Tillage Implements Are Broadly Categorized Into Several Groups Depending on the Purpose for Which They Are Use: Primary Tillage Implements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cobrahead an Historic American Farming Implement Gets a Modern Facelift from a Wisconsin Tool Inventor
As Seen in To Subscribe, visit: www.FloristsReview.com\Subscibe Made in the U.S.A CobraHead An historic American farming implement gets a modern facelift from a Wisconsin tool inventor. ’m pretty sure my Indiana granddad had one of those ancient, hard- Community is important to me, and I sure didn’t want to hop on a plane I working tools that looked like a steel claw at the end of a long, wooden to Beijing if I had a problem with my tools. By making them locally, even handle. Often called a five-tined garden cultivator, it was perfect for break- though it might be a little more expensive, I’m able to resolve any issues ing through compact soil to prepare for seed planting. According to Noel in person.” Valdes of CobraHead LLC, based in Cambridge, Wis., “Every American It took some hunting before Noel found Green Bay Drop Forge, a tool manufacturer of note made the cultivator, but rototillers put them out machine shop that also fabricates parts for the automotive and agricultural of business and so no one makes them anymore.” industries. The company president was a gardener and he agreed to Old-timers hung onto their timeworn cultivators, and so did Noel, manufacture the original CobraHead Weeder and Cultivator in 2002. A who has discovered through research that makers held patents for the Madison, Wisconsin-based molding shop makes the recycled plastic blue tool dating back to the pre-Civil War era. handle, its shape based on a hammer replacement handle sold at big box Several years ago, one of the five tines fell off of the handle of his vin- stores. -
Market Farm Tools and Systems
PREPARING A NEW GENERATION OF ILLINOIS FRUIT AND VEGETABLE FARMERS a USDA NIFA BEGINNING FARMER AND RANCHER DEVELOPMENT PROGRAM PROJECT GRANT # 2012-49400-19565 http://www.newillinoisfarmers.org GROWING A NEW GENERATION OF ILLINOIS FRUIT AND VEGETABLE FARMERS MARKET FARM TOOLS AND SYSTEMS Zachary Grant Bill Shoemaker Adapted from John Hendrickson April 2015 Objectives: • Capitalizing a Market Farm • Capitalization Priorities • The Front End of the Market Farm • The Middle of the Market Farm • The Back End of the Market Farm • Concluding Thoughts and Questions Estimated Equipment Needs for Various Sizes of Vegetable Farms. Power Source and Direct Production Postharvest Seed Starting Tillage Seeding Equipment Cultivation Harvesting Handling Delivery rototiller Field small hoop Earth- Wheel hoe, or Back-pack knives, Bulk tank, Pickup house, grow way hand hoes, 1-3 walking sprayer, hand canopy, with lights, seeder, digging acres tractor, irrigation, boxes, packing topper planting Cyclone forks, custom tools buckets, containers or van trays seeder spades work carts 35-40 hp 1000 sq. ft. tractor, Potato 1-row greenhouse, with Cultivat- digger, Roller track transplant cold frames, creeper Planet ing tractor bed lifter, conveyor, 4-6 er, Cargo field gear, Jr. plate (IH Super wagon, hand carts, acres irrigation, van tunnels, power seeder A or IH more walk-in more planting steering, 140) boxes, cooler tools trays high buckets clearance Market Gardening: A Start-up Guide https://attra.ncat.org/attra-pub/summaries/summary.php?pub=18 Estimated Equipment -
Conservation Tillage and Organic Farming Reduce Soil Erosion
Conservation tillage and organic farming reduce soil erosion Steffen Seitz, Philipp Goebes, Viviana Loaiza Puerta, Engil Isadora Pujol Pereira, Raphaël Wittwer, Johan Six, Marcel G. A. van der Heijden, Thomas Scholten To cite this version: Steffen Seitz, Philipp Goebes, Viviana Loaiza Puerta, Engil Isadora Pujol Pereira, Raphaël Wittwer, et al.. Conservation tillage and organic farming reduce soil erosion. Agronomy for Sustainable De- velopment, Springer Verlag/EDP Sciences/INRA, 2019, 39 (1), pp.4. 10.1007/s13593-018-0545-z. hal-02422719 HAL Id: hal-02422719 https://hal.archives-ouvertes.fr/hal-02422719 Submitted on 23 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agronomy for Sustainable Development (2019) 39: 4 https://doi.org/10.1007/s13593-018-0545-z RESEARCH ARTICLE Conservation tillage and organic farming reduce soil erosion Steffen Seitz1 & Philipp Goebes1 & Viviana Loaiza Puerta2 & Engil Isadora Pujol Pereira3 & Raphaël Wittwer4 & Johan Six2 & Marcel G. A. van der Heijden4,5 & Thomas Scholten1 Accepted: 12 November 2018 /Published online: 18 December 2018 # INRA and Springer-Verlag France SAS, part of Springer Nature 2018 Abstract The impact of different arable farming practices on soil erosion is only partly resolved, and the effect of conservation tillage practices in organic agriculture on sediment loss has rarely been tested in the field. -
