Redalyc.Late Triassic and Early Cretaceous Sedimentary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conservation of Badgirs and Qanats in Yazd, Central Iran
PLEA2006 - The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6-8 September 2006 Conservation of Badgirs and Qanats in Yazd, Central Iran Dr Reza Abouei1, 2 1 School of Architecture, University of Sheffield, Sheffield, UK 2 School of Architecture, Art University of Isfahan, Isfahan, IRAN ABSTRACT: Of all historic Iranian cities, Yazd, with thousands of historic residential buildings and a large number of traditional structures such as badgirs (wind-towers) and qanats (underground tunnels) contains the largest uninterrupted historic urban fabric in Iran. The city is also an important example of Iranian urban history, whose urban fabric, well adapted to regions dry and hot climate, is relatively a living and dynamic area. The special climate of Yazd has made it necessary to adapt a particular architectural style and urban development/redevelopment schemes. Furthermore, most historic areas of the city contain various traditional structures such as the badgirs, ab-anbars (water storages) and qanats. The existence of these mud-brick ventilation structures, which dominate the city’s roofscapes, creates a distinctive architectural feature of Yazd in which an efficient clean energy system has been used for centuries. As an ancient Iranian system of irrigation, the qanats are also among the outstanding infrastructural features of Yazd in which an organised network of deep water wells linked a labyrinth of subterranean tunnels to form an artificial spring. Currently, many of these traditional structures remain in use, but the historic urban fabric of the city is under the risk of gradual depopulation. Accelerated modern technology and the change of social and economic aims of the community, in Yazd like many other historic cities, alongside the infeasibility of changes in traditional infrastructure have caused the gradual abandonment of these areas. -
Triassic- Jurassic Stratigraphy Of
Triassic- Jurassic Stratigraphy of the <JF C7 JL / Culpfeper and B arbour sville Basins, VirginiaC7 and Maryland/ ll.S. PAPER Triassic-Jurassic Stratigraphy of the Culpeper and Barboursville Basins, Virginia and Maryland By K.Y. LEE and AJ. FROELICH U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1472 A clarification of the Triassic--Jurassic stratigraphic sequences, sedimentation, and depositional environments UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1989 DEPARTMENT OF THE INTERIOR MANUEL LUJAN, Jr., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging in Publication Data Lee, K.Y. Triassic-Jurassic stratigraphy of the Culpeper and Barboursville basins, Virginia and Maryland. (U.S. Geological Survey professional paper ; 1472) Bibliography: p. Supt. of Docs. no. : I 19.16:1472 1. Geology, Stratigraphic Triassic. 2. Geology, Stratigraphic Jurassic. 3. Geology Culpeper Basin (Va. and Md.) 4. Geology Virginia Barboursville Basin. I. Froelich, A.J. (Albert Joseph), 1929- II. Title. III. Series. QE676.L44 1989 551.7'62'09755 87-600318 For sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225 CONTENTS Page Page Abstract.......................................................................................................... 1 Stratigraphy Continued Introduction... .......................................................................................... -
Early Cretaceous (Albian) Decapods from the Glen Rose and Walnut Formations of Texas, USA
Bulletin of the Mizunami Fossil Museum, no. 42 (2016), p. 1–22, 11 fi gs., 3 tables. © 2016, Mizunami Fossil Museum Early Cretaceous (Albian) decapods from the Glen Rose and Walnut formations of Texas, USA Carrie E. Schweitzer*, Rodney M. Feldmann**, William L. Rader***, and Ovidiu Fran㶥escu**** *Department of Geology, Kent State University at Stark, 6000 Frank Ave. NW, North Canton, OH 44720 USA <[email protected]> **Department of Geology, Kent State University, Kent, OH 44242 USA ***8210 Bent Tree Road, #219, Austin, TX 78759 USA ****Division of Physical and Computational Sciences, University of Pittsburgh Bradford, Bradford, PA 16701 USA Abstract Early Cretaceous (Albian) decapod crustaceans from the Glen Rose Limestone and the Walnut Formation include the new taxa Palaeodromites xestos new species, Rosadromites texensis new genus, new species, Karyosia apicava new genus new species, Aetocarcinus new genus, Aetocarcinus muricatus new species, and the new combinations Aetocarcinus roddai (Bishop, 1983), Necrocarcinus pawpawensis (Rathbun, 1935) and Necrocarcinus hodgesi (Bishop, 1983). These two formations have yielded a much less diverse decapod fauna than the nearly coeval and proximally deposited Pawpaw Formation. Paleoenvironment is suggested as a controlling factor in the decapod diversity of these units. Key words: Brachyura, Nephropidae, Dromiacea, Raninoida, Etyioidea, North America Introduction deposited in the shallow waters of a broad carbonate platform. Deposition occurred on the southeastern flank of Late Early Cretaceous decapod faunas from the Gulf the Llano Uplift and, on the seaward margin to the Coastal Plain of North America have been well reported northwest, behind the Stuart City Reef Trend. Coral and and described since the early part of the twentieth century rudist reefs, algal beds, extensive ripple marks, evaporites, (Rathbun, 1935; Stenzel, 1945). -
