Turbulence and Stress Owing to Gravity Wave and Tidal Breakdown

Total Page:16

File Type:pdf, Size:1020Kb

Turbulence and Stress Owing to Gravity Wave and Tidal Breakdown JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 86, NO. CI0, PAGES 9707-9714, OCTOBER 20, 1981 Turbulenceand StressOwing to Gravity Wave and Tidal Breakdown R. S. LINDZEN Naval ResearchLaboratory, Washington,D.C. 20390 Centerfor Earth and PlanetaryPhysics, Harvard University,Cambridge, Massachusetts 02139 It has been suggested(Lindzen, 1967, 1968a,b; Lindzen and Blake, 1971; Hodges, 1969) that turbu- lencein the upper mesospherearises from the unstablebreakdown of tides and gravity waves.Crudely speaking,it was expectedthat sufficientturbulence would be generatedto preventthe growth of wave amplitudewith height(roughly as (basicpressure)-•/2). This workhas been extended to allowfor the generationof turbulenceby smalleramplitude waves, the effectsof mean winds on the waves,and the effectsof the waveson the mean momentumbudget. The effectsof mean winds, while of relatively small importancefor tides,are crucialfor internal gravity wavesoriginating in the troposphere.Winds in the troposphereand stratospheresharply limit the phase speedsof wavescapable of reachingthe upper mesosphere.In addition,the existenceof critical levelsin the mesospheresignificantly limits the ability of gravitywaves to generateturbulence, while the breakdownof gravitywaves contributes to the devel- opmentof criticallevels. The resultsof the presentstudy suggest that at middle latitudesin winter, eddy coefficientsmay peak at relativelylow altitudes(50 kin) and at higher altitudesin summerand during suddenwarmings (70-80 kin), and decreasewith heightrather sharplyabove these levels. Rocket obser- vationsare used to estimatemomentum deposition by gravity waves.Accelerations of about 100 m/s/ day are suggested.Such accelerations are entirely capableof producingthe warm winter and cold sum- mer mesopauses. 1. INTRODUCTION discussedin connectionwith the diurnal tide. Again, the tur- The possibilityof breakingwaves generating turbulence in bulencewas assumedto persistup to someturbopause height. the mesospherewas noted someyears ago by Lindzen [1967; These studiestended to ignore the fact that the relevant fre- 1968a]and Hodges[1969] for tidesand gravity waves,respec- quencieswere the Doppler shifted frequenciesand that in- tively. The idea, in thesepapers, was simply that vertically trinsic frequenciesmight be very different. Lindzen [1971] presenteda crude model of turbulence in the propagatinggr.avity waves that, in the absenceof damping, growin amplitudeas po -•/• (wherePo is the basicunperturbed mesospherethat summarized the above mechanismsand, in pressure)could at someheight reach amplitudes for whichthe addition, argued that 'turbulent' diffusion could result from wave fields themselveswould be strongly unstable (i.e., the nonbreakingwaves (NB tidal modesare simply specialcases combinationof mean and wave fieldswould have a negative of internal gravity waves [viz. Lindzen, 1970]. The specificar- staticstability or at leastits Richardsonnumber would drop gument was based on wave •transiency,but other arguments below 0.25). Above such a height it was suggestedthat the have been advanced by Weinstock[1976]. This matter is dis- cussedfurther in a separate note by R. S. Lindzen and J. waveswould generatesufficient turbulence, on the average,to preventfurther wave growthwith height.Theoretical results Forbes(manuscript in preparation,1981) wherein we consider implied that amongtidal modes,only the first propagating the cascadeof energy from stable waves to waves of suffi- ciently small vertical wavelengthsto permit unstable break- diurnal mode would prove important in this respect.Lindzen and Blake [1971]estimated that this modewould break down down. Returning to Lindzen [1971], the model of eddy diffu- between80 and 90 kin, generatingturbulence up to a height sion presentedconsisted in a diffusioncoefficient 'that of about 108 km above which molecular viscosityand con- increasedas (po)-•/2 up to a levelat whichwave breaking oc- ductivity are sufficientto inhibit further wave growth. The curred, increasedmarkedly at this level (50-90 kin), and re- turbulencegenerated by this tidal modeis