The Broadfork
The BroadFork Many gardeners and growers, especially those working on heavy soils, face the difficulty of deeply compacted soil and want to loosen and aerate it without bringing lower layers to the surface. On a field scale there are tractor-based solutions, but how to tackle the task in the smaller plot? The BroadFork is designed to be at least part of the solution! (The Glaser Bio cultivator (414) has the same objective.) Here are some of Eliot Coleman’s comments from his book The New Organic Grower:– “This two-handled deep tillage tool is known by different names, but broadfork comes as close to describing it as any other. Like most agricultural tools its genesis surely dates far back in agricultural history. It consists of a 2-foot wide spading fork with a 5-foot-long handle at either side of the fork. The teeth on the fork are spaced 4 inches apart and are about 12 inches long . The tines are designed with a parabolic shape and curve down from an attachment point at the back of the crossbar. This difference is the key. The parabolic curve . works with an easy, rolling motion. As the handles are pulled down, the tines curve under and lift the soil easily. “The broadfork is held with the handles tilted slightly forward of vertical. It is pressed into the soil as far as possible by stepping on the crossbar, then the two handles are pulled back towards the operator in an easy rocking motion. The broadfork is then lifted from the loosened soil, the operator steps backwards 6 inches, and the manoeuvre is repeated.. -
Farm Machinery Selection
Farm Machinery Ag Decision Maker Selection File A3-28 utting together an ideal machinery system long run; machinery that is too small may result in is not easy. Equipment that works best one lower crop yields or reduced quality. year may not work well the next because of P Ownership Costs changes in weather conditions or crop production practices. Improvements in design may make older Machinery ownership costs include charges for de- equipment obsolete. And the number of acres be- preciation, interest on investment, property taxes, ing farmed or the amount of labor available may insurance and machinery housing. These costs change. increase in direct proportion to machinery invest- ment and size. Because many of these variables are unpredictable, the goal of the good machinery manager should be Operating Costs to have a system that is flexible enough to adapt Operating costs include fuel, lubricants and repairs. to a broad range of weather and crop conditions Operating costs per acre change very little as ma- while minimizing long-run costs and production chinery size is increased or decreased. Using larger risks. To meet these goals several fundamental machinery consumes more fuel and lubricants per questions must be answered. hour, but this is essentially offset by the fact that more acres are covered per hour. Much the same is Machine Performance true of repair costs. Thus, operating costs are of mi- First, each piece of machinery must perform reli- nor importance when deciding what size machinery ably under a variety of field conditions or it is a is best suited to a certain farming operation. -
Gravely~ Corp O Ration 1 Gravely Lane Dunbar, West Virginia
TRACTO,RS AND 39 ATTACHMENTS FOR YEAR-ROUND LAWN & GARDEN CARE NEW COLORS NEW CONVENIENCE NEW ATTACHMENTS ~GRAVELY~ CORP O RATION 1 GRAVELY LANE DUNBAR, WEST VIRGINIA www.stevenchalmers.com UNEQUALLED PERFORMAN Unique features are built into the Gravely Tractor to give you unex celled performance for all your lawn and garden jobs. Top performance requires top power, and you get this from Gravely's own-make 6.6-HP engine ... a high torque, low RPM power pack that measures up to every job demand. Gravely power is utilized power some 76% of engine power gets to the job through Gravely's all-gear, automotive-type transmission and splined steel attachment drive. And Gravely brings you power that responds instantly to your every command: no stopping or clutching to shift from forward to reverse, or to change gears. Simple lever shifts give you immediate, total control. Gravely performance now is yours in two great models, the Custom and Super. Both are available with stan ard all-gear transmission (two spee forward, two reverse), or revolution ary, new eight-speed transmission, described fully on page 18. YEAR-ROUND VERSATI LITY The unexcelled performance you get from Gravely is not just a seasonal thing. With 39 attachments powered by the Gravely Tractor - job-de signed tools that nm the cycle from lawn mowing to snow blowing there's virtually no limit to the ver satility you get from Gravely. Throughout the year, the Gravely Tractor is the basic element of a power system that you can tailor to your individual job requirements. -
SB661 a Glossary of Agriculture, Environment, and Sustainable
