-old practice of turning the soil before planting a new crop is a leading cause of farmland degradation. Many farmers are thus looking to make plowing a thing of the past By David R. Huggins and John P. Reganold © 2008 SCIENTIFIC AMERICAN, INC. 70 SCIENTIFIC AMERICAN July 2008 ohn Aeschliman turns over a shovelful of topsoil on his 4,000-acre farm in the Palouse Jregion of eastern Washington State. The black earth crumbles easily, revealing a porous structure and an abundance of organic matter that facilitate root growth. Loads of earthworms are visible, too—another healthy sign. Thirty-four years ago only a few earthworms, if any, could be found in a spadeful of his soil. Back then, Aeschliman would plow the fields before each planting, burying the residues from the previous crop and readying the ground for the next one. The hilly Palouse region had been farmed that way for decades. But the tillage was taking a toll on the Palouse, and its famously fertile soil was eroding at an alarming rate. Convinced that there had to be a better way to work the land, Aeschliman decided to experi- ment in 1974 with an emerging method known as no-till farming. Most farmers worldwide plow their land in preparation for sowing crops. The practice of turning the soil before planting buries crop resi- dues, animal manure and troublesome weeds and also aerates and warms the soil. But clear- ing and disturbing the soil in this way can also leave it vulnerable to erosion by wind and water.
    [Show full text]
  • Conservation Tillage Cultivators for No-Till and Ridge-Till
    Conservation Tillage Cultivators for No-till and Ridge-till Although no-till implies “no tillage,” many producers Ridge-till Equipment using high residue cropping systems allow themselves the In addition to handling high amounts of residue, the fl exibility of row crop cultivation. The protective surface ridge cultivator must be capable of throwing soil up into residue is disturbed only when the plant canopy is rapidly a ridge. Adjustable ridging wings or disk hillers often are beginning to protect the area between rows. Weed escapes used for this purpose. can be controlled with timely cultivation. The amount of soil being thrown as well as its speed and When changing equipment, producers with highly erod- angular direction from the line of travel affect ridge height. ible land should strongly consider a cultivator capable of Deeper, faster cultivation with ridging wings or disk hillers handling high amounts of residue. Ridge-till producers angled outward from the line of travel all contribute to usually cultivate twice, once early and once to reform more soil being thrown into the ridge area. Maximum ridges. Many no-till producers cultivate only as needed fi nal ridge height is limited by the maximum angle at but appreciate having the option for additional cultivation. which the soil will rest (angle of repose) and row width. Ridge-till systems require mechanical cultivation. Banding Shields (such as sheet metal, disks, or spider wheels) pesticides limits chemical costs and helps environmental are used during the fi rst cultivation. Deeper cultivation quality, but makes timely, effective cultivation more critical. during the fi rst pass helps supply loose soil for later ridge building.
    [Show full text]
  • Garden and Field Tillage and Cultivation
    1.2 Garden and Field Tillage and Cultivation Introduction 33 Lecture 1: Overview of Tillage and Cultivation 35 Lecture 2: French Intensive Method of Soil Cultivation 41 Lecture 3: Mechanical Field-Scale Tillage and Cultivation 43 Demonstration 1: Preparing the Garden Site for French-Intensive Soil Cultivation Instructor’s Demonstration Outline 45 Students’ Step-by-Step Instructions 49 Demonstration 2: French-Intensive Soil Cultivation Instructor’s Demonstration Outline 53 Students’ Step-by-Step Instructions 57 Hands-on Exercise 61 Demonstration 3: Mechanical Tillage and Cultivation 63 Assessment Questions and Key 65 Resources 68 Supplements 1. Goals of Soil Cultivation 69 2. Origins of the French-Intensive Method 72 3. Tillage and Bed Formation Sequences for 74 the Small Farm 4. Field-Scale Row Spacing 76 Glossary 79 Appendices 1. Estimating Soil Moisture by Feel 80 2. Garden-Scale Tillage and Planting Implements 82 3. French Intensive/Double-Digging Sequence 83 4. Side Forking or Deep Digging Sequence 86 5. Field-Scale Tillage and Planting Implements 89 6. Tractors and Implements for Mixed Vegetable 93 Farming Operations Based on Acreage 7. Tillage Pattern for Offset Wheel Disc 94 Part 1 – 32 | Unit 1.2 Tillage & Cultivation Introduction: Soil Tillage & Cultivation UNIT OVERVIEW MODES OF INSTRUCTION Cultivation is a purposefully broader > LECTURES (3 LECTURES, 1–1.5 HOURS EACH) concept than simply digging or tilling Lecture 1 covers the definition of cultivation and tillage, the the soil—cultivation involves an general aims of soil cultivation, the factors influencing culti- vation approaches, and the potential impacts of excessive or array of tools, materials and methods ill-timed tillage.
    [Show full text]