restrictedto within mained constantup to someturbopause level. Both the mag- nitude and the distribution of the diffusion coefficient were about 30ø latitude of the equator as is the mode itself. The cessationof turbulence at 108 km correspondsclosely to the reasonablycompatible with what was called for by measure- ments of composition[Hunten, 1975;von Zahn et al., 1980] but heightusually designated for the turbopauseand in a loose fashionsupports the notionof tidal generationfor turbulence. the range of uncertainty was large. The notion of ex- The situationwith respectto internal gravity wavesis less ponentially increasing (with height) eddy coefficientshas, certain.Structures with moderatelyshort vertical wavelengths however,gained fairly general acceptance. Recently,Holton and Wehrbein[1980] have concentrated (0(12 kin)) are commonlyobserved in rocketsoundings, pole- ward of 30ø (thus excludingdiurnal tides, at least in some on the momentum depositionby breaking waves, modeling measure),especially in winter. Examplesof such soundings this by Rayleigh friction (acting to bring zonal flow to zero). are shownin Figure 1. On the basisof dispersionrelations To be sure, wave breaking does lead to deposition of wave givenby Hines[1960], one commonly--butarbitrarilymiden- momentum flux, quite apart from the generationof diffusive turbulence; the two effects are, however, distinct as will be titled the gravity wavesas oscillationsof relativelyshort pe- shown in section 2 of this paper. Moreover, in the case of riod (0(3 hours)). Observationssuggested that such gravity wavesalso broke down, and Hodges[1969] estimatedthe re- breaking tides, the depositedmomentum is not attempting to sultinggeneration of turbulencealong similar lines to those bring the mean flow to zero [Fels and Lindzen, 1974]. Never- theless, as was noted by Leovy [1964] and Lindzen [1968b, This paper is not subjectto U.S. copyright.Published in 1981 by 1973],if one anticipatesthat friction is responsiblefor the re- the American GeophysicalUnion. versal of the latitudinal temperature gradient at the meso- Papernumber 1 CO 154. 9707 9708 LINDZEN: TURBULENCE AND STRESS (a) Winter 65 (b) Winter 64 (c) Winter 62163 lOO 8o ..... .-'• _--,.... • 60 ß? 40 ' -' •"'-' 40 --"""'"='•'•-,40J-' _ 2O ..... febOõlOGMT20 _._ 5febO320GMT'-'"J.... 28feb63 2211 GMT ----8 feb 2253 GMT .... 13feb 0430GMT J'..... 7dec. 631311 GMT -oo' 21 ' jan.2224 ' GMT of --- 2D, jan 0411 'GMT oJ- Ternperatu re (" K) Tempera t u re ("K) Ternperat u re (d) Summer 65 (e) Summer 64 100- 100- L•.• .... _• 6O ß 40 4O ..... 23jul, 170õ (•MT -- 7 aug. 0100 GMT --- 12 aug 0149 GJVlT 20 I ------I aug. 20030340 (•MTGMT 20 .... 16 aug. 0315 GMT • 8 aug. 1015 GMT ---- 18 aug. 0125 GMT ß • . i . i . , O ' ' ' ' ' ' ' ' ' ' ' i . , , C20'' 160' 200' 240 280 120 160 2O0 24O 28O Temperatu re Temperature (" K) Fig. 1. Winter and summertemperature sounding at Wallops Island (38øN). pause,then one really doesneed a mechanismthat actsto re- wintersand summers.For example,in Figure 3 we showwin- duce zonal velocitiesrather than gradients. ter and summerwind profiles for the latitude band 30ø-45øN The purposeof the presentpaper is to reassesscarefully, but basedon rocket data for the period 1960-1964 [U. S. Standard simply,the role of wavebreakingin the mesosphere,empha- AtmosphereSupplement, 1966]. Also shown are geostrophic sizingthe role of the mean flow in determiningthe behaviorof winds based on observedtemperatures. There is qualitative gravity waves.Assuming that mosthigh latitude gravity waves similarityto Figure 2, but the quantitativedifferences are ob- originate in the troposphere,it is shown in section 3 that vious.In particular,Figure 3 showswind magnitudespeaking changesin the mean zonal flow accompanyingchanging sea- at the levelsof wavebreakingdeduced from Figure 1. For our sons,sudden warmings, etc., dramatically alter the nature of calculationswe will use the resultsin Figure 3. For reference gravitywaves in the mesosphere.Such changes lead to simple purposes,we showin Figure 4 standardmodels for the height explanationsof variousmesospheric observations. distributionof temperaturein winter and summer (CIRA, 1972). The information in Figure 4 will be needed in sub- 2. GRAVITY WAVES IN THE MESOSPHERE--SIMPLE WKB