This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. A Glossary of Agriculture, Environment, and Sustainable Development Bulletin 661 Agricultural Experiment Station, Kansas State University Marc Johnson, Director This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. A GLOSSARY OF AGRICULTURE, ENVIRONMENT, AND SUSTAINABLE DEVELOPMENT1 R. Scott Frey2 ABSTRACT This glossary contains general definitions of over 500 terms related to agricultural production, the environment, and sustainable develop- ment. Terms were chosen to increase awareness of major issues for the nonspecialist and were drawn from various social and natural science disciplines, including ecology, biology, epidemiology, chemistry, sociol- ogy, economics, anthropology, philosophy, and public health. 1 Contribution 96-262-B from the Kansas Agricultural Experiment Station. 2 Professor of Sociology, Department of Sociology, Anthropology, and Social Work, Kansas State University, Manhattan, KS 66506-4003. 1 This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. PREFACE Agricultural production has increased dramatically in the United States and elsewhere in the past 50 years as agricultural practices have evolved. But this success has been costly: water pollution, soil depletion, and a host of human (and nonhuman) health and safety problems have emerged as impor- tant side effects associated with modern agricultural practices. Because of increased concern with these costs, an alternative view of agricultural production has arisen that has come to be known as sustain- able agriculture. -
Maidens & Foster Auctioneers
Maidens & Foster Auctioneers Ltd ONSITE AUCTION – RAUPARE RD HASTINGS 10AM SATURDAY 16 TH MARCH 1 2 Implement Drawn Seats 41 Swindle Tree Stirrups & Step 2 3point Mounted Discs 42 Vintage Tooth X-Ray Set Up 3 2 x Ransome Disc Harrows 43 2 x Chook Feeders & 2 x Carpet Sweep 4 JAP Motorbike 44 Group Stirrup Pumps 5 BMB Mini Tractor with Discs 45 2 x Hand Wringers 6 BMB Culti Mate 46 4 x Fire Bucket Pumps 7 Horse Drawn Plough 47 2 x Planet Juniors 8 Oxford Allen Sickle Bar Mower 48 2 x Planet Juniors 9 Atom Barford Sickle Bar Mower 49 (Top) Shelf Planet Junior Parts 10 Agira Sickle Bar Mower 50 (Mid) Shelf Planet Junior Parts 11 Huski Cultivator 51 (Bottom) Shelf Lot Cultivator Parts 12 Mayfield Sickle Bar Mower 52 2 x Scythe & 2 x Knap Sack 13 4 x Single Wheel Cultivators 53 Group Brass Pressure Pumps 14 2 x Morrison Single Wheel Cultivators 54 Group Cultivator & Ag Tools etc 15 Simplicity Single Wheel Cultivator 55 Group Enamel Boilers Cast Pot Pans etc 16 Sickle Bar Mower 56 2 x Maze Grinders 17 Masport Rotary Hoe 57 Shelf Lot Wheels & Air Cleaners etc 18 2 x Steel Wheel Rotary Hoes 58 Alfa Lavel Separator Parts etc 19 Gravely Single Wheel Cultivator 59 Group Assorted Vehicle & other Jacks 20 Morrison Cultivator & Mower Chassis 60 Platform Scales Cast Kettles etc 21 Howard Rotary Hoe 61 Vintage Air Compressor 22 Steel Wheel Rotary Hoe 62 Group Vintage Packaging Churn & Trolley 23 Rubber Wheel Cultivator 63 Cowtail Pump & Blacksmith Vice 24 2 x Howard Rotary Hoes 64 Quantity Leather Horse Saddlery etc 25 4 x Small Howard Rotary Hoes 65 -
The Relationship Between Soil Properties and No-Tillage Agriculture" (1991)
University of Kentucky UKnowledge Soil Science News and Views Plant and Soil Sciences 1991 The Relationship Between Soil Properties and No- Tillage Agriculture Robert L. Blevins University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/pss_views Part of the Soil Science Commons Repository Citation Blevins, Robert L., "The Relationship Between Soil Properties and No-Tillage Agriculture" (1991). Soil Science News and Views. 38. https://uknowledge.uky.edu/pss_views/38 This Report is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Soil Science News and Views by an authorized administrator of UKnowledge. For more information, please contact [email protected]. UNIVERSITY OF KENTUCKY COLLEGE OF AGRICULTURE COOPERATIVE EXTENSION SERVICE Lexington, Kentucky 40546 Department of Agronomy ii i s Vol. 12, No. 2, 1991 The Relationship Between Soil Properties and No-Tillage Agricultural by Robert L. Blevins I am highly honored to be invited to present the 3rd annual S.H. Phillips Distinguished Lecture on No-Tillage Agriculture. My interest and subsequent research efforts in the area of no tillage agriculture began in 1969. Shirley Phillips encouraged my efforts through his interest and enthusiasm for this rather radical and new approach to farming without the use of tillage equipment. At that time, Harry Young, a western Kentucky farmer and pioneer of no-tillage agriculture along with Shirley, Jim Herron, Charlie Slack and other co-workers were excited about the potential of this new, innovative farming system and what it could do for the farmers of Kentucky. -
Seedbed and Planter Preparation