Application of Fractal Modeling Based on Remote Sensing Data for Detecting Iron Mineralization in Dehshir–Baft Fault, West of Central Iran
Revista Geoaraguaia ISSN:2236-9716 Barra do Garças – MT v.10, n. esp. Geologia e Pedologia p.130-154. Dez-2020 APPLICATION OF FRACTAL MODELING BASED ON REMOTE SENSING DATA FOR DETECTING IRON MINERALIZATION IN DEHSHIR–BAFT FAULT, WEST OF CENTRAL IRAN APLICAÇÃO DE MODELO FRACTAL BASEADO EM DADOS DE SENSORIAMENTO REMOTO PARA DETECTAR MINERAÇÕES DE FERRO NA FALHA DEHSHIR-BAFT, NA REGIÃO OESTE DO IRÃ CENTRAL Faezeh Ahmadi1 Mohammad Reza Jafari2 Ahmad Adib*3 Hamid Hrati4 Mohammad Ali Arian5 ABSTRACT Part of Dehshir–Baft Fault is located on the 1:100000 Sarvbala geological sheet west of Yazd Province in Iran on the Urmia–Dokhtar magmatic–mineralization zone. Regions with iron mineralization potential on this sheet were detected by identifying alterations and fault trends by processing ASTER satellite images. Images were processed using the false color composite (FCC), Crosta, LS-Fit, and spectral angle mapper (SAM) methods to identify iron oxide, argillic, propylitic, and phyllic alterations. To find out the role of faults and lineaments in mineralization, the general faulting trend on this sheet was extracted by relief shading on the digital elevation model (DEM), and the fault zones were examined through field operations. Regions with high iron potential were identified by integrating the fault layers, alterations, and mineralization-related geological units in ArcGIS. The identified regions were then validated through field operations. The relationship between the distance of iron oxide alterations obtained from the LS-Fit method with the main fault was evaluated by the fractal method. The results showed the location and more significant relationship of iron potential with faults in the south and southwest of Sarvbala sheet than other regions. -
Fossil Mosses: What Do They Tell Us About Moss Evolution?
Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca. -
North American Coral Recovery After the End-Triassic Mass Extinction, New York Canyon, Nevada, USA
North American coral recovery after the end-Triassic mass extinction, New York Canyon, Nevada, USA Montana S. Hodges* and George D. Stanley Jr., University of INTRODUCTION Montana Paleontology Center, 32 Campus Drive, Missoula, Mass extinction events punctuate the evolution of marine envi- Montana 59812, USA ronments, and recovery biotas paved the way for major biotic changes. Understanding the responses of marine organisms in the ABSTRACT post-extinction recovery phase is paramount to gaining insight A Triassic-Jurassic (T/J) mass extinction boundary is well repre- into the dynamics of these changes, many of which brought sented stratigraphically in west-central Nevada, USA, near New sweeping biotic reorganizations. One of the five biggest mass York Canyon, where the Gabbs and Sunrise Formations contain a extinctions was that of the end-Triassic, which was quickly continuous depositional section from the Luning Embayment. followed by phases of recovery in the Early Jurassic. The earliest The well-exposed marine sediments at the T/J section have been Jurassic witnessed the loss of conodonts, severe reductions in extensively studied and reveal a sedimentological and paleonto- ammonoids, and reductions in brachiopods, bivalves, gastropods, logical record of intense environmental change and biotic turn- and foraminifers. Reef ecosystems nearly collapsed with a reduc- over, which has been compared globally. Unlike the former Tethys tion in deposition of CaCO3. Extensive volcanism in the Central region, Early Jurassic scleractinian corals surviving the end- Atlantic Magmatic Province and release of gas hydrates and other Triassic mass extinction are not well-represented in the Americas. greenhouse gases escalated CO2 and led to ocean acidification of Here we illustrate corals of Early Sinemurian age from Nevada the end-Triassic (Hautmann et al., 2008). -
Reappraisal of the Genus Dicroidium Gothan from the Triassic Sediments of India