sequentcalculations. However, it should be noted that in the ANALYSIS absenceof wave perturbations,mean lapserates are only 0 (+_ In this section,gravity waves typical of middle to high lati- 2.4ø/km) which are (for many purposes)small when com- tudeswill be emphasized,though theoretical results are easily paredwith (g/%,)= 9.8ø/kin. extendedto tidal gravity waves. It will be assumedthat the We now proceedto use the mathematicaltheory of internal reader is familiar with the mathematicaltheory of internal gravity waves to exploit the above observationallyderived gravity waves. Only selectedresults will be presentedhere. features. The crudeness of these features leads us to restrict The following referencesare but a few of the referenceswhere ourselvesto only the simplest, approximate, theoretical re- more completetreatments are presented:Hines [1960], Lind- sults.Our equation for the vertical velocity perturbation, w, zen [1970], Gossardand Hooke [1975],and Holton [1979]. associatedwith internal gravity waves is We will begin by presentingsome data relevantto our sub- N2(1+ 12/k') 1 sequentdiscussion. Figure 1 showsvarious temperature pro- ß =o (i) files
Recommended publications
  • Fourth-Order Nonlinear Evolution Equations for Surface Gravity Waves in the Presence of a Thin Thermocline
    J. Austral. Math. Soc. Ser. B 39(1997), 214-229 FOURTH-ORDER NONLINEAR EVOLUTION EQUATIONS FOR SURFACE GRAVITY WAVES IN THE PRESENCE OF A THIN THERMOCLINE SUDEBI BHATTACHARYYA1 and K. P. DAS1 (Received 14 August 1995; revised 21 December 1995) Abstract Two coupled nonlinear evolution equations correct to fourth order in wave steepness are derived for a three-dimensional wave packet in the presence of a thin thermocline. These two coupled equations are reduced to a single equation on the assumption that the space variation of the amplitudes takes place along a line making an arbitrary fixed angle with the direction of propagation of the wave. This single equation is used to study the stability of a uniform wave train. Expressions for maximum growth rate of instability and wave number at marginal stability are obtained. Some of the results are shown graphically. It is found that a thin thermocline has a stabilizing influence and the maximum growth rate of instability decreases with the increase of thermocline depth. 1. Introduction There exist a number of papers on nonlinear interaction between surface gravity waves and internal waves. Most of these are concerned with the mechanism of generation of internal waves through nonlinear interaction of surface gravity waves. Coherent three wave interactions of two surface waves and one internal wave have been investigated by Ball [1], Thorpe [22], Watson, West and Cohen [23] and others. Using the theoretical model of Hasselman [12] for incoherent three-wave interaction, Olber and Hertrich [18] have reported a mechanism of generation of internal waves by coupling with surface waves using a three-layer model of the ocean.
    [Show full text]
  • Internal Gravity Waves: from Instabilities to Turbulence Chantal Staquet, Joël Sommeria
    Internal gravity waves: from instabilities to turbulence Chantal Staquet, Joël Sommeria To cite this version: Chantal Staquet, Joël Sommeria. Internal gravity waves: from instabilities to turbulence. Annual Review of Fluid Mechanics, Annual Reviews, 2002, 34, pp.559-593. 10.1146/an- nurev.fluid.34.090601.130953. hal-00264617 HAL Id: hal-00264617 https://hal.archives-ouvertes.fr/hal-00264617 Submitted on 4 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License INTERNAL GRAVITY WAVES: From Instabilities to Turbulence C. Staquet and J. Sommeria Laboratoire des Ecoulements Geophysiques´ et Industriels, BP 53, 38041 Grenoble Cedex 9, France; e-mail: [email protected], [email protected] Key Words geophysical fluid dynamics, stratified fluids, wave interactions, wave breaking Abstract We review the mechanisms of steepening and breaking for internal gravity waves in a continuous density stratification. After discussing the instability of a plane wave of arbitrary amplitude in an infinite medium at rest, we consider the steep- ening effects of wave reflection on a sloping boundary and propagation in a shear flow. The final process of breaking into small-scale turbulence is then presented.
