JASC: Journal of Applied Science and Computations ISSN NO: 1076-5131 Abstractive Text Summarization using Rich Semantic Graph for Marathi Sentence Sheetal Shimpikar, Sharvari Govilkar Computer Technology Department, Mumbai University
[email protected] [email protected] Abstract — Text summarization helps to find, take out important sentences from the original document and links together to construct a short and clear summary. Large text documents are difficult to summarize manually. Using the computer program, a text can be reduced to get important points; the summary obtained from it is termed as Text summarization. The objective of the work is the representation and summarization of Indian language for “Marathi” text documents using abstractive text summarization techniques. The proposed approach takes Marathi documents as input text. The first step is pre-processing of the input text. Rich semantic graph method. The challenge in doing abstractive text summarization in Marathi documents is due to the complexity because it cannot be formulated mathematically or logically. And no work has been done on Marathi language. The Rich Semantic Graph based method gives the correct, bug free result. Keywords — Text Summarization, Rich Semantic Graph, Part of Speech Tagging, Name Entity Recognition, Ontology I. INTRODUCTION In current era of digital cultures and technologies, to understand the huge amount of information, text summarization is very important method for all. The purpose of text summarization is to minimize the text from the documents into meaningful form and save important contents. Abstractive text summarization methods use language understanding tools to generate a summary. They extract phrases and lexical chains from the documents.