The Palaeobotanist 63(2014): 137–155 0031–0174/2014 Reappraisal of the genus Dicroidium Gothan from the Triassic sediments of India PANKAJ K. PAL1*, AMIT K. GHOSH2, RATAN KAR2, R.S. SINGH2, MANOBIKA SARKAR1 AND RESHMI CHATTERJEE2 1Department of Botany, UGC Centre of Advanced Study, University of Burdwan, Burdwan–713 104, West Bengal, India. 2Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India. *Corresponding author: [email protected] (Received 28 August, 2014; revised version accepted 25 September, 2014) ABSTRACT Pal PK, Ghosh AK, Kar R, Singh RS, Sarkar M & Chatterjee R 2014. Reappraisal of the genus Dicroidium Gothan from the Triassic sediments of India. The Palaeobotanist 63(2): 137–155. The genus Dicroidium Gothan, belonging to Corystospermaceae, is characterised by pinnately compound leaves with proximally forked primary rachis. The genus was earlier included under the genus Thinnfeldia Ettingshausen. Dicroidium is the most consistent macrofloral element in the Triassic strata of Southern Hemisphere. The present reassessment deals with the morphotaxonomy and stratigraphic significance of the species of Dicroidium in India. A critical review of the literature reveals that the specimens of Dicroidium described so far from India require reassessment, because same morphotypes have often been placed under different species names and sometimes dissimilar elements have been assigned to the same species. In view of this, a thorough analysis of Indian Dicroidium was undertaken based on fresh collections along with the species described earlier by previous workers. The present reappraisal reveals that the genus in the Triassic of Peninsular India is represented by eight species. These are D. hughesii (Feistmantel) Lele, D. -
The Late Jurassic Tithonian, a Greenhouse Phase in the Middle Jurassic–Early Cretaceous ‘Cool’ Mode: Evidence from the Cyclic Adriatic Platform, Croatia
Sedimentology (2007) 54, 317–337 doi: 10.1111/j.1365-3091.2006.00837.x The Late Jurassic Tithonian, a greenhouse phase in the Middle Jurassic–Early Cretaceous ‘cool’ mode: evidence from the cyclic Adriatic Platform, Croatia ANTUN HUSINEC* and J. FRED READ *Croatian Geological Survey, Sachsova 2, HR-10000 Zagreb, Croatia Department of Geosciences, Virginia Tech, 4044 Derring Hall, Blacksburg, VA 24061, USA (E-mail: [email protected]) ABSTRACT Well-exposed Mesozoic sections of the Bahama-like Adriatic Platform along the Dalmatian coast (southern Croatia) reveal the detailed stacking patterns of cyclic facies within the rapidly subsiding Late Jurassic (Tithonian) shallow platform-interior (over 750 m thick, ca 5–6 Myr duration). Facies within parasequences include dasyclad-oncoid mudstone-wackestone-floatstone and skeletal-peloid wackestone-packstone (shallow lagoon), intraclast-peloid packstone and grainstone (shoal), radial-ooid grainstone (hypersaline shallow subtidal/intertidal shoals and ponds), lime mudstone (restricted lagoon), fenestral carbonates and microbial laminites (tidal flat). Parasequences in the overall transgressive Lower Tithonian sections are 1– 4Æ5 m thick, and dominated by subtidal facies, some of which are capped by very shallow-water grainstone-packstone or restricted lime mudstone; laminated tidal caps become common only towards the interior of the platform. Parasequences in the regressive Upper Tithonian are dominated by peritidal facies with distinctive basal oolite units and well-developed laminate caps. Maximum water depths of facies within parasequences (estimated from stratigraphic distance of the facies to the base of the tidal flat units capping parasequences) were generally <4 m, and facies show strongly overlapping depth ranges suggesting facies mosaics. Parasequences were formed by precessional (20 kyr) orbital forcing and form parasequence sets of 100 and 400 kyr eccentricity bundles. -
Containing Iran: Strategies for Addressing the Iranian Nuclear Challenge Met Through Patient and Forward-Looking Policymaking
CHILDREN AND FAMILIES The RAND Corporation is a nonprofit institution that EDUCATION AND THE ARTS helps improve policy and decisionmaking through ENERGY AND ENVIRONMENT research and analysis. HEALTH AND HEALTH CARE This electronic document was made available from INFRASTRUCTURE AND www.rand.org as a public service of the RAND TRANSPORTATION Corporation. INTERNATIONAL AFFAIRS LAW AND BUSINESS NATIONAL SECURITY Skip all front matter: Jump to Page 16 POPULATION AND AGING PUBLIC SAFETY SCIENCE AND TECHNOLOGY Support RAND Purchase this document TERRORISM AND HOMELAND SECURITY Browse Reports & Bookstore Make a charitable contribution For More Information Visit RAND at www.rand.org Explore the RAND Corporation View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Unauthorized posting of RAND electronic documents to a non-RAND website is prohibited. RAND electronic documents are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. This product is part of the RAND Corporation monograph series. RAND monographs present major research findings that address the challenges facing the public and private sectors. All RAND mono- graphs undergo rigorous peer review to ensure high standards for research quality and objectivity. Containing Iran Strategies for Addressing the Iranian Nuclear Challenge Robert J. Reardon Supported by the Stanton Foundation C O R P O R A T I O N The research described in this report was supported by the Stanton Foundation. -