    [Show full text]
  • The Internal Gravity Wave Spectrum: a New Frontier in Global Ocean Modeling
    The internal gravity wave spectrum: A new frontier in global ocean modeling Brian K. Arbic Department of Earth and Environmental Sciences University of Michigan Supported by funding from: Office of Naval Research (ONR) National Aeronautics and Space Administration (NASA) National Science Foundation (NSF) Brian K. Arbic Internal wave spectrum in global ocean models Collaborators • Naval Research Laboratory Stennis Space Center: Joe Metzger, Jim Richman, Jay Shriver, Alan Wallcraft, Luis Zamudio • University of Southern Mississippi: Maarten Buijsman • University of Michigan: Joseph Ansong, Steve Bassette, Conrad Luecke, Anna Savage • McGill University: David Trossman • Bangor University: Patrick Timko • Norwegian Meteorological Institute: Malte M¨uller • University of Brest and The University of Texas at Austin: Rob Scott • NASA Goddard: Richard Ray • Florida State University: Eric Chassignet • Others including many members of the NSF-funded Climate Process Team led by Jennifer MacKinnon of Scripps Brian K. Arbic Internal wave spectrum in global ocean models Motivation • Breaking internal gravity waves drive most of the mixing in the subsurface ocean. • The internal gravity wave spectrum is just starting to be resolved in global ocean models. • Somewhat analogous to resolution of mesoscale eddies in basin- and global-scale models in 1990s and early 2000s. • Builds on global internal tide modeling, which began with 2004 Arbic et al. and Simmons et al. papers utilizing Hallberg Isopycnal Model (HIM) run with tidal foricng only and employing a horizontally uniform stratification. Brian K. Arbic Internal wave spectrum in global ocean models Motivation continued... • Here we utilize simulations of the HYbrid Coordinate Ocean Model (HYCOM) with both atmospheric and tidal forcing. • Near-inertial waves and tides are put into a model with a realistically varying background stratification.
    [Show full text]
  • Gravity Waves Are Just Waves As Pressure He Was Observing
    FLIGHTOPS Nearly impossible to predict and difficult to detect, this weather phenomenon presents Gravitya hidden risk, especially close to the ground. regory Bean, an experienced pi- National Weather Service observer re- around and land back at Burlington. lot and flight instructor, says he ferred to this as a “gravity wave.” Neither The wind had now swung around to wasn’t expecting any problems the controller nor Bean knew what the 270 degrees at 25 kt. At this point, he while preparing for his flight weather observer was talking about. recalled, his rate of descent became fromG Burlington, Vermont, to Platts- Deciding he could deal with the “alarming.” The VSI now pegged at the burgh, New York, U.S. His Piper Seneca wind, Bean was cleared for takeoff. The bottom of the scale. Despite the control checked out fine. The weather that April takeoff and initial climb were normal difficulty, he landed the aircraft without evening seemed benign. While waiting but he soon encountered turbulence “as further incident. Bean may not have for clearance, he was taken aback by a rough as I have ever encountered.” He known what a gravity wave was, but report of winds gusting to 35 kt from wanted to climb to 2,600 ft. With the he now knew what it could do to an 140 degrees. The air traffic control- vertical speed indicator (VSI) “pegged,” airplane.1 ler commented on rapid changes in he shot up to 3,600 ft. Finally control- Gravity waves are just waves as pressure he was observing. He said the ling the airplane, Bean opted to turn most people normally think of them.