SoybeaniGrow BEST MANAGEMENT PRACTICES Chapter 11: Seedbed and Planter Preparation C. Gregg Carlson ([email protected]) Kurt Reitsma Obtaining a excellent soybean stand is a necessary step to successful soybean production. Preparing your land and planter for seeding is one of first steps required to optimize soybean yields (Fig. 11.1). Prior to seeding the field, planter maintenance should be completed and during planting the planter and seed placement should be routinely checked. We recommend that soybeans be planted at a depth of from 1 to 1.5 inches. In South Dakota soybean production, the soil temperature is critical and in South Dakota in the early spring, deeper is colder. Soybeans require a warmer soil (54°F) to germinate than corn (50°F). Colder means slower growth and less nutrient uptake. Soybeans are more sensitive to seeding depth than is corn. Studies in Northern climates have consistently shown that seeding soybeans below 2 to 2.5 inches typically results in a seedling population reduction of 20% or more from the number of seeds planted. The goal of this chapter is to provide guidance on seedbed and planter preparation. Seedbed and planter preparation requires planning and should be conducted at various times during the year. Figure 11.1. A John Deere DB120 Crop Planter. (Source: http://photo.machinestogo.net/main.php/v/user/equipment/john-deere-db120-crop-planter.jpg.html) 11-89 extension.sdstate.edu | © 2019, South Dakota Board of Regents Chilling injury Germination of soybean and corn seeds can be reduced by chilling injury. Chilling injury results from the seed uptaking cold water during germination. -
Rakes and Hoes
Square Point Shovel USE: This shovel is used to move material from a pile, this is not for digging. Mostly used as a scoop How to use: Hold parallel to the ground at the top of the pile of material and then scoop up and place where needed. Care: Wipe clean after each use Rakes and Hoes Garden Rake Use: This has hard tines (teeth) that are used to spread around dirt, rocks or mulch. How to use: Hold the handle with one hand forward and one towards the end of the handle. Gently push and pull the rake to gently spread the material. If trying to make a pile rake with a pulling motion across your body to make work easier. Care: Remove dirt clods and wipe with a clean cloth. Leaf Rake Use: This has flexible tines that are perfect to quickly clean up leaves. How to Use: hold the rake as you would a broom and sweep across the ground to lift fallen leaves and other debris onto the tines and pull into a pile. Care: when finished remove any debris remaining on the tines and put away Garden Hoe Use: Used to gently remove young weeds with a push and pull action. Also used to make furrows for planting of seedlings in the ground. How to Use. Hold the flat side of the head parallel to the ground and pull towards you knocking down the weed. Then push back and then the weed will be removed. Care: clean off the head of dirt and then put away. -
Surface and Subsurface Tillage Effects on Mine Soil Properties and Vegetative Response
Stephen F. Austin State University SFA ScholarWorks Faculty Publications Forestry 2018 Surface and Subsurface Tillage Effects on Mine Soil Properties and Vegetative Response H. Z. Angel Arthur Temple College of Forestry and Agriculture, Stephen F Austin State University Jeremy Stovall Arthur Temple College of Forestry and Agriculture, Stephen F Austin State University, [email protected] Hans Michael Williams Arthur Temple College of Forestry and Agriculture Division of Stephen F. Austin State University, [email protected] Kenneth W. Farrish Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, [email protected] Brian P. Oswald Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, [email protected] SeeFollow next this page and for additional additional works authors at: https:/ /scholarworks.sfasu.edu/forestry Part of the Agronomy and Crop Sciences Commons, Ecology and Evolutionary Biology Commons, and the Forest Sciences Commons Tell us how this article helped you. Repository Citation Angel, H. Z.; Stovall, Jeremy; Williams, Hans Michael; Farrish, Kenneth W.; Oswald, Brian P.; and Young, J. L., "Surface and Subsurface Tillage Effects on Mine Soil Properties and Vegetative Response" (2018). Faculty Publications. 499. https://scholarworks.sfasu.edu/forestry/499 This Article is brought to you for free and open access by the Forestry at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. Authors H. Z. Angel, Jeremy Stovall, Hans Michael Williams, Kenneth W. Farrish, Brian P. Oswald, and J. L. Young This article is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/forestry/499 Published March 8, 2018 Forest, Range & Wildland Soils Surface and Subsurface Tillage Effects on Mine Soil Properties and Vegetative Response Soil compaction is an important concern for surface mine operations that H.