' Or ''Long'' Rhaetian? Astronomical Calibration of Austrian Key Sections
”Short” or ”long” Rhaetian ? Astronomical calibration of Austrian key sections Bruno Galbrun, Slah Boulila, Leopold Krystyn, Sylvain Richoz, Silvia Gardin, Annachiara Bartolini, Martin Maslo To cite this version: Bruno Galbrun, Slah Boulila, Leopold Krystyn, Sylvain Richoz, Silvia Gardin, et al.. ”Short” or ”long” Rhaetian ? Astronomical calibration of Austrian key sections. Global and Planetary Change, Elsevier, 2020, 192, pp.103253. 10.1016/j.gloplacha.2020.103253. hal-02884087 HAL Id: hal-02884087 https://hal.archives-ouvertes.fr/hal-02884087 Submitted on 29 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Galbrun B., Boulila S., Krystyn L., Richoz S., Gardin S., Bartolini A., Maslo M. (2020). « Short » or « long » Rhaetian ? Astronomical calibration of Austrian key sections. Global Planetary Change. Vol. 192C. https://doi.org/10.1016/j.gloplacha.2020.103253 « Short » or « long » Rhaetian ? Astronomical calibration of Austrian key sections Bruno Galbruna,*, Slah Boulilaa, Leopold Krystynb, Sylvain Richozc,d, Silvia Gardine, Annachiara -
And Early Jurassic Sediments, and Patterns of the Triassic-Jurassic
and Early Jurassic sediments, and patterns of the Triassic-Jurassic PAUL E. OLSEN AND tetrapod transition HANS-DIETER SUES Introduction parent answer was that the supposed mass extinc- The Late Triassic-Early Jurassic boundary is fre- tions in the tetrapod record were largely an artifact quently cited as one of the thirteen or so episodes of incorrect or questionable biostratigraphic corre- of major extinctions that punctuate Phanerozoic his- lations. On reexamining the problem, we have come tory (Colbert 1958; Newell 1967; Hallam 1981; Raup to realize that the kinds of patterns revealed by look- and Sepkoski 1982, 1984). These times of apparent ing at the change in taxonomic composition through decimation stand out as one class of the great events time also profoundly depend on the taxonomic levels in the history of life. and the sampling intervals examined. We address Renewed interest in the pattern of mass ex- those problems in this chapter. We have now found tinctions through time has stimulated novel and com- that there does indeed appear to be some sort of prehensive attempts to relate these patterns to other extinction event, but it cannot be examined at the terrestrial and extraterrestrial phenomena (see usual coarse levels of resolution. It requires new fine- Chapter 24). The Triassic-Jurassic boundary takes scaled documentation of specific faunal and floral on special significance in this light. First, the faunal transitions. transitions have been cited as even greater in mag- Stratigraphic correlation of geographically dis- nitude than those of the Cretaceous or the Permian junct rocks and assemblages predetermines our per- (Colbert 1958; Hallam 1981; see also Chapter 24). -
Quantification of an Archaean to Recent Earth Expansion Process Using Global Geological and Geophysical Data Sets
Department of Applied Geology Quantification of an Archaean to Recent Earth Expansion Process Using Global Geological and Geophysical Data Sets James Maxlow This thesis is presented as part of the requirement for the award of the Doctor of Philosophy of Curtin University of Technology June 2001 i Abstract Global geological and geophysical data, while routinely used in conventional plate tectonic studies, has not been applied to models of an expanding Earth. Crustal reconstructions on Archaean to Recent models of an expanding Earth presented here are the first time that reconstructions have been extended back to the Archaean, and the first time that continental and oceanic geology has been utilised to constrain plate assemblage and palaeoradius of the Earth. A set of twenty four spherical models have been constructed, twenty three covering the Archaean to Recent and one projected to five million years into the future. Construction of these spherical models relies on the fundamental premise that crustal lithosphere is cumulative with time, and historical markers preserved in the oceanic and continental geology accurately constrain both palaeoradius and plate reconstruction from the Archaean to Recent. Post-Triassic reconstructions of oceanic lithosphere demonstrate a plate fit- together along each plate margin at better than 99% fit. During the Triassic, continents envelope the Earth as a complete continental shell at a reduced Earth radius, and marginal and epi-continental sedimentary basins merge to form a global network surrounding continental cratons and orogenic zones. Continental crust is reconstructed on Pre-Jurassic models using the primary crustal elements of cratons, orogens and basins, with expansion primarily manifested as crustal extension within an established network of epi-continental rifts, orogens and sedimentary basins.