    [Show full text]
  • Gravity Wave and Tidal Influences On
    Ann. Geophys., 26, 3235–3252, 2008 www.ann-geophys.net/26/3235/2008/ Annales © European Geosciences Union 2008 Geophysicae Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx) D. C. Fritts1, S. L. Vadas1, D. M. Riggin1, M. A. Abdu2, I. S. Batista2, H. Takahashi2, A. Medeiros3, F. Kamalabadi4, H.-L. Liu5, B. G. Fejer6, and M. J. Taylor6 1NorthWest Research Associates, CoRA Division, Boulder, CO, USA 2Instituto Nacional de Pesquisas Espaciais (INPE), San Jose dos Campos, Brazil 3Universidade Federal de Campina Grande. Campina Grande. Paraiba. Brazil 4University of Illinois, Champaign, IL, USA 5National Center for Atmospheric research, Boulder, CO, USA 6Utah State University, Logan, UT, USA Received: 15 April 2008 – Revised: 7 August 2008 – Accepted: 7 August 2008 – Published: 21 October 2008 Abstract. The Spread F Experiment, or SpreadFEx, was per- Keywords. Ionosphere (Equatorial ionosphere; Ionosphere- formed from September to November 2005 to define the po- atmosphere interactions; Plasma convection) – Meteorology tential role of neutral atmosphere dynamics, primarily grav- and atmospheric dynamics (Middle atmosphere dynamics; ity waves propagating upward from the lower atmosphere, in Thermospheric dynamics; Waves and tides) seeding equatorial spread F (ESF) and plasma bubbles ex- tending to higher altitudes. A description of the SpreadFEx campaign motivations, goals, instrumentation, and structure, 1 Introduction and an overview of the results presented in this special issue, are provided by Fritts et al. (2008a). The various analyses of The primary goal of the Spread F Experiment (SpreadFEx) neutral atmosphere and ionosphere dynamics and structure was to test the theory that gravity waves (GWs) play a key described in this special issue provide enticing evidence of role in the seeding of equatorial spread F (ESF), Rayleigh- gravity waves arising from deep convection in plasma bub- Taylor instability (RTI), and plasma bubbles extending to ble seeding at the bottomside F layer.
    [Show full text]
  • Inertia-Gravity Wave Generation: a WKB Approach
    Inertia-gravity wave generation: a WKB approach Jonathan Maclean Aspden Doctor of Philosophy University of Edinburgh 2010 Declaration I declare that this thesis was composed by myself and that the work contained therein is my own, except where explicitly stated otherwise in the text. (Jonathan Maclean Aspden) iii iv Abstract The dynamics of the atmosphere and ocean are dominated by slowly evolving, large-scale motions. However, fast, small-scale motions in the form of inertia-gravity waves are ubiquitous. These waves are of great importance for the circulation of the atmosphere and oceans, mainly because of the momentum and energy they transport and because of the mixing they create upon breaking. So far the study of inertia-gravity waves has answered a number of questions about their propagation and dissipation, but many aspects of their generation remain poorly understood. The interactions that take place between the slow motion, termed balanced or vortical motion, and the fast inertia-gravity wave modes provide mechanisms for inertia-gravity wave generation. One of these is the instability of balanced flows to gravity-wave-like perturbations; another is the so-called spontaneous generation in which a slowly evolving solution has a small gravity-wave component intrinsically coupled to it. In this thesis, we derive and study a simple model of inertia-gravity wave generation which considers the evolution of a small-scale, small amplitude perturbation superimposed on a large-scale, possibly time-dependent flow. The assumed spatial-scale separation makes it possible to apply a WKB approach which models the perturbation to the flow as a wavepacket.
    [Show full text]
  • Chapter 16: Waves [Version 1216.1.K]
    Contents 16 Waves 1 16.1Overview...................................... 1 16.2 GravityWavesontheSurfaceofaFluid . ..... 2 16.2.1 DeepWaterWaves ............................ 5 16.2.2 ShallowWaterWaves........................... 5 16.2.3 Capillary Waves and Surface Tension . .... 8 16.2.4 Helioseismology . 12 16.3 Nonlinear Shallow-Water Waves and Solitons . ......... 14 16.3.1 Korteweg-deVries(KdV)Equation . ... 14 16.3.2 Physical Effects in the KdV Equation . ... 16 16.3.3 Single-SolitonSolution . ... 18 16.3.4 Two-SolitonSolution . 19 16.3.5 Solitons in Contemporary Physics . .... 20 16.4 RossbyWavesinaRotatingFluid. .... 22 16.5SoundWaves ................................... 25 16.5.1 WaveEnergy ............................... 27 16.5.2 SoundGeneration............................. 28 16.5.3 T2 Radiation Reaction, Runaway Solutions, and Matched Asymp- toticExpansions ............................. 31 0 Chapter 16 Waves Version 1216.1.K, 7 Sep 2012 Please send comments, suggestions, and errata via email to [email protected] or on paper to Kip Thorne, 350-17 Caltech, Pasadena CA 91125 Box 16.1 Reader’s Guide This chapter relies heavily on Chaps. 13 and 14. • Chap. 17 (compressible flows) relies to some extent on Secs. 16.2, 16.3 and 16.5 of • this chapter. The remaining chapters of this book do not rely significantly on this chapter. • 16.1 Overview In the preceding chapters, we have derived the basic equations of fluid dynamics and devel- oped a variety of techniques to describe stationary flows. We have also demonstrated how, even if there exists a rigorous, stationary solution of these equations for a time-steady flow, instabilities may develop and the amplitude of oscillatory disturbances will grow with time. These unstable modes of an unstable flow can usually be thought of as waves that interact strongly with the flow and extract energy from it.
    [Show full text]
  • On the Transport of Energy in Water Waves
    On The Transport Of Energy in Water Waves Marshall P. Tulin Professor Emeritus, UCSB [email protected] Abstract Theory is developed and utilized for the calculation of the separate transport of kinetic, gravity potential, and surface tension energies within sinusoidal surface waves in water of arbitrary depth. In Section 1 it is shown that each of these three types of energy constituting the wave travel at different speeds, and that the group velocity, cg, is the energy weighted average of these speeds, depth and time averaged in the case of the kinetic energy. It is shown that the time averaged kinetic energy travels at every depth horizontally either with (deep water), or faster than the wave itself, and that the propagation of a sinusoidal wave is made possible by the vertical transport of kinetic energy to the free surface, where it provides the oscillating balance in surface energy just necessary to allow the propagation of the wave. The propagation speed along the surface of the gravity potential energy is null, while the surface tension energy travels forward along the wave surface everywhere at twice the wave velocity, c. The flux of kinetic energy when viewed traveling with a wave provides a pattern of steady flux lines which originate and end on the free surface after making vertical excursions into the wave, even to the bottom, and these are calculated. The pictures produced in this way provide immediate insight into the basic mechanisms of wave motion. In Section 2 the modulated gravity wave is considered in deep water and the balance of terms involved in the propagation of the energy in the wave group is determined; it is shown again that vertical transport of kinetic energy to the surface is fundamental in allowing the propagation of the modulation, and in determining the well known speed of the modulation envelope, cg.
    [Show full text]
  • The Equilibrium Dynamics and Statistics of Gravity–Capillary Waves
    J. Fluid Mech. (2015), vol. 767, pp. 449–466. c Cambridge University Press 2015 449 doi:10.1017/jfm.2014.740 The equilibrium dynamics and statistics of gravity–capillary waves W. Kendall Melville1, † and Alexey V. Fedorov2 1Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0213, USA 2Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, PO Box 208109, New Haven, CT 06520, USA (Received 24 December 2013; revised 8 October 2014; accepted 19 December 2014; first published online 18 February 2015) Recent field observations and modelling of breaking surface gravity waves suggest that air-entraining breaking is not sufficiently dissipative of surface gravity waves to balance the dynamics of wind-wave growth and nonlinear interactions with dissipation for the shorter gravity waves of O.10/ cm wavelength. Theories of parasitic capillary waves that form at the crest and forward face of shorter steep gravity waves have shown that the dissipative effects of these waves may be one to two orders of magnitude greater than the viscous dissipation of the underlying gravity waves. Thus the parasitic capillaries may provide the required dissipation of the short wind-generated gravity waves. This has been the subject of speculation and conjecture in the literature. Using the nonlinear theory of Fedorov & Melville (J. Fluid Mech., vol. 354, 1998, pp. 1–42), we show that the dissipation due to the parasitic capillaries is sufficient to balance the wind input to the short gravity waves over some range of wave ages and wave slopes. The range of gravity wave lengths on which these parasitic capillary waves are dynamically significant approximately corresponds to the range of short gravity waves that Cox & Munk (J.
    [Show full text]
  • 1 the Dynamics of Internal Gravity Waves in the Ocean
    The dynamics of internal gravity waves in the ocean: theory and applications Vitaly V. Bulatov, Yury V. Vladimirov Institute for Problems in Mechanics Russian Academy of Sciences Pr. Vernadskogo 101 - 1, Moscow, 119526, Russia [email protected] fax: +7-499-739-9531 Abstract. In this paper we consider fundamental processes of the disturbance and propagation of internal gravity waves in the ocean modeled as a vertically stratified, horizontally non- uniform, and non-stationary medium. We develop asymptotic methods for describing the wave dynamics by generalizing the spatiotemporal ray-tracing method (a geometrical optics method). We present analytical and numerical algorithms for calculating the internal gravity wave fields using actual ocean parameters such as physical characteristics of the sea water, topography of its floor, etc. We demonstrate that our mathematical models can realistically describe the internal gravity wave dynamics in the ocean. Our numerical and analytical results show that the internal gravity waves have a significant impact on underwater objects in the ocean. Key words: Stratified ocean, internal gravity waves, asymptotic methods. 1 Introduction. The history of studying the internal gravity waves in the ocean, as is known, originated in the Arctic Region after F. Nansen had described a phenomenon called “Dead Water”. Nansen was the first man to observe the internal gravity waves in the Arctic Ocean. The notion of internal waves involves different oceanic phenomena such as “Dead Water”, internal tidal waves, large scale oceanic circulation, and powerful pulsating internal waves. Such natural phenomena exist in the atmosphere as well; however, the theory of internal waves in the atmosphere was developed at a later time along with progress of the aircraft industry and aviation technology [1, 2].
    [Show full text]
  • Breaking of Progressive Internal Gravity Waves: Convective Instability and Shear Instability*
    OCTOBER 2010 L I U E T A L . 2243 Breaking of Progressive Internal Gravity Waves: Convective Instability and Shear Instability* WEI LIU Center for Climatic Research, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, Madison, Wisconsin FRANCIS P. BRETHERTON Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, Madison, Wisconsin ZHENGYU LIU Center for Climatic Research, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, Madison, Wisconsin LESLIE SMITH Department of Mathematics and Engineering Physics, University of Wisconsin—Madison, Madison, Wisconsin HAO LU AND CHRISTOPHER J. RUTLAND Department of Mechanical Engineering, University of Wisconsin—Madison, Madison, Wisconsin (Manuscript received 14 January 2010, in final form 26 May 2010) ABSTRACT The breaking of a monochromatic two-dimensional internal gravity wave is studied using a newly de- veloped spectral/pseudospectral model. The model features vertical nonperiodic boundary conditions that ensure a realistic simulation of wave breaking during the wave propagation. Isopycnal overturning is induced at a local wave steepness of sc 5 0.75–0.79, which is below the conventional threshold of s 5 1. Isopycnal overturning is a sufficient condition for subsequent wave breaking by convective instability. When s 5 sc, little primary wave energy is being transferred to high-mode harmonics. Beyond s 5 1, high-mode harmonics grow rapidly. Primary wave energy is more efficiently transferred by waves of lower frequency. A local gradient 2 Richardson number is defined as Ri 52(g/r0)(dr/dz)/z to isolate convective instability (Ri # 0) and wave- induced shear instability (0 , Ri , 0.25), where dr/dz is the local vertical density gradient and z is the horizontal vorticity.
    [Show full text]
  • Factors Affecting Surface Wind Speeds in Gravity Waves and Wake Lows
    1664 WEATHER AND FORECASTING VOLUME 24 Factors Affecting Surface Wind Speeds in Gravity Waves and Wake Lows TIMOTHY A. COLEMAN AND KEVIN R. KNUPP Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama (Manuscript received 16 December 2008, in final form 14 April 2009) ABSTRACT Ducted gravity waves and wake lows have been associated with numerous documented cases of ‘‘severe’’ winds (.25 m s21) and wind damage. These winds are associated with the pressure perturbations and transient mesoscale pressure gradients occurring in many gravity waves and wake lows. However, not all wake lows and gravity waves produce significant winds nor wind damage. In this paper, the factors that affect the surface winds produced by ducted gravity waves and wake lows are reviewed and examined. It is shown theoretically that the factors most conducive to high surface winds include a large-amplitude pressure dis- turbance, a slow intrinsic speed of propagation, and an ambient wind with the same sign as the pressure perturbation (i.e., a headwind for a pressure trough). Multiple case studies are presented, contrasting gravity waves and wake lows with varying amplitudes, intrinsic speeds, and background winds. In some cases high winds occurred, while in others they did not. In each case, the factor(s) responsible for significant winds, or the lack thereof, are discussed. It is hoped that operational forecasters will be able to, in some cases, compute these factors in real time, to ascertain in more detail the threat of damaging wind from an approaching ducted gravity wave or wake low. 1. Introduction However, as demonstrated by Loehrer and Johnson (1995), many wake lows do not produce significant winds.
    [Show full text]